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Abstract

We present a method to construct a patch of parametric surface of degree�����
that fills an � -sided hole, with � bigger than 2, and whose boundary

coincides with a B-Spline, thus, the resulting patch can be easily connected
with given B-Spline surfaces with fixed continuity conditions.

The method is based on the generic approach by the same authors to con-
struct free form surfaces, which gives a family of practical schemes to design
surfaces from an arbitrary given mesh, using the differentiable manifold the-
ory.

The proposal uses a star shaped mesh which describes a generic � -hole
and a surface in a neighborhood of the hole. From this mesh, a set of charts is
defined, one associated to each vertex or face of the mesh, depending on the
input parameter

�
. A basis function and a control point is defined from each

chart, and the surface is obtained as a baricentric combination of the control
points using the defined basis functions. The main advantages of the method
are the following: arbitrary order

�
continuity conditions can be imposed;

the involved hole can have an arbitrary number of sides and arbitrary shape
(convex or not); the simplicity of the construction process gives an easy and
flexible method; and finally, the surface near the boundary is a B-Spline with
piecewise uniform knot sequences and whose control points are vertices of
the given mesh. Implementation details to evaluate a surface point are given,
showing that the de Boor algorithm can be exploited for efficiency.
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1 Introduction

The representation of free form surfaces is a very important topic in Computer
Graphics. Generally, the surfaces are defined by an assembly of rectangular patches.
However in some cases, rectangular patches leave some � -sided holes. Many meth-
ods have been proposed for constructing non-four-sided patches (see [7, 5, 10, 4,
11, 8], among others). Overviews of these methods can be found in [9] and [6].

Different versions of the problem are treated in the existing literature. In some
cases, given � patches of a specific class the hole has to be filled, whereas in others,
the construction of arbitrary � -sided patches is the main goal of the work. The
existing methods for constructing � -sided patches can be classified into recursive
subdivision, surface splitting, data blending and control point schemes.

The method presented in this paper can be classified among the control point
schemes. It is a fully automatic method for easily obtaining an order

�
continu-

ous surface from a control mesh that surrounds a hole with � sides, the parameters
����� and

�����
being arbitrary integers. Since it is a baricentric method, the

resulting surface will approximate the input mesh both topologically and geomet-
rically. Besides, the method allows some degrees of freedom for two reasons: first,
it supplies an scalar value 	 , which can be varied between some limits, determin-
ing in some way the influence of the control points on the central part of the patch;
and second, the construction allows additional layers of interior control points to
shape the patch without loosing the smooth connection in the boundaries. Further-
more, the boundary sides of the patch coincide with a tensor product B-Spline with
known knot sequences and whose control points are vertices of the input mesh.

The rest of the paper is organized as follows: Section 2 gives an overview of
the process followed to define the � -sided patches; Section 3 sets the notation for
and describes the mesh configuration in both image and parametric spaces; Sec-
tion 4 presents the different steps followed to define the surface of the patch; in
Section 5 we describe how to smoothly connect a patch with a given tensor prod-
uct patch using the property that the each boundary of a � -sided patch coincides
with a B-spline; Section 6 gives an algorithm to evaluate any surface point given
its parametric coordinates; in Section 7 several examples of � -sided patches are
shown, and some questions concerning our proposal are discussed; finally, in Sec-
tion 8 conclusions and some future work is given.

2 Overview

In this section we provide a general overview of the scheme proposed to construct
� -sided patches. The scheme follows the theoretical approach presented by the
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Figure 1: (a) Mesh defining a 5-sided hole. (b) The corresponding configuration
of a 5-sided regular patch in parametric space for the case

�
is even. (c) The

parametric space for the same case and odd
�

. The shaded part in (b) corresponds
to one of the sides ��� .

same authors in [3]. The construction process is divided in several steps that we
enumerate and briefly describe below.

The patch configuration. The patch configuration is determined by a control
mesh, denoted by � , which is made of regular layers of mesh around a central
� -sided face (see Figure 1(a)), thus the resulting patches are � -sided patches. This
configuration provides a family of patches that can be used in many situations,
specially to fill � -sided holes.

To easily connect the resulting patch with existing surfaces, the definition is
made in such a way that near each boundary curve of the patch, it describes a
tensorial product B-spline surface.

We point out later in Section 7 that this configuration for the regular � -sided
patch is not the most general case, but this choice simplifies the definition of our
� -sided patches. Later modifications, made to ensure a smooth connection with
general B-Spline neighboring patches, can be done with minor modifications.

The parameter spaces. Since the � -sided patch configuration is not regular, we
need to define a special parameter space to generate the surface. To do this we de-
fine a regular � -sided mesh � in ��� (see Figure 1(b)), and then we give a manifold
structure to this set, that is, we construct a set of charts and transition functions that
define the chart overlapping. The parameter space of � is denoted by �	�
��� ,

To simplify the definition process of the charts, mesh � is split into sides,
and each side  is then deformed into a regular auxiliar mesh ��� . The auxiliary
parameter space of a side  is referred as �	��� � � .
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The surface generation. To generate the surface we use a baricentric scheme,
that is, a basis function is defined for each chart, and a control point, which is
a vertex of the original mesh � , is associated to each chart. The surface points
are then baricentric combinations of these control points averaged by the basis
functions values.

3 The � -patch mesh configuration

The � -sided patch is defined from a control mesh � made of � � layers of vertices
surrounding a polygonal hole with � sides. The layers are distributed regularly
forming rectangular faces in the following way: the interior vertices have degree
4; the outer boundary vertices have degree 3, except for � that have degree 2;
and the inner boundary vertices have degree 3, except for the � that have degree
4 (the ones that determine the � -sided hole). The numbers of degree-three in-
ner boundary vertices between any pair of degree-four vertices is denoted by � � � ,
for �� ���	�	�	�
� ���� . Figure 1(a) represents an example of a 5-sided patch with
� � ��� and �
� � ��� � ��� � �� ��� � �

� ��� � ��� � ��� � ��� � ��� .
The parameters � � and

�
, that is, the number of regulars layers and the surface

continuity are related (but not restrictive). For a large continuity order, the number
of regular layers must increase in a way that the irregular part of the � -patch (that
is, the part of the surface filling the hole) is isolated from the boundary, ensuring
that the generation of this part of the patch does not perturb the behavior of the
surface near the boundary.

The described configuration � always determines a planar mesh � in � � ,
called a regular � -sided patch. In the definition of � , two cases are distinguished,
depending on the parity of the parameter

�
. This distinction is made to achieve B-

splines surfaces in the boundaries of the patch, for any
�

value. Figure 1(b) shows
the configuration of the 5-sided regular patch built from the mesh � in Figure 1(a)
for the case

�
is even, and Figure 1(c) shows the configuration when

�
is odd.

The mesh � is a plane regular mesh, describing a continuous � -sided hole,
with � layers of regular vertices surrounding it. The topology of � also depends
on the parameters � � , for �� ���	�	�	�
� ���� , defined similary to the case of the
mesh � . An additional scalar value 	 � � , called the aperture factor, determines
the size of the central face of � (the hole in parametric space).

Next, we accurately describe the construction of � for the even case and the
odd case is treated at the end of this section.

When
�

is an even value, � coincides with � � and � � ��� � � �!  . Mesh vertices
of � are defined making use of the symmetry of the construction: the whole star-
shaped mesh is divided into � submeshes, called sides of the star and denoted by
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� � �	�	�	� ����� � (see Figure 1(b)). These sides are not disjoint subsets, but � � and
� ��� � share vertices and faces. Since this is a circular division, from now on
operations involving indices of the sides are considered to work modulo � . It is
also useful to consider the representation of � � in � , denoted by � � .

We distinguish three parts in � � : the submeshes
� � ,

� ��� � and � � . Sub-
meshes

� � and
� �	� � are determined by ��
 � layers of regular mesh, and submesh

� � is determined by ��
 � � layers of regular mesh, where � � is the number of
degree 3 inner boundary vertices between the two inner vertices of degree 4 in the
 -th side of � (see Figure 2 for these notations). Notice that vertices belonging
to two consecutive sides � � and � �� � have two different labels associated. Fur-
thermore, labels for vertices in

� � submeshes depend on the side  it is taken (a
submesh labelling should be rotated 90 degrees to get the appropriate labelling for
the next side ��� ).

First of all we label the vertices of
� �	� � . Bottom left vertex is labeled as� ��� �� � , and then, following a right-up order we label the rest of vertices as

� ��� ���� for� � ���	�	�	��� � and ��� ���	�	�	��� � . Vertices of � � are also labeled from left to right
and from bottom to top. Bottom left vertex is � � � � , and the rest of vertices are � ����
for

� � ���	�	�	��� � and � � ���	�	�	�
� � � . Finally, vertices of
� � are label in the same

way,
� �� � being the bottom left vertex and

� ���� the upper right one. Notice that the
upper vertex row of

� �	� � coincides with the lower row of � � , and that the upper
row of � � coincides with the lower row of

� � ; in fact, the vertices of these two
rows are those in a side that have double labelling (see Figure 2).

������ � �"! �$#&%�'� (

����'�) �"!*��'��

! ��'� (

! �$#&%�'� � ! �+#&%('� �,�-
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Figure 2: Notations for a side � � of a 5-sided patch with � ��� , � � ��� and even�
.

To set the coordinates of vertices in � � , we first define the angle 8 � �:9<; � ,
and vectors => � � ��?A@CB �D8  � � BFEHG �D8  � � for  � ���	�	�	� � � �  . Then, vertices
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� ��� ���� � � �	� � , for
� � ���	�	�	� � � , � � ���	�	�	��� � and  � ���	�	�	�
� � �  have coordi-

nates � �	� �� � � � => � � �<=> ��� ��� � => �	� � � => � � 	 ; � (1)

Vertices
� ���� � � � with indices

� � ���	�	�	��� � , � � ���	�	�	�
� � and  � ���	�	�	�
� � ��
have coordinates

� �� � � � => � � �<=> �� � � � => � � => �� � � 	 ; � (2)

Finally, coordinates of vertices in � � , are set. In this case, we first place the set
of vertices of � � , and then the rest of vertices for faces � � �	�	�	��� � � � � are defined
using the same equations and applying a rotation to them.

To achieve this, we must define the curve ����� ����� �  � 	��
 � � joining the seg-

ments
� � �� � � � �� � and

� �� � � �� � , with �� continuity. This curve � therefore fulfills:

Endpoint interpolation: ��� �  � � � � �� � and ���  � � � �� � (3)

Tangency: � � � �  � � => � � and � � �  � � => � (4) � � ��� � � � � ��� ��� � �  � ����� ��� �  � � � (5)

Then, vertices � ���� , for
� � ���	�	�	��� � , � � ���	�	�	��� � � ,  � � are defined as

� ���� ������� � �$� � => � (6)

with increasing parameter values �  ��� ��� � � � � � �	�	� � � � ��� - �  such that
the vertices � ��� for � ��� �	�	�	�
� ��� � � are equally separated vertically.

As stated, vertices for the rest of sides � � for  �  �	�	�	�
� ���� are defined
following equation (6) and applying a counterclockwise rotation of 8  to them.

As it has been described, the topology of � in the case
�

is even coincides with
that of � . Fore the case

�
is odd, mesh � is the dual graph of � (if neither the

central face nor the outer unbounded face are not considered). This is accomplished
by considering a regular � -sided patch just being described case but taking ���
� � �  and � � ��� � � �  �!  (see Figure 1(c)). In this way, for

�
even each vertex> � � has its image vertex � � � , and in the odd case, each face in � has its

corresponding vertex in � .

4 The �
�

patch

To construct the � -sided patch we use the regular � -sided patch configuration as
parameter space. The applied process follows [3] and is divided in several steps,
that we detail in next subsections.
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Before, let us define the bijective map � that transforms the side � � into a
geometrically more simple shape in � � (a rectangular mesh), denoted by � � (see
Figure 3). This map allows us not only to work in an auxiliary simpler parametric
space, which simplifies both the definition process and the implementation, but
also to better understand the relationship between our spline scheme and usual B-
splines.

���� ! #&%�����
�	� ! �� � �


��

�



�

���

� � � ! #&%���

! �� �
�

,��

�

Figure 3: Mapping from �	�
� � � to �	��� � � .
The subset � � is the drag of a � � curve, the left boundary of � � , along a

horizontal straight line. This � � curve is in fact composed of three parts, the curve

� and the segments
� � �� � �F� � �� � and

� �� � �F� �� � . Let us call �� ��� � the horizontal distance
between a point ��� � � � on the left boundary of � � and the vertical coordinate axe
� � � .

Then the � � -continuous map � is defined as

� � � � 
 � �
��� � � � 
 ��� ���� ��� � � � �

Thus, � transforms the mesh � � into an axe-aligned rectangular mesh, � � .
Notice that the inverse function � � � maps a point ��� � � � to ��� �������� � � � � . The

rest of sides � � for
� �  �	�	�	�
� � �  can also be transformed into a rectangular

shape by applying a clockwise rotation of
� 8 to them followed by the map � just

being defined.

4.1 The parameter space

We use � as parameter space. First we define a
�

-differentiable manifold structure
on � , defining the set of charts and the family of transition functions.
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4.1.1 The charts

We construct a set of charts satisfying the following properties: First, they are geo-
metrically simple subsets of � � , which is an important property since we use them
as support for the basis functions. Second, each point inside � belongs to a mini-
mum number of charts, which grants the smoothness of the resulting surface. And
third, charts near the boundary of the patch coincide with the ones that would be
obtained for a B-spline with piecewise uniform knot distribution (this last property
will be formalized in Section 5).

Depending on the parity of
�

we will define a chart for each vertex, when
�

is
even, and a chart for each face of � (except for the � -sided hole face), when

�
is

odd. To simplify the exposition we only consider the submesh � � , and we define
the charts that are associated to the vertices. The charts for the rest of sides are
defined symmetrically.

−1F

Figure 4: Charts definition process for the case they are centered on vertices (
� �

� � � ��� � � � ��� ). Three differents cases are represented.

To define the charts we work in the space �	��� � � . Let � ��� � ; �����  . First, �
rectangular mesh layers are added to the four boundaries of � � , giving place to the
extended mesh � �� (see Figure 4). These auxiliary layers are built following the
spacing between vertices of the mesh � � (see Figure 4).

Sets � ���� are defined to be the rectangles in � �� that cover � � � � �4
 � � � � �
mesh layers. There exists a � �� � set centered either on each vertex � ��� � � � when

�
is even, or on each face 	 � � � � � when

�
is odd.

More formally, let � ��� for
� � ��� �	�	�	��� �4��� , ��� ��� �	�	�	��� ���4� � � �	� be

the vertices of � �� (labeled from bottom left to right top), and 	 ��� be the faces of
� �� such that 	 ��� has � � � as lower left vertex. The sets � ���� are defined to be the
rectangles from � � ��
:� �� � ��
:� � to � � � � ��
 � �� � � � ��
 � � .
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Then, charts � ���� for
� � ���	�	�	� � � and � � ���	�	�	�
� ����� � � are defined as

� � � � � ���� � .
Notice that charts in �	�
��� have a relatively simple shape, since they are a

sweep of a curve along a straight segment. Figure 4 shows three different examples
of charts.

Following this construction, a chart is defined for every element (vertex or face,
depending on the parity of

�
) of � � . Since consecutive sides � � and � � � � have

elements in common, if the above definition was used for the rest of sides, some
elements of the regular � -sided patch would have two charts attached. In order
to obtain a B-spline surface near the boundaries of the patch, duplicity of charts
have to be avoided. In particular, for each side � � , the following charts have to be
discarded (see Figure 5):

charts � ���� such that � � ��� � � � � and
� � � �

and (7)

charts � ���� such that � � � � � � (8)

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���������������� Regular patch zone

Irregular patch zone

Vertices with two charts
Vertices with one chart

Figure 5: Vertices of a side � � for which charts are to be considered are marked
(
� � � � � � � � � � � � ), distinguishing between vertices with one chart associ-

ated and vertices with two charts associated. The regular patch zone ��� and the
irregular central part are also represented.

In this way, only some elements of � � that are close to the hole of the � -sided
patch have two charts associated (black vertices in Figure 5). Furthermore, the
definition for charts of

� � close to the vertex boundaries of the patch is the same
regardless on the side (  or  �� ) it is considered for defining them. In fact, these
are the charts with rhombic shape in �	�
��� (for example, upper chart in Figure 4).
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This definition associates a vertex or face of � to each chart, depending on the
parity of

�
, and therefore each chart has a vertex of the original mesh � associated.

Remark, however, that some of these mesh vertices will have two (different) charts
associated to it

4.1.2 Transition functions

Following [3], a family of transition functions is constructed to define the overlap-
ping between the charts, but in the actual situation all the charts are defined in the
regular � -sided patch, so the overlapping between charts is yet defined. Thus we
define the transition functions as the identity map in � � .

4.2 Surface generation

Once the parameter space is defined, next step is to construct the surface, that is,
the � -sided patch. First we define a basis function associated to each chart, in fact,
with support in the chart. We also define a control point associated to each chart.
Then we use a baricentric scheme to construct the surface.

4.2.1 Basis functions

In this section we construct a family of functions with the following properties. A
function with support in each chart is defined. Moreover the family of functions
determines a partition of the unity, that is, for each point in the parameter space the
sum of the function values is equal to one.

The definition of map � in the space � ��� � � makes easy to define a basis
function for each chart. Recall that each chart � is the anti-image of a rectangular
zone � ���� in � ��� � � . Then, we define a tensorial product B-spline basis function
on this rectangle, denoted by � �� , using as knots the coordinates � and � of the
vertices in � �� .

However, recall that while the majority of elements have a unique chart asso-
ciated, some of them have two (see Section 4.1.1). Using a baricentric scheme
would cause these elements to have double influence on the shape of the surface.
Although in principle this is not a theoretical problem, in practice one expects all
the control points to shape the surface in an homogeneous way. Therefore, we
define a normalizing factor � � associated to each chart � . For double association
charts, � � �  ; � , and for the rest of charts � � �  .

Since the overlapping of the charts do not follow exactly the overlapping that
arise in a tensorial product B-spline scheme (in the irregular part of the patch),
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we can not ensure that these functions determine a partition of the unity, so it is
necessary to normalize them.

Therefore we define the basis functions as

� �� � � � � ������� 6�� �
�

� ��
where �	� is the set of charts associated to elements in � .

4.2.2 Control points

We associate a control point to each chart. In Section 4.1.1 we point out that
each chart is associated to a vertex or face of � , and since there is a one-to-one
correspondence between elements of � and vertices of the control mesh � , a
control point is associated to each chart. The control point associated to the chart
� is denoted by 
 � .

4.2.3 The surface

Finally the surface � � �	�
����� � � 
 � � is defined as follows. Each chart � is
associated to a control point 
 � and to a basis function � �� , thus we can compute
the image of a parameter point  as

� �� � ���� � �

 � � �� �� � �

Since this construction follows the scheme defined in [3], we can ensure that the
surface has the following properties:

1. It is a
�

-differentiable surface.

2. Affine invariance property.

3. Local and global containement in the convex hull of the control mesh.

4. The computation of the manifold �	�
� � which is the most expensive step,
only depends on the topology of the mesh and parameters 	 and

�
. There-

fore, it can be performed only once, even if the position of the control points
is modified.
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5 B-spline boundaries

We have defined a � -sided patch as an independent patch, but in practical situations
this patch must be smoothly connected to existing surfaces. There are several pos-
sible situations, but the simplicity of our proposal resides in the fact that the bound-
aries of the � -patch coincide with B-splines, as the following theorem announces.
Thus, the conditions for connecting a � -sided patch with a given B-spline rectan-
gular patch are analogous to the ones obtained to connect two B-spline patches.

Theorem 1. If � � � then each boundary  of the � -sided patch coincides with a
B-spline of degree

� �  defined by some control points of � � and knot distribution
given by the vertex coordinates of � �� .

Being more precise, given a side  , the regular part of the pacth corresponds
to a region � � in parametric space that covers a vertical stripe of � � � �  mesh
layers (see Figure 5). That is, the regular patch zone of a side  is the image� ��� � � � � � � � of the rectangle � � � �	��� � � with extreme vertices � � � � � � and
� �
� � ��� � � .

Proof. The proof for the above Theorem is based on the proof of Theorem 1 in [1],
which states that any tensor product B-spline scheme can be obtained applying the
generic scheme which is also the one used in the present paper. The construction
of [1] for a regular mesh and the restriction of the proposed method to ��� are the
same.

We can ensure that Theorem 1 in [1] can be applied to the zone � � because:

1. Charts implied in the definition of � ��� � � � � � � � are not associated to ele-
ments with duplicate charts.

2. Since � � � , charts with non-empty intersection with � � are either charts
associated to non-discarded vertices of � � , or discarded charts associated to
vertices in � �	� � whose definition coincides if side  is considered.

Thus, the definition for charts and control points for the portion of the surface we
are considering is the same than the one for the B-spline case.

6 Implementation

6.1 Surface evaluation

In this section we detail how to compute a point on the surface given its parametric
coordinates ��� ��� � � � . Following the definition and the algorithm given in [2],
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the image point � � � � is evaluated summing up the terms of each chart � � such
that � � � � , and then normalizing the result. However, remark that our proposal
differes from that in [2] in that some elements have two charts associated, thus the
normalization has to be performed in a slightly different way. The sum of basis
functions is performed for each side � � , traversing the charts associated to the
mesh vertices in the spaces � � . This results in the following algorithm, which
given a point � � � �
� � computes its image point � � � � :

� ��� � � � � � � � � � � � � ��� ��� ��� � �
For  in � ��� � � � 	� do
� � � Rotate � � � ��8��  �
� � � F(p)
AddChartsOfSide �
 � � � ��� � ��� � � � � � �

endFor� � � ��� � � ���+; � � ��� ; � � � �5; � �
The rotation followed with the map � projects the point � from �	�
��� to the

parameter space of � � . The core of the algorithm is thus the procedure AddChart-
sOfSide, which actualizes the sum for the charts of a side  (the three coordinate
components � � � ��� � � � and the sum of base functions

�
, used to normalize the

result). The computation of the � mapping is further detailed in next subsection.
This procedure is next detailed.

Since we are traversing the sides and elements of consecutive sides are shared,
we have to avoid visiting twice shared vertices with a single chart associated (see
Section 4.1.1). Thus, for each side charts associated to vertices or faces fulfilling
conditions (7) and (8) must not be taken into account.

For simplicity, we work in the spaces �	��� � � , where the meshes and charts
have a regular shapes. This rectangular configuration can be exploited to use the
usual algorithms developed for the tensor product B-Spline patches, as well as
performing bounding-box inclusion tests for improving the efficency.

In particular, for the surface evaluation the de Boor algorithm for evaluating
NURBS can be used in the following way: (1) A fourth term, with unitary value, is
added to the control points. This fourth coordinate is used in order that the de Boor
algorithm also computes the sum term

�
; (2) setting to zero all four coordinates of

control points corresponding to discarded charts; and (3), the fourth coordinate is
set to  ; � for all control points that have two charts associated, following the defi-
nition of the surface given in Section 4.2. This trick allows us to easily implement
the procedure AddChartsOfSide making usage of the de Boor algorithm.

In summary, the point evaluation essentially requires � mappings between the
parametric spaces � �
� � and � ��� � � plus � evaluations of an order

� �� B-
spline rectangular patch with � � �  �4
 � ���"��� � �  � four-dimensional control
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points. Since these extended control points are fixed, they can be pre-computed
and stored so that multiple point evaluations are efficiently computed.

Notice also that one can improve the efficiency by pre-computing and storing
the knot sequences. Besides, the horizontal knot sequence (the one corresponding
to direction � ) is common to all the �	��� � � spaces, since horizontal knots are
uniformly spaced and the number of knots is the same for all the sides. On the
other hand, the vertical knot sequences (the � knot sequences) do depend on the
number of layers of the side, � � . Nevertheless, if all the sides have the same
number of layers (

 � � � � � ��� � ), not only the vertical knot sequence is unique, but
also, by choosing the appropriate aperture factor, the vertical spacing between all
vertices in � � can be forced to be the unit, so that a uniform B-spline scheme is
obtained.

As we see, although the theoretical development of the multisided patch is quite
complex, the method for point evaluation is rather simple, since efficient known
algorithms for B-spline patches can be applied. The only process that remains to
be explained is the computation of � that maps the parameter space �	�
� � � to
the space of � � .

6.2 Computing the F mapping

The computation of the � mapping requires to distinguish three cases, depending
on the � value. Let

� �� � � � 	 � � 	 � � , then if � is greater than 	 � or smaller then � 	 � ,
a simple linear transformation is needed. Otherwise, that is, if the point lies on the
horizontal stripe corresponding to submesh � � , the mapping is given by the sweep
of curve � along a vertical segment.

Suppose that � is parameterized in terms of � ; 	 � . Since it has been imposed
that in � � the vertical spacing between consecutive vertices � � � � has to be uniform,
the parameter values � � such that ����� � � � � ��� are also equally spaced.

Thus, we only need to identify the curve ����� � , or, better said, since the param-
eter value � coincides with � ; 	 � , the problem reduces to defining the horizontal
term of the curve, � � ��� � . The definition for curve � given in Section 3 gives

(3) � � �  � ��� � � �  � � 	 �
(4) � � � �  � ����� G � ��� � � � � � �  � ����� G ��� �
(5) � �

� �� �  � ��� �
� �� � �  � � � � � � � �	�	�	�
� �

where � � 9<; � � 8 . In fact, there is not a unique way to define this curve. In
the actual implementation, we choose � � to be a polynomial. Thus, taking into
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account that the result has to be symmetric with respect to the � axis, the odd
degree coefficients of the polynomial must be zero:

� � ��� � ��� � � � � � ��� � � � � � � � � � �
�	�	� ��� � � � ��� �

For example, for
� �  , we obtain a parabola,

� � ��� � � 	 � ��� G ��� �� � � � � �� � � 	 �
and for

� ��� ,

� � ��� � � 	 � ��� G ��� ��� � � � � � � � � � �� � � ��� �1� 	 �
Notice also that this results in a quite simple function, and that although it has
degree � � , it can be lowered to the half with a simple variable change � � � � .
Furthermore, the implementation could only consider the curve corresponding to
the maximum order admitted.

7 Results and discussion

Snapshots in Figures 6 to 11 show surfaces obtained by applying the method pre-
sented in this article from � -sided control meshes. In Figure 6 a 3-sided symmetric
mesh is represented, and resulting surfaces computed by applying our method are
shown. The different cases represented correspond to patches with continuity of
order

� � ���  and � .
Surface in Figure 7 is a mesh defining a 5-hole, the correponding 5-sided patch

and a close-up of the central part of the patch. Different zones of the patch have
been represented in alternating colors in order to better appreciate the shape of the
resulting surface. Figure 8, shows 5-sided hole and the resulting surface for

� ��� ,
Figure 9 represents a 6-sided patch, and Figure 10 shows a 7-sided patch with order
2 continuity.

The surfaces in Figure 10 are � � 5-sided patches computed using the same
control mesh but using a different apperture factors. The region corresponding to
the central face in parametric space of the patch is colored in red to see the influence
of the 	 factor. In the bottom right example, since 	 is too big the number of charts
covering the central part is too small, and thus an almost flat zone is produced.

To avoid this undesirable effect the aperture factor 	 must be bounded. In fact,
if the apperture factor is too big it could even happen that some points of the central
face of � (the hole) do not belong to any chart, and then the surface will not be
defined there. Notice that in a usual tensor product surface each parametric point
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is covered by � � � � � 
 � � � � � charts. This is the minimum number of charts that
we require for an � -sided regular patch. A geometric reasoning shows that, in the
general case, an analogous condition can be imposed if � 	"?A@CB �D8�; � � � � � ; � �� �
(this result is obtained by noticing that the most conflictive point is the center of
� ). In this way, we obtain a patch of a sufficient degree that allows a smooth
enough free-form surface.

Another aspect that should be taken into account is that, although near each
boundary of a � -sided patch the surface coincides with a B-spline, the knot se-
quences are not general. In fact, the knot sequence in one direction is uniform
and in the other it is piecewise uniform. Thus, connecting a given rectangular B-
spline with a � -sided patch can become in same cases not straightforward. Given
a tensorial product B-spline patch with non-uniform knot distribution, under some
circumstances we can still use the knots of the given surface to construct the regular
part of the � -sided patch � . That is, we can define the points of � in a way that sat-
isfies the distribution (distances) between the given knots. In this case the � -sided
patch may not be regular (in terms of the given definition), but the process applied
in the previous sections can also be performed without important modifications.

8 Conclusions and future work

In summary, we have presented a method that, given a control mesh surrounding
an � -sided hole constructs a patch of parametric surface of degree

� �� that fills
the hole. The mesh is composed of � � layers of vertices distributed in � sides,
and the boundary of the patch being built coincides with a tensor product B-spline
surface for each side. Since there are no restrictive conditions for neither � nor

�
,

the proposal allows joining a given tensor product B-spline patches with
� � � .

The method only requires that the number of vertex layers � � is big enough to
attain the order

�
continuity conditions. Thus, additional layers of control points

can be placed to shape the central part of the patch (without loosing the order
�

continuity). In addition, the method also supplies a scalar value 	 that can be used
to have a more accurate control the influence of the control points towards the
central part.

In spite of the theoretical difficulty to define the patch, we have seen that the
simplicity of the construction process gives an easy method. We have also pre-
sented an algorithm to easily evaluate a surface point given its parametric coordi-
nates. Furthermore, as explained the de Boor algorithm can be exploited to effi-
ciently perform this evaluation.

Although our proposal allows an easy
� � � connection between an � -sided

patch and a given B-spline rectangular patch, in the paper we have not treated the
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case of generating a patch given � rectangular patches surrounding a hole. Future
work includes giving the exact coordinates of the control points of an � -sided patch
filling a hole like this, as well as analyzing the best number of additional layers
of control points and its placement for usual situations in computer aided design
(vertex rounding, surface blendings, etc). Another future developement consists on
managing the special case � � � , that is, filling the hole of a ring-shaped control
mesh (for example, blending the apex of a conic surface).
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Figure 6: Top left to bottom right: Mesh defining a 3-sided hole, and surfaces of
order 0, 1 and 2.
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Figure 7: A 5-sided patch. Control mesh, resulting patch and close-up of the central
zone.

Figure 8: A � � 5-sided patch and its control mesh.
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Figure 9: A � � 6-sided patch and its control mesh. Central (darker) part of the
patch corresponds to the hole in parametric space.

Figure 10: A ��� 7-sided patch and its control mesh.
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Figure 11: Three 5-sided patches defined using the same control mesh and increas-
ing apperture factors.

21


