
promoting access to White Rose research papers

White Rose Research Online

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

This is an author produced version of a paper published in Computers &
Graphics.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/3553/

Published paper
Gamito, M.N. and Maddock, S.C. (2007) Progressive refinement rendering of
implicit surfaces, Computers & Graphics, Volume 31 (5), 698 - 705.

eprints@whiterose.ac.uk

Progressive Refinement Rendering

of Implicit Surfaces

Manuel N. Gamito 1, Steve C. Maddock

Department of Computer Science, The University of Sheffield

Abstract

The visualisation of implicit surfaces can be an inefficient task when such surfaces
are complex and highly detailed. Visualising a surface by first converting it to a
polygon mesh may lead to an excessive polygon count. Visualising a surface by
direct ray casting is often a slow procedure. In this paper we present a progressive
refinement renderer for implicit surfaces that are Lipschitz continuous. The renderer
first displays a low resolution estimate of what the final image is going to be and, as
the computation progresses, increases the quality of this estimate at an interactive
frame rate. This renderer provides a quick previewing facility that significantly
reduces the design cycle of a new and complex implicit surface. The renderer is also
capable of completing an image faster than a conventional implicit surface rendering
algorithm based on ray casting.

Key words: Progressive refinement; Ray casting; Implicit surfaces; Lipschitz
bounds

1 Introduction

Implicit surfaces find application in many areas of Computer Graphics where
objects exhibiting complex topologies, i.e. with many holes or disconnected
pieces, need to be modelled. An implicit surface is defined as the set of all
points x ∈ R

3 that verify the condition f(x) = 0 for some function f : R
3 → R.

Modelling with implicit surfaces amounts to the construction of an appropriate
function f , called the implicit function, that will generate the desired surface.
Over the years, three main strategies for the design of implicit functions have

1 Supported by grant SFRH/BD/16249/2004 from Fundação para a Ciência e a
Tecnologia, Portugal.

Preprint submitted to Elsevier 21 December 2007

become established. Algebraic surfaces arise from the use of polynomial impli-
cit functions [1]. Sums of radial basis functions are also a popular method of
constructing implicit surfaces. Depending on the choice of radial basis func-
tion, these can be called blobby models [2], metaballs [3] or soft objects [4]. By
carefully selecting the weights associated with each radial basis function, it is
also possible to have an interpolating implicit surface that is constrained to
pass through a set of scattered data points [5, 6]. Finally, hypertextures are an
example of implicit functions that are generated by perturbing the surface of
an initially smooth object with a combination of procedural noise functions [7].
By summing together many such noise functions a fractal hypertexture can
be generated, having an associated fractal dimension.

Rendering algorithms for implicit surfaces can be broadly divided into meshing
algorithms and ray casting algorithms. Meshing algorithms convert an impli-
cit surface to a polygonal mesh format, which can be subsequently rendered
in real time with modern graphics processor boards [8–10]. Ray casting al-
gorithms bypass mesh generation entirely and compute instead the projec-
tion of an implicit surface on the screen by casting rays from each pixel into
three-dimensional space and finding their intersection with the surface [11–
13]. We propose an extension to ray casting algorithms for implicit surfaces
that incorporates a progressive refinement rendering principle. The idea of
progressive refinement for image rendering was first formalised in 1986 [14].
Progressive refinement rendering has received much attention in the fields of
radiosity and global illumination [15, 16]. Progressive refinement approaches
to volume rendering have also been developed [17, 18]. Our implicit surface
renderer uses progressive refinement to visualise an increasingly better approx-
imation to the final implicit surface. It allows the user to make quick editing
decisions without having to wait for a full ray casting solution to be computed.
Because the algorithm is progressive, the rendering can be terminated as soon
as the user is satisfied or not with the look of the surface. The renderer can
also be interactively controlled by the user through the specification of image
regions. Image refinement will only occur inside a region, once the region be-
comes active, while the remainder of the image is kept on hold. In this way the
user can steer the application into rendering image regions that he considers
to be more interesting or troublesome.

Our method is able to render any implicit surface whose generating function f
is Lipschitz continuous. For a function to be Lipschitz continuous there must
exist a real number λ such that:

|f(xa) − f(xb)| < λ‖xa − xb‖ for any xa,xb ∈ R
3. (1)

A value λ > 0 that verifies (1) is called a Lipschitz bound of f . Any other value
greater than λ also verifies (1) and is also a Lipschitz bound. The smallest of
all these Lipschitz bounds is called the Lipschitz constant of f . Convergence

2

of the progressive refinement algorithm towards the final image depends on
the value of λ that has to be provided beforehand and is specific to the partic-
ular implicit function being visualised. If the Lipschitz constant of f is known,
the algorithm will have optimal convergence. Otherwise, a Lipschitz bound
must be provided, with the algorithm exhibiting slower convergence the lar-
ger the value of λ is. Values of λ smaller than the Lipschitz constant can
also be attempted to increase the convergence rate at the price that surface
visualisations are no longer guaranteed to be correct. Most implicit surfaces
of interest in Computer Graphics are continuous, which implies that they are
Lipschitz continuous also. The application of the progressive refinement ren-
derer to Lipschitz continuous surfaces only is, therefore, not overly restrictive.
Examples of surfaces that cannot be rendered with our proposed method can
be found mainly within some types of algebraic surfaces, which contain isol-
ated points where the surface gradient is infinite.

The main stage of our method consists in the subdivision of the image space
into progressively smaller square samples. Information about the part of the
implicit function that is visible through a sample is obtained by shooting a ray
through the centre of the sample and marching towards the surface intersec-
tion point with the help of a guaranteed ray-surface intersection algorithm [13].
The surface Lipschitz bound is used to compute step lengths that bring the
ray progressively closer to the surface. Projecting the area of a sample from
the viewpoint and into object space defines the sample’s view volume, which
features the ray along its main axis. We enhance the surface intersection al-
gorithm by testing for intersections inside the whole view volume of the sample
whose ray is being traced. As we march along a ray towards the surface there
comes a distance after which it is no longer possible to guarantee that no in-
tersections occur inside the view volume that is defined around the ray. At this
point, sample subdivision takes place and new rays are shot, each surrounded
by a thinner view volume. The sample subdivision mechanism stops once a
sample has reached pixel size, at which point conventional ray casting is used
to march along the remainder of the distance towards the surface.

Image rendering takes place simultaneously with sample subdivision and ray
casting so that, at any given time, the image shows the best approximation
to the correct surface visualisation. Each sample’s colour is obtained by eval-
uating a shading model at the point that corresponds to the current distance
traced along the ray that passes through the centre of the sample. The shading
accuracy improves as the distance along the ray converges towards the surface.
This rendering model generates the visual effect of an implicit surface that is
perceived to be shrinking towards its final configuration. The surface shrinking
effect is a result of the set of image samples being subdivided and their rays
being marched in parallel towards the surface. The previewing capability of
the progressive refinement renderer is a consequence of the observation that
early enlarged surfaces look already similar to the final implicit surface.

3

Section 2 describes previous work that provides previewing facilities for im-
plicit surfaces. Some of the work described in that section was not developed
with quick previewing in mind but it can be used to that effect. Section 3
describes our progressive refinement previewer. Although our main research
focus is in the area of procedural landscape modelling with hypertextured
surfaces, we shown in Section 4 progressive refinement rendering examples for
the three main categories of implicit surfaces: algebraic surfaces, surfaces gen-
erated from sums of radial basis functions and hypertextures. A performance
comparison is also presented between our previewer and a standard rendering
algorithm for implicit surfaces based on ray casting. Section 5 presents our
conclusions. Appendix A describes an extension of the progressive refinement
algorithm to incorporate anti-aliasing.

2 Previous Work

One of the best known techniques for previewing implicit surfaces at interact-
ive frame rates is based on the dynamic placement of discs that are tangent
to the surface [19, 20]. The discs are kept apart by the application of repulsive
forces and are constrained to remain on the surface. Each disc is also made
tangent to the surface by sharing the surface normal at the point where it is
located. This previewing system relies on a characteristic of our visual system
whereby we are able to infer the existence of an object based solely on the
distribution of a small number of features on the surface of that object [21].
This visual trait only works, however, when the surface of the object is simple
and fairly smooth. If the surface is irregular, as in the case of a fractal hyper-
texture, a random distribution of discs is visible and no object is perceived.

An approximate representation of an implicit surface can be generated by sub-
dividing the space in which the surface is embedded into progressively smaller
voxels and using a surface classification technique to identify which voxels are
potentially intersecting with the surface. One such spatial subdivision method
employs interval arithmetic to perform the surface classification step [22]. The
subdivision strategy of this method is adapted from an earlier work and is not
suitable for interactive previewing [23]. One must wait for the subdivision to
finish before any surface approximation can be visualised unless some addi-
tional data processing is added, which will tend to slow down the algorithm.
Another spatial subdivision method employs affine arithmetic to perform sur-
face classification and subdivides space with an octree data structure [24]. The
octree voxels are rendered from back to front, relative to the viewpoint, with
a painter’s algorithm. This subdivision strategy is wasteful as it tracks the
entire surface through subdivision, including parts that are occluded and that
could be safely discarded for a given viewing configuration.

4

Instead of performing object space subdivision, one can also perform image
space subdivision in order to obtain a progressive rendering mechanism. Im-
age space subdivision provides a general approach to progressive refinement
rendering and can be used for any rendering problem, not only for the visual-
isation of implicit surfaces. Sample subdivision in image space was originally
proposed as an anti-aliasing method for ray tracing [25]. Four rays are shot
at the corners of each rectangular sample. If the computed colours for these
rays differ by more than some specified amount, the sample is subdivided into
four smaller samples and more rays are shot through the corners of the new
samples. This type of image space subdivision can also be used for progressive
refinement previewing by Gouraud shading the interior of each sample based
on the colours at its corners. As the samples become progressively smaller, the
image converges to the correct rendering solution. Such a previewing tool was
implemented as part of the Rayshade public domain ray tracer [26].

Rather than simply comparing the colours at the corners of a sample, more
sophisticated approaches to image space subdivision have been proposed as
part of a ray tracing algorithm [27, 28]. These approaches feature a stochastic
distribution of rays that are shot around each image sample. By performing
a probabilistic analysis on the colours returned by these rays, it is possible to
make a decision with a desired degree of confidence on whether the sample
should be subdivided or not. These probabilistic subdivision methods have
also been extended to distributed ray tracers running on massively parallel
computers [29]. There are two problems associated with probabilistic image
subdivision methods. One problem is that the decision to subdivide a sample
is entirely dependent on the information returned by a discrete set of rays.
Because this discrete set is only an approximation to a continuous image dis-
tribution, wrong subdivision decisions can sometimes occur. This often leads
to small objects being missed by the progressive ray tracer. The other prob-
lem is that subdivision techniques in image space do not take into account
any information about the surface that is being rendered. They only look at
colour information on the image plane. The subdivision of a sample causes
new rays to be shot that do not take advantage of any surface information
that may have been gathered whilst tracing rays that originated earlier in the
subdivision process.

The progressive refinement previewer that we propose in this paper also fol-
lows an image space subdivision principle but incorporates object space in-
formation. Rays are traced only through a fraction of the distance towards the
surface before sample subdivision is triggered. The new rays that result from
the subdivision then continue tracing forward from the distance where the
tracing of their parent ray was interrupted. This combination of image space
subdivision with an object space ray organisation leads to much faster conver-
gence rates for the progressive rendering of implicit surfaces. We develop upon
a previous work on progressive refinement rendering of implicit surfaces [30].

5

In that work, affine arithmetic was used to compute bounds for the impli-
cit function. Affine arithmetic provides an automatic method of computing
bounds for arbitrary functions but it is slower than using a Lipschitz based
method. The use of Lipschitz methods for ray casting, on the other hand, re-
quires that at least a Lipschitz bound be known about the implicit function.
Such Lipschitz bounds for many types of implicit functions are available in
the literature [11, 13].

3 Progressive Refinement Rendering

Progressive refinement rendering of implicit surfaces proceeds by subdividing
the image space into increasingly smaller samples. We use the term “sample”
in this context to refer to square partitions of the image space with arbitrary
size. A sample always corresponds to a n × n set of pixels on the screen so
that the boundary of the sample coincides with the boundary of that square
array of pixels. As samples are subdivided, the size n in pixels of newer samples
progressively decreases. The smallest samples used by the progressive renderer
are sized 1 × 1 and correspond exactly to the screen extent of just one pixel.

The portion of the scene that is visible through a sample defines a quadrilateral
pyramid with the apex located at the viewpoint. Shooting such pyramidal
rays through each image pixel has previously been proposed as a technique to
perform anti-aliasing and to compute fuzzy reflections and shadows [31]. For
simplicity of implementation, however, we use cones rather than pyramids to
enclose the space visible through each sample. In this respect, our algorithm
has similarities with cone tracing as we shoot cones into the scene and check
their intersection with the surface [32]. The difference with the original cone
tracing algorithm is that, rather than compute a visibility coverage mask that
is used to perform anti-aliasing, we choose to subdivide samples and therefore
make the cones progressively thinner as they get closer to the surface. This
is so that we can guarantee that no surface intersection will occur inside the
cone up to some maximum distance. As the distance travelled along a cone
approaches the intersection distance to the surface, this guarantee can only be
provided if the aperture angle of the cone is made smaller. Having stressed this
difference, we continue to refer to “cone tracing” as the process of shooting a
cone through a square sample and into the scene.

A queue data structure is used to hold samples waiting to be processed. The
rendering algorithm is initialised by placing a set of large samples that covers
the whole visible portion of the image space onto the queue. If the image to be
rendered is square, in particular, only one sample needs to be used to initialise
the queue. The algorithm then iterates by removing the sample from the top
of the queue and performing the following steps:

6

PSfrag

α

ǫ

o pd

Fig. 1. The geometry of a cone that encloses the space visible through a sample.

(1) Trace cone through the sample up to a maximum distance.
(2) Render the sample by evaluating the shading model at the point of max-

imum distance along the axis of the cone.
(3) If the sample is larger than a pixel, subdivide it and append the children

to the end of the queue.

A ray-surface intersection algorithm, rather than the cone tracing algorithm, is
used for samples that have reached pixel size [13]. The parts of the image that
are covered by these samples receive their final colour in step (2), as explained
above, and are no longer affected by subsequent iterations. The progressive
renderer finishes when the queue becomes empty. Once this happens the image
will have reached its best quality. The final image is exactly equal to that
which would have been obtained by conventional ray casting. This is because
the final pixel colours are obtained by ray casting through the centre of each
pixel along the distance that still needs to be travelled toward the surface.

3.1 Cone Tracing

Consider a sample with dimensions n∆l × n∆l where n × n is, as before, the
number of pixels contained by the sample and ∆l is the lateral size of a pixel,
measured along the image plane. The sample is centred at the point p on
the image plane and we trace a cone through it with the apex placed at the
camera’s viewpoint o. Figure 1 exemplifies this geometry. The axis of the cone
is a parametric ray defined as:

r(t) = o + td, (2)

where the normalised direction vector is d = (p−o)/‖p−o‖. The aperture of
the cone is an angle α large enough to encompass all the scene visible through
the sample. For the purpose of finding this angle, the smallest bounding sphere
that encloses the sample is used. The radius of the bounding sphere is given
by ǫ = 0.5

√
2n∆l and the aperture angle is:

α = tan−1
ǫ

‖p − o‖ . (3)

7

The cone is traced through the scene by stepping along the axis r with step
lengths that are guaranteed not to cause intersection with the implicit sur-
face. Such a guarantee is provided by the Lipschitz bound of the surface
generating function f . Applying the definition (1) of Lipschitz continuity
to the cone-surface intersection problem, it is possible to show that the se-
quence of steps along the axis of the cone expressed by the iterative equation
ti+1 = ti + |f(r(ti)|/λ either converges to the intersection point or diverges,
the latter case occurring when the axis does not intersect with the implicit
surface [13]. For every iteration of the cone tracing procedure there is a sphere
centred at the point r(ti) and with radius |f(r(ti)|/λ that encloses a region of
space known to be completely outside the surface. As the tracing procedure
converges towards the intersection point, these spheres become smaller and
more densely packed.

Tracing along the axis r(t) can only proceed while the sequence of bounding
spheres encloses the cone. There is a maximum distance tM after which parts
of the cone begin to fall outside the union of all the spheres. It is known with
certainty that for ti 6 tM no intersection between the cone and the implicit
surface has occurred. For ti > tM this certainty no longer exists and cone
tracing for the current sample must be terminated. The tracing will proceed
for distances larger than tM after the sample has been subdivided and cones
with smaller angles of aperture have been generated. The smaller cones that
result from the subdivision will then start tracing from tM .

Figure 2 shows several situations that occur as part of the cone tracing pro-
cedure. Let ǫi = |f(r(ti))|/λ be the radius of the sphere that is centred on the
point r(ti) for the distance ti along the cone axis. Figure 2a) shows that any
individual sphere must be large enough to bound the cone in the neighbour-
hood of its centre at r(ti). This is true if the radius of the sphere is larger than
the radius of the section of the cone at ti:

ǫi > ti tan α. (4)

Once condition (4) is verified, it is possible to define two positive offsets ∆t−i
and ∆t+i , relative to ti, that give the neighbourhood ti −∆t−i 6 ti 6 ti + ∆t+i
where the sphere is known to bound the cone. Inside this range of distances,
it is guaranteed that no intersections with the implicit surface will exist. The
two offsets are given by:

∆t−i = δ + ti sin
2 α and (5a)

∆t+i = δ − ti sin
2 α, with (5b)

δ =
√

ǫ2
i cos2 α − t2i sin2 α. (5c)

It is a trivial consequence of (4) that the square root used to compute the
factor δ is well behaved in the sense that it never returns complex values.

8

ti

∆t+i∆t−i

ǫi

a)

ti tM ti+1

ǫi
ǫi+1

b)

ti tM ti+1

ǫi

ǫi+1

c)

ti ti+1

ǫi

ǫi+1

d)

Fig. 2. Several configurations that may arise while performing cone tracing.

Figures 2b) to 2d) illustrate the three situations that can arise when marching
from the sphere at ti to the next sphere at ti+1. In Figure 2b), the next sphere
is not large enough to verify (4). In this case, cone tracing must stop at the
current sphere with radius ǫi and the maximum distance that can be travelled
along the cone is tM = ti + ∆t+i . In Figure 2c), the sphere at ti+1 satisfies (4)
but there is still a small part of the cone that falls outside the union of the
two spheres. This situation can be detected by the condition:

ti+1 − ti < ∆t−i+1 + ∆t+i . (6)

If (6) does not hold then again the sphere at ti+1 must be ignored, with the
distance tM being given as in the previous case. Finally, in Figure 2d), cone
tracing can proceed from ti to ti+1 with the testing of subsequent spheres.

Figure 3 shows the cone tracing algorithm in pseudo-code form. The cone
is traced from a starting distance t0 up to a large enough distance t∞ so
that any valid intersections are known to be inside the interval [t0, t∞]. The
distance t∞ is usually found by performing a quick intersection test between
the cone and a bounding sphere that surrounds the whole implicit surface.
The algorithm returns the maximum distance tM that can be traced along the
cone. Within the interval [t0, tM] there are no intersections with the surface.
If it happens that the value tM returned by the algorithm is larger than t∞

9

ti := t0; // initial distance
ǫi := |f(r(t0))|/λ; // initial radius

compute ∆t+i ; // initial offset

while ti < t∞ do

ti+1 := ti + ǫi; // next distance
ǫi+1 := |f(r(ti+1))|/λ; // next radius

if ǫi+1 < ti+1 tan α // condition (4)
return ti + ∆t+i ;

compute ∆t−i+1 and ∆t+i+1; // equations (5)

if ti+1 − ti < ∆t−i+1 + ∆t+i // condition (6)
return ti + ∆t+i ;

ti := ti+1; // take step
ǫi := ǫi+1;
∆t+i := ∆t+i+1;

return ti;

Fig. 3. The cone tracing algorithm in pseudo-code format.

then the surface is not intersected along the whole extent of the cone. One
necessary prerequisite for the cone tracing algorithm to work is that condition
(4) must hold for the initial sphere placed at t0. If the condition is not verified,
the sample to which the cone belongs will have to be subdivided, with no cone
tracing actually occurring. This is handled as part of the sample subdivision
process, as explained in Section 3.3. The offsets ∆t−i+1 and ∆t+i+1 are computed
simultaneously with equations (5) even though ∆t+i+1 will only be required
during the subsequent iteration, when it becomes ∆t+i . This is more efficient
than computing ∆t+i and ∆t−i+1 independently for every iteration.

3.2 Cone Rendering

Once cone tracing terminates, with the computation of the distance tM , the
sample through which the cone was shot is painted on the screen. The colour
for this sample is obtained by evaluating some appropriate shading model,
which, from the point of view of the progressive refinement algorithm, is re-
garded as a generic function s(x,n,v) that returns a colour at the point x

with surface normal n and view vector v. Any other shading parameters such
as light sources or surface properties are queried from inside the shading func-
tion. The point where the shading model is applied is x = r(tM). The surface
normal vector is the normalised gradient n = ∇f(r(tM))/‖∇f(r(tM))‖ of the
implicit function. The vector v = −d is the view vector (recall (2) for the
definition of d).

10

The shading model can be evaluated at any point in space and not only
for points on the implicit surface. During the cone tracing process, the rays
that constitute the axes of the cones have not yet reached the surface and
so shading values are being computed that do not correspond to the cor-
rect shading or geometry of the surface. For any given cone, the evaluation
of the shading model s(x,n,v) corresponds to shading an implicit surface
given by {x ∈ R

3 : f̃(x, r(tM)) = 0}, where the new implicit function is
f̃(x, r(tM)) = f(x) − f(r(tM)). The function f̃ generates a surface that is
larger than the one generated by f . In fact, it is possible to show that the
correct implicit surface is completely enclosed by the surface generated from
f̃ , given that f(x) and f(r(tM)) have the same sign when evaluated at points
x and r(tM) outside the surface. As cone tracing progresses and newer cones
get closer to the surface, the term f(r(tM)) vanishes with the consequence that
f̃ → f and the shading values converge towards the correct shading of the
surface. This progression, in visual terms, corresponds to a gradual shrinking
of the perceived surface, with the surface finally settling on its correct shape
at the completion of the progressive rendering algorithm.

The painting of a sample on the screen is done with a uniform colour that
corresponds to the shading value of the point at the centre of the sample,
since it is through this point that the axis of the cone passes. While painting
the square region of the screen that corresponds to a sample, the previous
colour that was stored in that region is overwritten by the new colour. The
previous colour was obtained when painting the parent sample. Through this
procedure, the screen buffer is constantly being refreshed with new shading
data as subdivision of the samples progresses.

3.3 Sample Subdivision

The subdivision of samples requires that the width and height of the image
in pixels be first decomposed into a product of prime numbers. In this way,
it becomes possible to know, at each level of subdivision, how a given sample
should be split so that the newer samples still correspond to an integer number
of pixels on the screen. For an image with a resolution of m × n pixels, the
prime number factorisation results in:

m = u pk1

1 pk2

2 . . . pkn

n , (7a)

n = v pk1

1 pk2

2 . . . pkn

n , (7b)

where u = m/ gcd (m, n), v = n/ gcd (m, n) and gcd (m, n) is the greatest
common divisor between m and n. The sequence of prime factors p1, p2, . . . , pn

in (7) is ordered by decreasing values. The pair (u, v) indicates how the image
should be initially subdivided into a set of top level square samples of the same

11

tMi−1

t0i

didi−1

Fig. 4. A child cone shown in relation to its parent cone as part of the sample
subdivision process.

size. If m = n, in particular, then u = v = 1 and the image corresponds to a
single top level sample. For a 800×600 image, to give an example of the more
general rectangular image case, we have m = 4× 52 × 23 and n = 3× 52 × 23.
The queue of samples used by the progressive refinement algorithm, in this
case, is initialised with 4 × 3 top level samples with a resolution of 200 × 200
pixels each. At the first level of subdivision, every top level sample is then
subdivided into 5 × 5 samples with a resolution of 40 × 40 pixels each. The
optimal image subdivision scenario occurs with square images that have a
resolution of 2k ×2k, for some k > 0, where every sample is always subdivided
into 2 × 2 smaller samples. The worst scenario occurs when either m or n is
a prime number, in which case it becomes impossible to perform any further
prime factorisation. The progressive refinement algorithm is then initialised
with m×n top level samples with the consequence that the subdivision stage
is skipped and the algorithm goes straight to the final ray casting stage that
occurs at the pixel level.

The generation of new cones is part of the sample subdivision process. Figure 4
shows how one of the pi × pi child cones is generated after its parent cone was
traced, where pi is the prime factor at subdivision level i. The unit direction
vector di of the child cone is the one that goes from the camera’s viewpoint
through the centre point of the child sample. The initial distance t0i

along the
child cone is:

t0i
= tMi−1

/(di · di−1), (8)

where di−1 is the unit direction vector of the parent cone. Equation (8) makes
the child cone start off from a point that lies in the plane orthogonal to the
parent cone at tMi−1

. The aperture angle of the child cone is given by (3)
and is always smaller than the aperture angle of the parent cone. If the child
cone does not verify condition (4), it is further subdivided into pi+1 × pi+1

children. The initial distance t0i+1
for each new children is computed with

(8), using again the parameters tMi−1
and di−1 from the original parent cone.

Sample subdivision stops once all the nearest descendants of the parent cone
for which condition (4) holds have been reached.

12

3.4 Specifying Regions of Interest

A user can interactively influence the rendering algorithm by drawing a rectan-
gular region of interest (ROI) over the image. The algorithm will then refine
the image only inside the specified region. This is accomplished by creat-
ing a secondary queue that stores the samples that are relevant to the ROI.
When the user finishes drawing the region, the primary queue is scanned and
all samples that intersect with the rectangle corresponding to that ROI are
transferred to the secondary queue. The algorithm then proceeds as explained
before with the difference that the secondary queue is now being used. Once
this queue becomes empty, the portion of the image inside the ROI is fully
rendered and the algorithm returns to subdividing the samples that were left
in the primary queue. It is also possible to cancel the ROI at any time by
flushing any samples still in the secondary queue back to the primary queue.

3.5 Some Remarks on Implementation

The best implementation strategy for our rendering method is to have two
threads running concurrently: a refinement thread and a display thread. The
two threads communicate through an image buffer. The refinement thread
requires write access to the buffer as it continuously draws coloured squares
onto it that correspond to the samples whose cones have finished being traced.
The display thread only requires read access to the same buffer. No mutual
exclusion mechanisms need to be enforced between the two threads. It may
happen that the display thread will read some part of the image buffer in
an incoherent state because of a simultaneous write by the refinement thread
but any display errors that may occur will be erased during the next display
refresh.

The display thread is controlled by a timer that ensures a constant frame rate.
The thread remains in a sleep state except for the periodical invocation of the
timer handler routine. The main function of this timer handler is to invoke a
graphics library call that transfers the content of the image buffer, handled by
the application, to the hardware frame buffer, handled by the machine’s GPU.
The display thread is also responsible for the interactive editing of regions of
interest and notifying the refinement thread to the existence of such regions.

The contents of the application image buffer are also transferred to a file at the
completion of the progressive refinement algorithm. This happens either if the
algorithm completed normally or was terminated early by the user. In the case
of early termination, the most up to date results of the surface visualisation
are stored in the file.

13

4 Results and Discussion

Figures 5, 6 and 7 show four snapshots each, taken during the progressive
refinement rendering of three different types of implicit surfaces. All snap-
shots were rendered with a resolution of 800× 800 pixels. The snapshots were
obtained at the transition point between two levels of subdivision in the im-
age, i.e. when all the samples at one level have been processed and before
processing any of the samples at the next lower levels.

The algebraic surface shown in Figure 5 was first presented by Mitchell to
demonstrate his robust ray casting based on interval arithmetic [12]. The im-
plicit function for Mitchell’s surface is:

f(x, y, z) = 4
(

x4 + (y2 + z2)2
)

+

+ 17x2(y2 + z2) − 20(x2 + y2 + z2) + 17. (9)

The Lipschitz constant of (9), when considered over R
3, is infinite. The surface,

however, is known to exist inside a cube with dimensions [−2, 2] × [−2, 2] ×
[−2, 2]. The Lipschitz constant of f(x, y, z) becomes finite when evaluated over
this subdomain only.

Figure 6 shows a model that was made to resemble a figure in a painting by
Dali. The implicit surface for this model is a sum of sixty radial basis functions:

f(x) = 0.5 −
60
∑

i=1

si p(‖x − xi‖/Ri), (10)

where si is the strength, Ri is the radius and xi is the position of each basis
function. The factor 0.5 is the surface threshold. The basis function p is a
polynomial with a compact support in the range [0, 1], veryfing p(0) = 1 and
p(1) = 0. The evaluation of the implicit function for any point x that is outside
the support of all the basis functions returns the constant value f(x) = 0.5.
Shading computations cannot be properly performed in this outside region
because ∇f(x) = 0. To overcome this problem, we modified (10) to return
f(x) = 0.5 + ‖x − xi‖ − Ri for points where f(x) would have been equal to
0.5 otherwise and where xi and Ri are related to the basis function that is
closest to x. With this modification, the surface appears in the early stages
of the progressive visualisation as a union of spheres of different radii, where
each sphere is centred at one of the xi points. It must be mentioned that
this modification is only required for models that are generated from sums of
compactly supported basis functions. Surface models that use basis functions
of infinite support, e.g. gaussian functions, have a well defined surface normal
at every stage of progressive refinement.

14

Fig. 5. From left to right, top to bottom, snapshots taken during the progressive
refinement rendering of an algebraic surface. The snapshots were taken after 626,
8 178, 107 862 and 410 590 iterations, respectively. The wall clock times at each
snapshot are 0.35s, 0.71s, 5.71s and 19.18s, respectively.

It is possible to improve the rendering time for the model of Figure 6 by first
clipping every cone against the bounding spheres of radii Ri that represent the
support of each basis function. As a consequence, the distance along the cone is
partitioned into disjoint intervals where only a small set of basis functions in-
fluence each particular interval. This optimisation was first proposed to speed
up the ray tracing of soft objects and can be extended to our cone tracing
technique with little difficulty [4]. It makes the evaluation of (10) much more
efficient since it is not necessary to iterate over all the sixty basis functions for
every function call. Localised Lipschitz bounds can also be used inside each
interval, reflecting only the basis functions that contribute to that interval and
providing further improvement to the convergence rate of the renderer.

Figure 7 shows a hypertextured sphere of unit radius generated with:

f(x) = ‖x‖ − 1 + 0.8 n(4x). (11)

15

Fig. 6. From left to right, top to bottom, snapshots taken during the progressive
refinement rendering of a blobby model. The snapshots were taken after 13 151,
53 151, 163 851 and 298 467 iterations, respectively. The wall clock times at each
snapshot are 2.56s, 18.41s, 1m 17.11s and 2m 39.48s, respectively.

The term ‖x‖ − 1 produces the spherical shape and n(x) is a procedural
gradient noise function that introduces the hypertextured detail [33]. The
amplitude 0.8 controls the height of the procedural detail while the scaling
n(4x) controls the size of the detail features relative to the size of the sphere.

Table 1 shows the rendering times, obtained on a Pentium 4 1.2 GHz ma-
chine, and the number of evaluations of the implicit function for the three
previous implicit surface models that were generated with our progressive
rendering method and with a ray caster that uses Lipschitz bounds to estim-
ate ray-surface intersections [13]. An optimised version of this ray caster that
overshoots by a factor of 46% for each step along a ray is also used in the
comparison [34]. Both versions of the guaranteed ray casting method based
on Lipschitz bounds are commonly used to render implicit surfaces. Our pro-
gressive refinement algorithm uses the optimised version of the ray caster for
rendering terminal samples, i.e. samples that have reached pixel size.

16

Fig. 7. From left to right, top to bottom, snapshots taken during the progressive
refinement rendering of a hypertextured surface. The snapshots were taken after
3 103, 10 755, 31 279 and 327 295 iterations, respectively. The wall clock times at
each snapshot are 0.45s, 0.90s, 2.10s and 23.22s, respectively.

Table 1
Statistics for Figures 5, 6 and 7 with three different rendering methods.

Previewer Optimised R.C. Standard R.C.

Time # Evals Time # Evals Time # Evals

Fig. 5 19.18s 26 803 413 14.03s 30 701 240 19.87s 44 895 932

Fig. 6 2m39.48s 30 563 596 4m47.56s 58 132 753 6m59.27s 84 760 569

Fig. 7 23.22s 12 641 154 29.69s 21 425 128 36.69s 27 504 354

To test the performance of the progressive refinement renderer with increas-
ingly complex surfaces, we modified the hypertexture example of Figure 7 to
sum the contribution of several layers of procedural noise:

f(x) = ‖x‖ − 1 + 0.8
L−1
∑

i=0

2−0.8i n(2i+2x). (12)

17

Fig. 8. A hypertexture with (from left to right) two to five layers of procedural
gradient noise.

1 2 3 4 5
0

200

400

600

800

1000

1200

Layers

R
en

de
rin

g
T

im
e

(s
)

Progressive Refinement
Optimised Ray Casting
Standard Ray Casting

Fig. 9. Comparison between the total rendering times between our progressive re-
finement previewer, a ray caster based on Lipschitz bounds and the same ray caster
with an optimised overshooting factor.

The expression for the implicit function accumulates L copies of the procedural
noise function whose basic frequencies follow a geometric sequence [35]. The
case L = 1 corresponds to the implicit function (11) that is shown in Figure 7.
In the limit of an infinite number of layers, the surface would have a fractal
dimension of 2.2. Hypertextured surfaces with the L parameter in (12) ranging
from 2 to 5 are shown in Figure 8. The bar chart shown in Figure 9 compares
the total rendering times of these increasingly more complex surfaces.

Progressive refinement previewing incurs several costs that a ray casting al-
gorithm does not have. These consist of the subdivision of samples, the invoc-
ation of the shading model during the rendering of non-terminal samples for
previewing purposes and the periodical transfer of the internal image buffer to
the hardware frame buffer. The previewer compensates for these extra costs by
being able to quickly eliminate large areas of empty space as part of the cone

18

tracing procedure, thereby reducing the number of evaluations of the implicit
function. For most cases, this leads to a reduction of the total rendering time
as shown by the previous results. If, however, the implicit function is very
simple and can be evaluated quickly, the previewer can no longer compensate
for the extra progressive refinement costs compared to a ray casting algorithm.
This is the case of the algebraic surface of Figure 5, as shown in Table 1, where
it takes longer to do progressive refinement even though the number of eval-
uations of the implicit function with previewing is still the smallest for the
three rendering methods.

Figure 10 shows three frames, with a resolution of 800×400 pixels, taken during
the rendering of a procedural landscape. This landscape uses a combination of
gradient noise, sparse convolution noise and cellular texture noise [33, 36, 37].
The faceted aspect of the terrain, in particular, is a characteristic of the spatial
Voronoi decomposition performed by the cellular texture noise function. A
region of interest (ROI), shown as a white rectangle, was used to focus the
rendering on one of the terrain features. The top frame shows the image at
the moment when the ROI was specified. The rendering time for this frame is
2m 15.09s. The middle frame shows the image at the moment when rendering
inside the ROI was completed. The rendering time is now 4m 0.93s. The
portion of the terrain inside the ROI has become fully resolved while the
remaining terrain has not suffered any change since the previous frame. The
bottom frame shows the final rendering, which is achieved after 14m 42.47s.
The same landscape took 17m 13.26s to render with an optimised ray caster.
The top frame demonstrates again how an approximate and quite acceptable
rendering of the surface is available early during the rendering, in this case
after 15% of the total rendering time has elapsed. During the course of some
editing task, the user may be interested in resolving only the portion of the
terrain that is contained by the ROI. In that case, he will achieve the most
accurate results with only 27% of the total rendering time. The time necessary
to resolve the ROI depends on its size and also on its placement over the image.
Portions of the image that are closer to the horizon take longer to resolve since
cones must be traced over a greater distance.

5 Conclusions

The visualisation of implicit surfaces with progressive refinement offers the
possibility of previewing the surface, as it is being rendered, with increasing
accuracy. The user can exercise control over the renderer by specifying image
regions that should receive priority. This rendering strategy offers significant
advantages over conventional ray casting during the editing stages of a new
and potentially complex implicit surface. Ray casting usually renders an im-
age in scan line order, which constitutes a rigid rendering progression. The

19

Fig. 10. A progressive refinement rendering of a procedural landscape, illustrating
the use of a region of interest.

20

more flexible rendering approach offered by our previewer allows the user to
make quick editing decisions about the surface. The previewer runs faster than
straightforward ray casting for surfaces that are generated from complex im-
plicit functions. It becomes slower than ray casting if the implicit function is
simple and can be evaluated efficiently because of the overheads required for
progressive refinement. This is not a limitation since simple functions that can
be rendered quickly with ray casting do not really need a previewing facility.

Sample subdivision is based on a prime number factorisation of the image
resolution so that any subdivided sample always corresponds to an integer
number of pixels on the screen. This technique works best for square images
with a power of two resolution since, compared to images of similar size, it
leads to the greatest number of subdivision levels. For images with a width or
height that are prime numbers, no progressive refinement is possible and the
algorithm automatically switches to ray casting. The interactive placement of
regions of interest, however, still remains functional in these circumstances.

The use of guaranteed Lipschitz bounds during both the cone tracing and
the ray casting stages of the progressive refinement algorithm means that no
surface details with sizes that are above the size of a pixel can possibly be
missed. This is an improvement over more general image space progressive
refinement algorithms where small surfaces can sometimes escape detection.
Surface components that are smaller than a pixel may still be rendered in-
correctly, considering that only one ray is shot for each pixel at the highest
level of subdivision. This problem can be solved with the implementation of
an anti-aliasing technique.

A Anti-Aliasing

Because our aim was to provide an interactive and progressive refinement
previewer for implicit surfaces, anti-aliasing was not an issue. Anti-aliasing,
however, can be easily added to the rendering algorithm that we have de-
veloped. Anti-aliasing is achieved by the process of filtering rectangular image
regions that have constant luminous intensity [27]. All samples must be sub-
divided down to a specified minimum size, which can be several times smaller
than the size of a pixel. Let the area of a terminal sample s in image space be
[xs

a, x
s
b] × [ys

a, y
s
b]. Let also (i + 0.5, j + 0.5) be the image coordinates of some

pixel {i, j}. Given some appropriate anti-aliasing filter h(x, y), the intensity
Ii,j of the pixel is:

Ii,j =
∑

s∈Si,j

Is

∫ xs
b

xs
a

∫ ys
b

ys
a

h(x − i − 0.5, y − j − 0.5) dydx, (A.1)

21

where Is is the intensity of sample s, assumed constant throughout its area,
and Si,j is the set of all samples whose areas overlap with the area of support
of the anti-aliasing filter centred at the coordinates of pixel {i, j}. Stochastic
anti-aliasing is achieved by perturbing the ray direction for each terminal
sample when computing the Is intensity. The double integral of the filter
function h can be precalculated into a lookup table for increased efficiency. If
h is a separable B-spline filter, accurate and efficient techniques for performing
the integration can also be used [38]. With this anti-aliasing technique, the
cone tracing stage of the algorithm can be extended into much deeper levels of
subdivision than before. This provides the opportunity for further performance
gains relative to conventional ray casting, where many independent rays need
to be shot for each pixel in order to implement anti-aliasing.

Acknowledgements

The authors would like to thank Agata Opalach for providing us with the Dali
model shown in Figure 6.

References

[1] P. Hanrahan, Ray tracing algebraic surfaces, in: P. P. Tanner (Ed.), Com-
puter Graphics (SIGGRAPH ’83 Proceedings), ACM Press, 1983, pp.
83–90.

[2] J. F. Blinn, A generalization of algebraic surface drawing, ACM Trans-
actions on Graphics 1 (3) (1982) 235–256.

[3] H. Nishimura, M. Hirai, T. Kawai, T. Kawata, I. Shirakawa, K. Omura,
Object modeling by distribution function and a method of image gener-
ation, Trans. IECE Japan, Part D J68-D (4) (1985) 718–725.

[4] G. Wyvill, A. Trotman, Ray-tracing soft objects, in: Computer Graphics
International’90, 1990, pp. 469–475.

[5] G. Turk, J. F. O’Brien, Modelling with implicit surfaces that interpolate,
ACM Transactions on Graphics 21 (4) (2002) 855–873.

[6] B. S. Morse, T. S. Yoo, D. T. Chen, P. Rheingans, K. R. Subramanian, In-
terpolating implicit surfaces from scattered surface data using compactly
supported radial basis functions, in: B. Werner (Ed.), Proceedings of the
International Conference on Shape Modeling and Applications (SMI-01),
IEEE Computer Society, 2001, pp. 89–98.

[7] K. Perlin, E. M. Hoffert, Hypertexture, in: J. Lane (Ed.), Computer
Graphics (SIGGRAPH ’89 Proceedings), Vol. 23, ACM Press, 1989, pp.
253–262.

[8] W. E. Lorensen, H. E. Cline, Marching cubes: A high resolution 3D sur-

22

face construction algorithm, in: M. C. Stone (Ed.), Computer Graphics
(SIGGRAPH ’87 Proceedings), Vol. 21, ACM Press, 1987, pp. 163–169.

[9] J. Bloomenthal, Polygonisation of implicit surfaces, Computer Aided
Geometric Design 5 (4) (1988) 341–355.

[10] L. Velho, Simple and efficient polygonization of implicit surfaces, Journal
of Graphics Tools 1 (2) (1996) 5–24.

[11] D. Kalra, A. H. Barr, Guaranteed ray intersections with implicit surfaces,
in: J. Lane (Ed.), Computer Graphics (SIGGRAPH ’89 Proceedings),
Vol. 23, ACM Press, 1989, pp. 297–306.

[12] D. P. Mitchell, Robust ray intersection with interval arithmetic, in: Pro-
ceedings of Graphics Interface ’90, Canadian Information Processing So-
ciety, 1990, pp. 68–74.

[13] J. C. Hart, Sphere tracing: A geometric method for the antialiased ray
tracing of implicit surfaces, The Visual Computer 12 (9) (1996) 527–545.

[14] L. Bergman, H. Fuchs, E. Grant, S. Spach, Image rendering by adapt-
ive refinement, in: D. C. Evans, R. J. Athay (Eds.), Computer Graphics
(SIGGRAPH ’86 Proceedings), Vol. 20, ACM Press, 1986, pp. 29–37.

[15] M. F. Cohen, S. E. Chen, J. R. Wallace, D. P. Greenberg, A progressive
refinement approach to fast radiosity image generation, in: J. Dill (Ed.),
Computer Graphics (SIGGRAPH ’88 Proceedings), Vol. 22, ACM Press,
1988, pp. 75–84.

[16] J. P. Farrugia, B. Peroche, A progressive rendering algorithm using an
adaptive perceptually based image metric, Computer Graphics Forum
23 (3) (2004) 605–614.

[17] D. Laur, P. Hanrahan, Hierarchical splatting: A progressive refinement
algorithm for volume rendering, in: T. W. Sederberg (Ed.), Computer
Graphics (SIGGRAPH ’91 Proceedings), Vol. 25, ACM Press, 1991, pp.
285–288.

[18] L. Lippert, M. H. Gross, Fast wavelet based volume rendering by accu-
mulation of transparent texture maps, Computer Graphics Forum 14 (3)
(1995) 431–444.

[19] A. P. Witkin, P. S. Heckbert, Using particles to sample and control im-
plicit surfaces, in: A. Glassner (Ed.), Computer Graphics (SIGGRAPH
’94 Proceedings), Vol. 28, ACM Press, 1994, pp. 269–278.

[20] J. C. Hart, W. Jarosz, T. Fleury, Using particles to sample and control
more complex implicit surfaces, in: Proceedings Shape Modeling Interna-
tional, 2002, pp. 129–136.

[21] J. M. Wolfe, D. Levi, K. Kluender, L. Bartoshuk, R. Herz, R. L. Klatzky,
S. Lederman, Sensation and Perception, Sinauer Associates Inc., 2005.

[22] T. Duff, Interval arithmetic and recursive subdivision for implicit func-
tions and constructive solid geometry, in: E. E. Catmull (Ed.), Computer
Graphics (SIGGRAPH ’92 Proceedings), Vol. 26, ACM Press, 1992, pp.
131–138.

[23] J. R. Woodwark, K. M. Quinlan, Reducing the effect of complexity on
volume model evaluation, Computer Aided Design 14 (2) (1982) 89–95.

23

[24] L. H. de Figueiredo, J. Stolfi, Adaptive enumeration of implicit surfaces
with affine arithmetic, Computer Graphics Forum 15 (5) (1996) 287–296.

[25] T. Whitted, An improved illumination model for shaded display, Com-
munications of the ACM 23 (6) (1980) 343–349.

[26] C. E. Kolb, Rayshade user’s guide and reference manual, draft 0.4 (Janu-
ary 1992).

[27] J. Painter, K. Sloan, Antialiased ray tracing by adaptive progressive re-
finement, in: J. Lane (Ed.), Computer Graphics (SIGGRAPH ’89 Pro-
ceedings), Vol. 23, ACM Press, 1989, pp. 281–288.

[28] J. Maillot, L. Carraro, B. Peroche, Progressive ray tracing, in:
A. Chalmers, D. Paddon, F. Sillion (Eds.), Third Eurographics Work-
shop on Rendering, Eurographics, Consolidation Express Bristol, 1992,
pp. 9–20.

[29] I. Notkin, C. Gotsman, Parallel progressive ray-tracing, Computer Graph-
ics Forum 16 (1) (1997) 43–55, iSSN 0167-7055.

[30] M. N. Gamito, S. C. Maddock, A progressive refinement approach for
the visualisation of implicit surfaces, in: J. Braz, J. A. Jorge, M. S. Dias,
A. Marcos (Eds.), International Conference on Computer Graphics The-
ory and Applications (GRAPP 2006 Proceedings), INSTICC - Institute
for Systems and Technologies of Information, Control and Communica-
tion, 2006, pp. 26–33.

[31] J. D. Genetti, D. Gordon, G. Williams, Adaptive supersampling in object
space using pyramidal rays, Computer Graphics Forum 16 (1) (1998) 29–
54.

[32] J. Amanatides, Ray tracing with cones, in: H. Christiansen (Ed.), Com-
puter Graphics (SIGGRAPH ’84 Proceedings), Vol. 18, ACM Press, 1984,
pp. 129–135.

[33] K. Perlin, Improving noise, ACM Transactions on Graphics (SIGGRAPH
’02 Proceedings) 21 (3) (2002) 681–682.

[34] S. P. Worley, J. C. Hart, Hyper-rendering of hyper-textured surfaces, in:
Proc. of Implicit Surfaces ’96, 1996, pp. 99–104.

[35] D. Saupe, Point evaluation of multi-variable random fractals, in:
H. Jüergens, D. Saupe (Eds.), Visualisierung in Mathematik und Na-
turissenschaften - Bremer Computergraphik Tage, Springer-Verlag, 1989,
pp. 114–126.

[36] J.-P. Lewis, Algorithms for solid noise synthesis, in: J. Lane (Ed.), Com-
puter Graphics (SIGGRAPH ’89 Proceedings), Vol. 23, ACM Press, 1989,
pp. 263–270.

[37] S. P. Worley, A cellular texture basis function, in: H. Rushmeier (Ed.),
Computer Graphics (SIGGRAPH ’96 Proceedings), Vol. 30, ACM Press,
1996, pp. 291–294.

[38] M. N. Gamito, S. C. Maddock, Anti-aliasing with stratified B-spline filters
of arbitrary degree, Computer Graphics Forum 25 (2) (2006) 163–172.

24

