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Abstract

The accommodation of conventional 2D GUIs with Virtual Environments (VEs) can greatly enhance
the possibilities of many VE applications. In this paper we present a variation of the well-known ray-
casting technique for fast and accurate selection of 2D widgets over a virtual window immersed into a
3D world. The main idea is to provide a new interaction mode where hand rotations are scaled down
so that the ray is constrained to intersect the active virtual window. This is accomplished by changing
the control-display ratio between the orientation of the user’s hand and the ray used for selection.
Our technique uses a curved representation of the ray providing visual feedback of the orientation of
both the input device and the selection ray. We have implemented this technique and evaluated its
effectiveness in terms of performance and user preference. Our experiments on a four-sided CAVE
indicate that the proposed technique can increase the speed and accuracy of component selection in
2D GUIs immersed into 3D worlds.

1 Introduction

In the recent years a considerable amount of re-
search has been devoted to develop techniques for
making 2D applications available from within VEs.
As a consequence, a number of tools for launch-
ing and/or sharing existing 2D applications into
VE and Augmented Reality (AR) applications have
been proposed. Hardware oriented approaches pro-
vide access to external applications through sep-
arate devices such as PDAs and tablet PCs [1].
Software oriented approaches [2, 3, 4, 5] access 2D
display contents generated by external applications
and display them as texture-mapped rectangles.
These techniques let the users interact with 2D ap-
plications through VR input devices such as gloves
and 6-DOF sensors (see Figure 1).

There are two main software technologies for ac-
cessing 2D GUIs from a virtual world. The most
common solution relies on a modified VNC client.
VNC (Virtual Network Computing) [6] is a remote
display system which allows viewing a computing
desktop running elsewhere on a network. VNC

provides a distribution mechanism for desktops by
transmitting frame buffer contents to the remote
client and receiving keyboard and pointing device
events. VNC is the foundation of most systems pro-
viding immersion of 2D applications into 3D space
[2, 3, 4]. An alternative technique consists in mod-
ifying an extensible 2D GUI toolkit so that native
widgets are rendered directly onto a texture [5].

At a low level, user-interaction tasks with 2D
GUIs immersed into 3D worlds can generally be
characterized as selection or manipulation tasks [7].
However, selection and manipulation of 2D GUIs
has some specific characteristics which must be
considered when designing appropriate interaction
techniques:

• Interaction with 2D GUIs is often dominated
by selection rather than manipulation. Al-
though selection is 2 DoF, manipulation (e.g.
moving a slider or rotating a dial) is mostly 1
DoF (excluding the drag-and-drop metaphor).

• Application-control GUIs (such as those en-
abling the adjustment of display parameters)
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Figure 1: External 2D applications (web browser, color selector and P2P telephony) immersed into a
3D world through a modified VNC client (a). Visual feedback supporting the proposed technique (b).
Several rays corresponding to different orientations of the input device are shown.

are typically manipulated frequently but in
short intervals, thus making inappropriate the
use of techniques that require some kind of user
set-up (e.g. the Voodoo Dolls technique [8]) or
have a large impact on the displayed image
(e.g. the Scaled-World Grab technique [9]).

An additional problem involved in accessing ex-
ternal applications from within VEs is that the only
possible adaptation of the GUI to the VE is to ad-
just the size and location of the virtual window
containing the different widgets. For example, a
window might include small, nearby buttons which
can be difficult to select using 3D interaction (see
e.g. the color selector in Figure 1-a). Therefore,
interaction techniques for such applications could
differ from those used for GUIs specifically tailored
to 3D environments [10].

A fundamental technique for manipulating 3D
objects is pointing. Pointing techniques enable the
user to select and manipulate objects by simply
pointing at them. A number of studies have demon-
strated that pointing techniques often result on bet-
ter selection effectiveness than virtual hand tech-
niques [11]. Different variations of this technique
differ basically on three aspects: the computation
of the pointing direction (i.e. the mapping of the
input device position and orientation onto the di-
rection of the ray), the shape of the selection vol-
ume, and its visual representation (feedback). Ray-
casting is the simplest and most popular point-
ing technique. In classic ray-casting implementa-

tions, the pointing direction is given directly by a
virtual ray controlled by a 6-DOF sensor and vi-
sual feedback is provided by drawing a line extend-
ing out from the user’s hand. Classic ray-casting
implementations are isomorphic [12] in the sense
that they use a direct, one-to-one mapping between
hand rotation in the physical world and ray rota-
tion in the virtual world.

Unfortunately, ray-casting techniques do not per-
form well when selecting small or distant objects
[13]. Small rotations of the wrist sweep out large
arcs at the end of the selection ray. Therefore hand
trembling and tracking errors are amplified with
increasing distance, thus requiring a high level of
angular accuracy. Accurate selection is also com-
promised by the hand instability caused by the ab-
sence of constraints on the hand movements (lack
of physical support for manipulation) [14]. As a re-
sult, users attempting to select small buttons with
this technique have to make a considerable effort to
stabilize their wrist.

In this paper we present a new interaction tech-
nique for fast and accurate selection of 2D widgets
over a virtual window. The main idea is to pro-
vide more accuracy to the ray-casting technique by
changing the control-display (C-D) ratio [15] when
the user is interacting with the active window.

The C-D ratio is a coefficient that maps the phys-
ical movement of the pointing device to the result-
ing on-screen movement in a system where there is
an anisomorphism between the pointing device and
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the display (e.g. a 2D mouse). The C-D ratio often
defines the distance that must cover the device in
the physical world (dx) to move the cursor on the
screen by a given distance (dX). The adaptation
of the C-D ratio dx/dX has been successfully used
in many 2D and 3D interaction techniques (see [16]
for a review). However, these techniques have been
designed for manipulating 3D objects and thus do
not address the specific problems involved in 2D
GUI manipulation.

Our technique adapts the C-D ratio in order
to scale down hand rotations and enable accurate
selection and manipulation of small GUI objects.
When the user is pointing at a virtual window, we
increase the CD-ratio between the user’s hand and
the ray used for selection, so that the ray rotates
more slowly than the user’s hand, thus reducing
the effect of hand instability. Unlike other tech-
niques designed for accurate 3D object manipula-
tion which define the C-D ratio inversely propor-
tional to the hand speed [16], we compute the C-D
ratio by considering the size and position of the
virtual window relative to the user’s hand at the
moment the scaled mode is activated. While the
scaled mode is active, the C-D ratio remains con-
stant. Our technique uses a curved representation
of the ray providing integrated visual feedback of
both the orientation of the input device and the
selection ray. We call this technique friction sur-
faces because the users’ feeling in scaled mode is
that they control a flexible ray that gets curved as
it moves over a virtual friction surface defined by
the 2D window (see Figure 1-b).

We conducted a usability evaluation to measure
the performance and effectiveness of the technique.
Our experiments on a four-sided CAVE indicate
that the proposed technique can be used to increase
the speed and accuracy of component selection in
2D GUIs immersed into 3D worlds.

The main contributions of the paper are:

• A new technique for interacting with 2D ap-
plications immersed into VEs. The technique
has its roots in ray-casting selection and C-D
based techniques [16] but adopts a completely
different approach for activation/deactivation
of the scaled mode and for computing the C-D
ratio. One of the advantages over approaches
using dynamic adjustment of the C-D ratio is
that the angular difference between the user’s

hand orientation and the selection ray orienta-
tion is bounded by a user-defined constant.

• An evaluation of the performance and usabil-
ity of the technique on a four-sided CAVE that
indicates that it is particularly suitable for in-
teraction with external applications immersed
into VEs.

• A comparison with isomorphic ray-casting and
with other approaches modifying the C-D ra-
tio, and particularly with [17].

The rest of the paper is organized as follows.
Section 2 reviews related work on interaction tech-
niques for accurate selection and/or manipulation.
Section 3 describes the proposed interaction tech-
nique and discusses the main differences with re-
lated approaches. We present effectiveness and us-
ability results in Section 4, and provide concluding
remarks in Section 5.

2 Previous Work

A number of 3D interaction techniques have been
proposed for manipulating objects in immersive
VEs, including exocentric techniques [18], egocen-
tric techniques such as virtual hand and virtual
pointer [19] and hybrid techniques [20, 9, 8]. The
ray-casting technique is a powerful virtual pointer
technique for 3D manipulation. However, classic
ray-casting does not perform well when selecting
small or distant objects [13]. Indeed, accurate in-
teraction with small or distant objects is one of the
main challenges in 3D manipulation. A number of
techniques have been proposed for achieving more
accuracy on such tasks.

One technique is to explicitly scale or zoom in
the workspace in order to provide accurate manip-
ulation. The WIM (World-In-Miniature) [18] is an
exocentric technique that provides the user with a
miniature handheld model of the VE. Scaled-World
grab [9] provides a manipulation mode where the
entire VE around the user’s viewpoint is scaled
down so that the selected object can be manipu-
lated using the virtual hand technique. HOMER
[20] uses ray-casting the select an object and then
the user’s virtual hand instantly moves to the ob-
ject and attaches to it. The Voodoo Dolls [8] is
a two-handed manipulation technique that enables
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users to scale their workspace by selecting a voodoo
doll of appropriate size. All these techniques put
the emphasis on 3D object manipulation rather
than selection.

The use of physical props to constrain the in-
teraction can help to reduce hand instability [14].
Pen-and-tablet interfaces [21] register a virtual win-
dow with a physical prop held in the non-dominant
hand. Users interact with these handheld windows
using either a virtual hand or a virtual pointer held
in the dominant hand. Hand-held windows also
take advantage of the proprioceptive sense as they
are close to the non-dominant hand. Some systems
use hand-held windows whose physical prop is a
lightweight, transparent surface that the user car-
ries around, increasing precision. The Transparent
Props [22] technique consists of a tracked hand-held
pen and a pad. The pad can serve as a palette
for tools and controls as well as a window-like see-
through interface. Although combining transpar-
ent props with other two-handed techniques can be
difficult and storing the physical surface when not
in use can be an issue, these techniques provide a
powerful and flexible interface for manipulating 2D
GUIs.

A different family of techniques uses static or
dynamic adjustment of the C-D ratio. This con-
cept has been applied to many different VE-related
tasks including navigation [23], perception [24], se-
lection [15] and manipulation [12, 16]. Blanch et
at. [15] improve selection through semantic point-
ing. Semantic pointing is based on defining two in-
dependent sizes for each potential target presented
to the user. One size is used in visual space and it
is adapted to the amount of information conveyed
by the object. The other size is used in motor space
and is adapted to the object’s importance for the
manipulation. This decoupling between visual and
motor size is achieved by changing the C-D ratio
according to cursor distance to nearby targets.

Some techniques amplify rotations so that most
manipulations can be accomplished with a single
motion, thus minimizing the need for releasing the
virtual object and grabbing it again [19, 25, 12].
Usability properties of different rotation mappings
are discussed in [25, 12] and different C-D gains be-
tween real and virtual hands are evaluated in [20].
Poupyrev et al. [26] derive the equations for lin-
ear and non-linear amplifications of spatial rota-
tions. Non-isomorphic rotational mappings for en-

hanced 3D rotations of objects have been explored
in [12]. The authors provide several guidelines to
design non-isomorphic techniques for rotating ob-
jects. In particular, they identify two compliances
between the user movements and the sensory feed-
back which affect the effectiveness of 3D rotation.
Directional compliance means that the object ro-
tates in the same direction as the input device.
Directional compliance ensures correspondence be-
tween the visual, kinesthetic and proprioceptive
feedbacks of motor movement. Note that absolute,
non-isomorphic mappings do not always maintain
directional compliance on 3D rotations [12]. On the
other hand, nulling compliance ensures that rotat-
ing the device into an initial orientation would also
rotate the controlled virtual object into a zero ori-
entation. Our proposed techniques maintains both
compliances. Note however that 3D object rotation
is a problem significantly different from the prob-
lem being addressed in this paper, i.e. controlling
a ray for moving a 3D cursor over a virtual win-
dow. The above techniques put the emphasis on
amplifying rotations to allow a more effective use
of limited tracking ranges and avoid the clutching
problem [12].

The PRISM (Precise and Rapid Interaction
through Scaled Manipulation) [16] uses C-D adjust-
ment to provide fast and accurate manipulation of
3D objects. PRISM uses the hand speed of the
user to gradually switch between different modes
by altering the C-D ratio. The mapping is con-
trolled basically by three speed constants defining
four intervals. In the first interval, the speed is
below a certain minimum velocity and the move-
ment is considered jitter, so the C-D ratio is set to
∞. The second interval corresponds to scaled mo-
tion, where C-D ratio is inversely proportional to
the hand speed. Above the second speed constant
(about 20 degrees/second for ray-casting), the C-D
ratio is set to 1. Motion above the third speed con-
stant is used only for offset recovery. The first ver-
sion of PRISM operated only on translation [16] but
it has been recently extended to 3D rotations [17].
The authors report significant user performance im-
provements when using ray casting with PRISM
rotations. Although similar to PRISM in concept,
our technique adopts completely different strategies
for activation/deactivation, computing the C-D ra-
tio and providing integrated visual feedback allevi-
ating the anisomorphism of the movement. A de-

4



(a) (b) (c)

Figure 2: Elements involved in the computation of the CD-ratio: Device coordinate system and device
ray (a), spherical coordinates used at activation time to fix the CD-ratio (b), and spherical coordinates
used for computing the selection ray direction during scaled mode (c).

tailed comparison with PRISM is provided in Sec-
tion 3.5.

3 Our approach

3.1 Overview

The friction surfaces technique has been conceived
to facilitate the interaction with external 2D appli-
cations being accessed from immersive VEs. The
main goal is to provide accurate selection and ma-
nipulation of 2D GUIs that have not been particu-
larly designed for VEs. To this end, we use a mod-
ified ray-casting technique which adapts the C-D
ratio according to the size and position of the vir-
tual window.

We start by introducing some notation that will
be used in the rest of the paper. The Device Co-
ordinate System (DCS) is an orthonormal frame
centered at the position of the 6-DOF sensor at-
tached to the user’s hand. We assume the DCS is
oriented as depicted in Figure 2-a, with the neg-
ative Z axis defining the user’s hand pointing di-
rection. This pointing direction will be referred
to as the device ray. The device ray is isomorphi-
cally controlled by the hand and plays the role of
the control component in the C-D ratio. The Zero
orientation is an orthonormal reference basis used
for scaling down the rotation of the user’s hand
while in scaled mode. The zero orientation is de-
fined from DCS and the window’s center when the
scaled mode is activated (discussed in Section 3.2)
and then remains unchanged until the mode is de-

activated. We call selection ray the ray resulting
from scaling down the rotation of the hand with
respect to the zero frame. As its name suggests,
the intersection of the selection ray with the virtual
window’s plane is used as the cursor for selection
and manipulation purposes. In our approach, both
the selection ray and the device ray originate at
the current device position, as we only scale down
rotations, not translations. The selection ray’s di-
rection is the result of applying an isotropic linear
mapping to the rotation measured from the zero
orientation. Finally, the feedback ray is the curved
line segment that will be displayed for providing vi-
sual feedback about the linear mapping (the device
and selection rays are not rendered). Note that in
the classic ray-casting manipulation, the selection
ray coincides with the device ray, thus providing
isomorphic manipulation. In our case, isomorphism
is preserved only when no virtual window is active.

3.2 Activation

We use two distinct modes: one which scales hand
rotations when accuracy is needed (scaled mode)
and one which provides direct, isomorphic inter-
action (normal mode). We now describe different
strategies for activating the scaled mode and dis-
cuss the associated computations. We have consid-
ered both manual and automatic activation. Man-
ual activation/deactivation requires the user to is-
sue a trigger event (e.g. a button press). Auto-
matic activation simply takes place whenever the
selection ray enters a virtual window. The mode
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is set back to normal mode when the selection ray
leaves the window; that happens when the hand ro-
tation with respect to the zero orientation reaches a
certain maximum value (e.g. 45 degrees). The de-
activation causes the selection ray to coincide again
with the device ray. We have found that this lost
of continuity is not disturbing to the users because
it simply causes a curvature change in the bent ray
used for feedback (see Section 3.4).

When the scaled mode is activated, the zero ori-
entation is defined. In our implementation we have
defined this reference frame by forcing the Z-axis
to be oriented along the segment joining the win-
dow center and the device position (this segment is
shown in Figure 2-b). Let ~z be a unit vector in the
direction of the segment joining the window center
and the device position at activation time. Let ~u
be the unit vector defined by the vertical orienta-
tion of the window. We compute ~x = ~u×~z

||~u×~z|| and
~y = ~z × ~x. The zero orientation is then defined by
the unit vectors ~x, ~y, ~z.

We then compute the range of directions the
selection ray can travel before leaving the active
window as follows. Let Pi be the i-th vertex of
the virtual window. Let θi be the azimuthal angle
(longitude) of Pi in the XZ-plane, measured from
the negative Z-axis of the zero orientation, with
0 ≤ θi < 2π. Likewise, let φi be the zenith angle
(latitude) from the XZ-plane, with −π

2 ≤ φi ≤ π
2 .

These spherical coordinates can be computed using
Equations 1 and 2, where (x, y, z) are the Pi coor-
dinates relative to the zero orientation and where
the inverse tangent must be suitably defined to take
the correct quadrant into account:

θi = tan−1

(
−x
−z

)
(1)

φi = sin−1

(
y√

x2 + y2 + z2

)
(2)

We can compute the maximum rotation angles
of the selection ray in each direction as θmax =
maxi{|θi|} and φmax = maxi{|φi|}. Since we want
to use an isotropic scale on both directions, we just
use the maximum of these two angles. Therefore,
the C-D ratio r is computed as

r =
ψ

max(θmax, φmax)
, (3)

where ψ is a user-defined constant that defines the
range of directions of the input device that approx-
imately map onto a selection ray within the vir-
tual window. In the user studies described in next
section we used ψ = π/4, thus providing the user
with a 90 degrees arc for interacting with the active
virtual window. In our implementation, ψ can be
adjusted by the user and the arc swept by −ψ,ψ
is rendered just below the user’s hand position (see
Figure 10). If r < 1, the window is sufficiently
close to the user and thus the scaled mode is not
activated.

When the scaled mode is deactivated, the selec-
tion ray might enter another window. We found
this situation to be rare in practice as most win-
dows are likely to be placed in front of the user.
Nevertheless, unintentional activation can be eas-
ily avoided by waiting a short period of time (e.g.
half a second) before the scaled mode is activated
over the new window. This delay has to be applied
only when the selection ray enters another window
immediately after deactivation.

3.3 Computation of the selection ray

In scaled mode, the selection ray is computed using
the C-D ratio defined at activation. Let θd and φd

be the spherical coordinates of an arbitrary point of
the device ray (distinct from its origin) with respect
to the zero orientation basis. We first compute the
spherical coordinates θs, φs of a target point T by
scaling down the device rotation measured from the
zero orientation, θs = θd/r, φs = φd/r (see Fig-
ure 2-c). The coordinates of T require a simple
conversion back to cartesian coordinates,

x = −ρ sin(θs) cos(φs) (4)

y = ρ sin(φs) (5)

z = −ρ cos(θs) cos(φs) (6)

where ρ > 0 is an arbitrary value.
The resulting selection ray passes through the

current device position and the computed point T .

3.4 Feedback

We have considered two distinct options for pro-
viding visual feedback. The first option consisted
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in drawing both the device ray and the selection
ray, using different visual attributes (such as color
and thickness). This option appears to be quite
distracting so we have opted for a single bent ray
providing feedback of both the device ray and the
selection ray.

Curved line segments have been proposed for dif-
ferent purposes related with ray-casting selection.
IntenSelect [27] uses dynamic rating of the objects
falling inside a conic selection volume to bend the
selection ray so that it snaps with the highest rank-
ing object. Flexible pointers are used in [28] to
point more easily to fully or partially obscured ob-
jects using two-handed interaction.

We draw the curved line segment using a Bézier
spline (see Figure 1-b). The curve originates at
the user’s hand and ends at the intersection P of
the selection ray with the virtual window’s plane.
These two points define the first and last control
points of the Bézier curve. The second control point
is computed on the device ray so that the tangent
direction at the origin is that of the device ray.
Finally, the third control point is the point on the
device ray closest to P .

When the selection ray leaves the virtual win-
dow, the scaled mode is deactivated and the dis-
played ray instantly goes straight. The users’ feel-
ing when scaled mode is active is that a flexible ray
gets curved as it is moved over a virtual friction
surface defined by the window. Visual feedback is
completed by drawing a cross-shaped cursor in the
intersection point P .

3.5 Comparison with previous tech-
niques

As stated below, friction surfaces is similar to the
PRISM [17] in concept. Both techniques adapt the
C-D ratio to provide accurate manipulation of dis-
tant objects. We now synthesize the main differ-
ences between both approaches:

• In PRISM the CD-ratio depends on the speed
of user’s movements; in our case, the CD-ratio
depends on the size and position of the win-
dow with respect to the user, and it remains
constant while in scaled mode. Therefore our
adjustment of the control-display ratio is sta-
tic, unlike the dynamic adjustment used in
PRISM.

• In PRISM the activation of the scaled mode
depends on several speed constants; in our case
activation takes place when the ray enters a
virtual window.

• Our technique provides integrated feedback of
both the device and the selection ray through
a curved line segment.

• Our technique does maintain nulling compli-
ance [12]. Nulling compliance preserves the
consistent correspondence between the origins
of the coordinate systems in physical and vir-
tual spaces. This consistency is particularly
important when the input device’s orientation
is easily perceived by the user through propri-
oception (a common situation in devices typ-
ically used for pointing, such as the wand).
Note that PRISM does not preserve nulling
compliance and requires offset recovery tech-
niques to reduce the accumulation of an offset
value representing the angular difference be-
tween the hand and the ray being manipulated
[17].

Besides these aspects, an important difference
is that our technique does not force users to slow
down their movements to gain precision. Our ap-
proach uses a larger range of movements for con-
trolling the ray in a more reduced region.

4 Evaluation

We conducted a usability evaluation to measure
the effectiveness of Friction Surfaces (FS) compared
with classic, isomorphic ray-casting (RC) and ray-
casting with PRISM rotation (PRISM) [17]. Seven-
teen users (undergraduate and graduate students)
participated in the study, aged 22-42, 14 male and
3 female. Most participants (9) had no experience
with VE applications; 5 had some experience and
3 were experienced users. Before each experiment
users were provided with a short training session
which required them to complete practice trials us-
ing both interaction techniques.

4.1 Evaluation test

The evaluation test has been designed to evaluate
the task performance in terms of time-to-complete
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a given task and maximum accuracy achieved in
a fixed period of time. All the experiments were
conducted on a four-sided CAVE with a 6-DOF
wanda [29] and a Polhemus Fastrak tracking sys-
tem with 2 receivers providing 60 updates/s with 4
ms latency. Users can use the wanda’s analog joy-
stick to adjust ψ and thus the C-D ratio. The vir-
tual window used in the experiments was initially
placed at 1.5 m from the CAVE center, covering
about 20 degrees of the user’s field-of-view. The
scaled mode was activated automatically each time
the device ray entered a virtual window.

The dialogs used in the experiments are shown in
Figure 3. The first two dialogs are designed to mea-
sure task performance on selecting small/middle
size objects. The first dialog contains different
kinds of buttons whereas the second dialog includes
basically combo boxes and selection lists. The third
dialog is designed also to measure speed but putting
the emphasis on manipulation rather than on selec-
tion. Finally, the fourth dialog is designed to mea-
sure the accuracy during object manipulation. In
all cases the label attached to each widget indicates
the requested task, so users can be more focused at
purely interaction tasks.

For the first three dialogs, users were requested
to complete the involved tasks as quickly as possi-
ble, using isomorphic ray-casting, friction surfaces
and ray-casting with PRISM rotation in a random
order. For the fourth dialog, users were asked to
manipulate several sliders to get a certain value as
accurately as possible, but giving only five seconds
of time for each slider, starting from the first click
on it. After that time, the slider was disabled and
the user was forced to proceed with the next slider.
All users were requested to complete 1-2 trials using
the three techniques in a random order.

4.2 Experimental results

Figure 4 shows the completion time for each task.
Tasks 1-4 correspond to the dialogs (a)-(d) shown in
Figure 3. Note that on average the completion time
is lower with our technique. We performed a cor-
related samples one-way ANOVA on the data with
completion time as the dependent variable and the
interaction technique (RC, PRISM or FS) as the
independent variable. Tukey pair-wise HSD tests
were performed when significant differences were
found.
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Figure 4: Time to complete the tasks involved in
the four dialogs.

ANOVA results for completion times are shown
in Table 1. FS was found to be significantly faster
than RC on tasks 1 and 3, whereas PRISM differ-
ence with respect to RC was nonsignificant. Time
differences on Task 2 (involving large targets) and
Task 4 (where interaction with the sliders had a
strict time budget) were nonsignificant.
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Figure 5: Number of button clicks performed dur-
ing each task.

The second performance metric we measured is
the number of times the user pressed the wanda
button. Figure 5 shows the button clicks for each
task. Note that in tasks emphasizing on selec-
tion (tasks 1 and 2), users made less mistakes on
average with FS, whereas PRISM yield better re-
sults in tasks emphasizing on manipulation (tasks
3 and 4). We performed a correlated samples one-
way ANOVA on the data with button clicks as
the dependent variable and the interaction tech-
nique (RC, PRISM or FS) as the independent vari-
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(a) (b) (c) (d)

Figure 3: The test dialogs used in the experiments.

Source SS DoF MS F P
Technique 443.74 2 221.87 4.75 0.013
Error 2242.79 48 46.72
Subjects 1431.68 24
Total 4118.21 74

HSD test
RC vs PRISM nonsignificant

RC vs FS P < 0.01
PRISM vs FS nonsignificant

Completion time for task 1

Source SS DoF MS F P
Technique 28.64 2 14.32 0.58 0.55
Error 1170.80 48 24.39
Subjects 869.93 24
Total 2069.38 74

HSD test
RC vs PRISM n/a

RC vs FS n/a
PRISM vs FS n/a

Completion time for task 2

Source SS DoF MS F P
Technique 361.82 2 180.91 3.70 0.031
Error 2346.24 48 48.88
Subjects 2960.75 24
Total 5668.82 74

HSD test
RC vs PRISM nonsignificant

RC vs FS P < 0.05
PRISM vs FS nonsignificant

Completion time for task 3

Source SS DoF MS F P
Technique 71.51 2 35.75 3.28 0.045
Error 521.87 48 10.87
Subjects 948.10 24
Total 1541.49 74

HSD test
RC vs PRISM nonsignificant

RC vs FS nonsignificant
PRISM vs FS nonsignificant

Completion time for task 4

Source SS DoF MS F P
Technique 2727.72 2 1363.86 4.62 0.014
Error 14166.34 48 295.13
Subjects 17126.36 24
Total 34020.43 74

HSD test
RC vs PRISM nonsignificant

RC vs FS P < 0.05
PRISM vs FS nonsignificant

Total completion time

Table 1: ANOVA tables for completion times
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able. ANOVA results are shown in Table 2. For
most tasks, FS and PRISM were significantly better
than RC, with nonsignificant differences between
PRISM and FS. Regarding the number of mistakes
and the Heisenberg effect [30], it should be noted
that PRISM incorporates a noise filter. Any mo-
tion below a given velocity is considered tracking
error or inadvertent drift and the controlled ray is
not moved. Note that our current implementation
of Friction Surfaces does not have such a filter.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: Path traced by the 3D cursor over the
virtual window with RC (top), PRISM (middle)
and FS (bottom). Paths correspond to users who
achieved times on the first, second and third quar-
tile values. Note that checkboxes can be toggled by
clicking on their label.

We also recorded the path traced by the 3D
cursor over the virtual window. Figure 6 shows
the paths described by users who achieved times
on the first, second and third quartile values in
Task 1. Color temperature represents the speed
of the trace. Note that the lack of accuracy of
isomorphic ray-casting forced the users to perform
many attempts before the right button was se-

lected, which is reflected by the loops around the
small targets in Figure 6a-c. This contrasts with
the smoother paths produced by PRISM and FS
(Figure 6d-i).
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Figure 7: Length of the path traced by the cursor.

The length of the paths traced by the cursor, in
native window pixel units, are shown in Figure 7.
Figure 8 shows the number of times the user had
to rectify the movement, measured as the number
of times two consecutive edges of the path define
an angle greater than 90 degrees. ANOVA results
are shown in Table 3. Both PRISM and FS were
found to produce less turns than RC. Regarding
path lengths, FS lead to cursor paths significantly
shorter than both RC and PRISM.
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Figure 8: Number of turns in the path traced by
the cursor.

Figure 9 shows the results of the accuracy test
(Task 4). The plot shows the average deviation (in
slider units) from the target value when the user
had only five seconds to adjust it (see Figure 3-d).
Each slider had increasing ranges and thus increas-
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Source SS DoF MS F P
Technique 361.70 2 180.85 12.41 < .0001
Error 698.96 48 14.56
Subjects 350.88 24
Total 1411.54 74

HSD test
RC vs PRISM P < 0.01

RC vs FS P < 0.01
PRISM vs FS nonsignificant

Button clicks for task 1

Source SS DoF MS F P
Technique 39.12 2 19.56 3.10 0.053
Error 302.21 48 6.29
Subjects 260.98 24
Total 602.32 74

HSD test
RC vs PRISM n/a

RC vs FS n/a
PRISM vs FS n/a

Button clicks for task 2

Source SS DoF MS F P
Technique 275.70 2 137.85 13.62 < .0001
Error 485.62 48 10.11
Subjects 343.65 24
Total 1104.98 74

HSD test
RC vs PRISM P < 0.01

RC vs FS P < 0.01
PRISM vs FS nonsignificant

Button clicks for task 3

Source SS DoF MS F P
Technique 46.58 2 23.29 5.53 0.006
Error 202.08 48 4.21
Subjects 166.48 24
Total 415.14 74

HSD test
RC vs PRISM P < 0.01

RC vs FS nonsignificant
PRISM vs FS nonsignificant

Button clicks for task 4

Source SS DoF MS F P
Technique 2187.92 2 1093.96 17.68 < .0001
Error 2968.74 48 61.84
Subjects 1770.21 24
Total 6926.88 74

HSD test
RC vs PRISM P < 0.01

RC vs FS P < 0.01
PRISM vs FS nonsignificant

Total number of clicks

Table 2: ANOVA tables for button clicks

Source SS DoF MS F P
Technique 128446712 2 64223356 28.4582 < .0001
Error 108324442 48 2256759
Subjects 87964318 24
Total 324735474 74

HSD test
RC vs PRISM nonsignificant

RC vs FS P < 0.01
PRISM vs FS P < 0.01

Path length

Source SS DoF MS F P
Technique 90219.42 2 45109.71 31.41 < .0001
Error 68933.80 48 1436.12
Subjects 88522.27 24
Total 247675.50 74

HSD test
RC vs PRISM P < 0.01

RC vs FS P < 0.01
PRISM vs FS nonsignificant

Number of turns in the path

Table 3: ANOVA tables for path length and number of turns.
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ing levels of difficulty. Both PRISM and FS per-
formed much better than RC, with nonsignificant
differences between PRISM and FS.
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Figure 9: Deviation from the target value on the ac-
curacy test. The integer value between parentheses
is the slider’s range.

4.3 Survey

After the experiments, subjects were requested to
rate each interaction technique using a 7-point Lik-
ert scale. All users preferred either PRISM or FS
against RC, with nonsignificant differences between
PRISM and FS. Nine users preferred PRISM with
average rate of 5.5; eight users preferred FS with
average rate of 5.4. RC was given an average rate
of 3.

We also asked subjects about what they found
most difficult and what was the easiest for them.
The results were similar from all users. All of them
agreed on having less problems on selecting buttons
and manipulating sliders with our technique. The
most difficult task was to achieve a certain value
on the sliders, because the free movement of the
wand on their hand makes it difficult to maintain
the value when the finger is moved to press or re-
lease the button, nicknamed the Heisenberg effect
[30]. This problem was noticeably alleviated with
PRISM and with our technique. Most users com-
plained about the effort required for selecting small
buttons with normal ray-casting because of the con-
siderable effort to stabilize the wrist. On the other
hand, a few users pointed out that the anisomor-
phic raycasting were a bit unnatural compared with
isomorphic raycasting, although their performance
was better with anisomorphic techniques.

A limitation of our technique is that, for certain
orientations, the curvature of the selection ray and
its intersection with the virtual window is hard to
perceive (when the viewpoint approaches the plane
defined by the four control points of the curved
ray). However, users did not find this to be a prob-
lem as the cross-shaped cursor showing the inter-
section of the selection ray with the virtual window
was clearly visible.

5 Concluding remarks and fu-
ture work

The accommodation of conventional 2D GUIs with
Virtual Environments (VEs) can greatly enhance
the possibilities of many VE applications. In this
paper we have presented a variation of the well-
known ray-casting technique for accurate selection
of 2D widgets over a virtual window immersed into
a 3D world. A user study on a four-sided CAVE
indicates that the proposed technique outperforms
significantly isomorphic ray-casting in several per-
formance metrics including completion time, num-
ber of mistakes and manipulation accuracy. We
have also included a comparison with PRISM ray-
casting. Both techniques perform significantly bet-
ter than classic ray-casting, with little performance
differences between them. PRISM seems to per-
form better than Friction Surfaces when extreme
accuracy is required (e.g. adjusting a slider with
pixel accuracy) whereas our technique is partic-
ularly suitable for fast selection of small targets.
Friction Surfaces maintains both directional and
nulling compliances [12] as it simulates approxi-
mately the interaction with a large spherical win-
dow (Figure 10). Note that rendering this simu-
lated window would be impractical as it would oc-
clude most of the scene.

An important issue is how these techniques com-
pare with isomorphic ray-casting when the size and
density of targets is an independent factor. We
plan to conduct this evaluation as part of the fu-
ture work. We also plan to integrate friction sur-
faces with dynamic rating techniques [27] so that
the displayed ray is further bent to snap with the
highest ranking object. This would further improve
object selection, with little or no effect on object
manipulation.
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Figure 10: Manipulation with Friction Surfaces
simulates approximately the interaction with a
large spherical window.
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