Masked Photo Blending: mapping dense photographic dataset
on high-resolution sampled 3D models

M. Callieri, * P. Cignoni, ® M. Corsini, * R. Scopigno *

Abstract

The technological advance of sensors is producing an exponential size growth of the data coming from 3D scanning
and digital photography. The production of digital 3D models consisting of tens or even hundreds of millions of
triangles is quite easy nowadays; at the same time, using high-resolution digital cameras it is also straightforward to
produce a set of pictures of the same real object totalling more than 50M Pixel.

The problem is how to manage all this data to produce 3D models that could fit the interactive rendering constraints.
A common approach is to go for mesh parametrization and texture synthesis, but finding a parametrization for such
large meshes and managing such large textures can be prohibitive. Moreover, digital photo sampling produces highly
redundant data; this redundancy should be eliminated while mapping to the 3D model but, at the same time, should
also be efficiently used to improve the sampled data coherence and the appearance representation accuracy.

In this paper we present an approach where a multivariate blending function weights all the available pixel data
with respect to geometric, topological and colorimetric criteria. The blending approach proposed is efficient, since it
mostly works independently on each image, and can be easily extended to include other image quality estimators.
The resulting weighted pixels are then selectively mapped on the geometry, preferably by adopting a multiresolution
per-vertex encoding to make profitable use of all the data available and to avoid the texture size bottleneck. Some
practical examples on complex datasets are presented.

Key words: 3D scanned models, image inverse projection, texture mapping, blending function, multiresolution encoding,
interactive rendering, out-of-core processing.

1. Introduction the range map registration effort (see an example in
Pingi et al.(1)). A model such as the one shown in
The HW/SW improvement of digital photogra- Figure 7 can be produced with 3 hours of scanning
phy and 3D scanning makes it possible to acquire (200 range maps) and 1 day of post-processing (with
very dense sampling of both geometric and optical a final model size of 12 million triangles). On more
surface properties of real objects. Modern 3D scan- complex/large artifacts, 3D models in the order of
ning devices can sample a surface with a sampling hundreds million faces can be obtained.
rate as small as 0.25 millimeter. Producing very de- The resolution of digital cameras’ CCD improved
tailed 3D models (composed of millions of triangles) also in an impressive manner; middle-quality digi-
is now possible in a very short time with the new gen- tal cameras can provide resolutions of 8M pixels or
eration of software tools, which reduces significantly more. A single object can thus be sampled with a

few shots producing easily raw datasets of more than
50M pixel data. We use the term raw since a signif-
icant overlap exists in those pixel dataset, and the
sampling quality varies a lot as well.

* Istituto di Scienza e Tecnologie dell’Informazione (ISTI)
CNR, Pisa, Italy
[callieri|cignoni|corsini|scopigno| @isti.cnr.it

Preprint submitted to Elsevier 8 January 2008

Fig. 1. A 56 million faces 3D model with color coming from
a 520 Mpixel dataset (64 photos)

Different approaches exist for recomputing the in-
verse projection needed to solve the mapping from
an uncalibrated photo to the 3D space (2; 3; 4; 5).
This paper focuses on the subsequent phase in the
scanning pipeline, i.e., how to process redundant
pixel data and how to efficiently map such informa-
tion on a high resolution 3D model.

One of the most common approaches is to build
up a parametrization of the 3D mesh that fits well
the pool of images available, and producing a new
texture map, either by joining subregions of the in-
put images or by resampling (6; 7; 8; 9; 3; 10; 11).
Unfortunately, the management of very dense geo-
metric and photographic sampling is very compli-
cated. The texture-based approach is ideal when
we have both low-to-moderate resolution meshes
(50K-1M faces), usually produced by simplifica-
tion or subsampling, and moderate pixel datasets
(IM-5M). Moreover, multiresolution encoding is
usually a must for huge meshes, and the adop-
tion of multiresolution approach for texture-based
representation of color (11) implies the need of a
multi-resolution texture atlas, with the associated
redundancy and increased space occupancy.

In this paper we present an approach where a mul-
tivariate blending function is proposed to weight all
the available pixel data w.r.t. geometric, topologi-
cal and colorimetric criteria (Section 3). This blend-

ing function (which operates in the image space)
allows to mix weighted pixels from the various im-
ages. In this way we aim to maximize the use of the
information contained in the input images, to cor-
rect incoherence between different photos while at
the same time trying to reduce the blurr caused by
simple blending approaches. Section 4 presents our
weighting function defined as a combination of var-
ious metrics, each of them addressing a specific as-
pect of the images: view angle, distance from sensor,
sharpness and so on. We discuss in Section 6 how to
detect some defects in the source image dataset and
how to correct them. The approach presented is ef-
ficient in time (since most of the computations are
local to the single image) and highly extensible to
other image-based evaluation heuristics.

We show in Section 5 how this function can be
used to map the color information to the geom-
etry, by choosing either a texture-based approach
(which requires mesh parametrization) or by adopt-
ing a multiresolution per-vertex encoding. We de-
scribe in Section 7 how this process can be imple-
mented out-of-core, to deal with huge geometric and
image datasets. Finally, we present in Section 8 some
results of our color mapping approach, relying on
the per-vertex encoding. The latter has been pre-
ferred to texture mapping since it can be applied
more easily to modern multiresolution approaches;
moreover, it is more robust w.r.t. the need to manage
incomplete, topologically dirty and complex meshes
which are, unfortunately, the standard results of 3D
scanning.

2. Previous research

Various approaches have been proposed for select-
ing the most correct color which has to be applied
to each part of the 3D model. As stated in the in-
troduction, the standard approach is to compute a
texture by assembling subparts of the original in-
put images. Additionally, some corrections can be
applied to deal with incoherence in the borders be-
tween different images. An example of this approach
is in Callieri et al. (10), where the mesh is covered
using the most orthogonal image for each mesh por-
tion, redundancy is used to correct color discontinu-
ities in the boundary between images and then the
correction is propagated to the whole texture space.
Camera orthogonality is used also in Lensch et al.
(3) to choose which part of the 3D model is to be
mapped in which photo, the images are then fully

blended, using the entire redundant area.

Conversely, other approaches generate color map-
ping without reassembling the original images; an
exampleisin Yu et al. (12), where the texture is filled
directly texel by texel with values coming from an
inverse rendering process based on the original im-
ages. In the same fashion, we will use the input pho-
tos as a source to calculate the correct colors that
will be used to fill texture map texels or to perform
per-vertex coloring.

The idea of using a per-pixel blending function
is not completely new; some other approaches that
use a per-pixel weight have been proposed. Both
Bernardini et al.(13) and Baumberg(14) use a
weighted blending function to compute the texture
color, but without exploiting all the potentiality of
this method. Per-pixel weighted blending has also
been used in image processing, as shown in Rankov
et al.(15). However, we are focusing on the defi-
nition of an extensible and flexible framework for
image blending. We can identify two main problems
regarding color mapping from photographic data:
difficulties related to large dataset management
and difficulties related to image discordancy. We
propose a way to weight and blend multiple images
that is able to work with an arbitrary amount of
input data. We examine benefits of the per-vertex
color encoding, in terms of quality and compactness,
while not excluding the algorithm applicability on
standard texture mapping. Moreover, we show that
with a complete and clean definition of various dif-
ferent weighting schemes, a good data arrangement
and application rules, it is possible to obtain very
good results in color mapping, overcoming most of
the image-to-image incoherence.

3. The Masked Blending Function

The main idea is to create a blending function that
operates in the image space, capable to mix data
from the various images by weighting them w.r.t. the
quality of each contribution. The objective of this
function is to be able to work with photos taken in
arbitrary conditions since, especially when working
in the cultural heritage field, having a calibrated
de-shaded and artifact-free photo dataset is not a
viable option. To acquire models of cultural heritage
artifacts it is often necessary to work on the field in
museums or even outdoor, making it impossible to
setup controlled lighting conditions.

The first problem is to detect those pixels in each

photo which sample the object surface (since some
pixels can depict the background), and for each of
those which are the coordinates of the surface point
which has been sampled. The projective mapping
principle is well known. Since the photos follow the
laws of perspective, if we know the camera param-
eters than we can determine if (and where) a point
on the surface is mapped inside the image bound-
aries. An efficient manner to compute those pixel-
to-surface correspondences is by rendering the 3D
model with the same projection parameters of the
given photo. In this way the resulting depth map can
be used to discriminate, similarly to shadow map-
ping, if a point on the surface that projects inside the
image is effectively visible from that point of view,
or if it is occluded by other geometry. In this way it
is possible to assign safely a pixel color, taken from
that photo, to a point onto the surface.

But the real problem rises when the same surface
point can take the color from many source images
and thus from many different pixels. Since there is
more than one candidate, it is not advisable to sim-
ply choose the color from a single image, ignoring
the other values. But also doing a simple blend could
not be a good choice, because not all sampled colors
yields the same degree of quality. Since each pixel
in the source images has a specific quality (that can
be evaluated adopting various metrics), it is neces-
sary to take into account this quality while blend-
ing. Our approach is therefore to define an extensi-
ble masked blending approach, where multiple local
image evaluation heuristics can be defined to weight
each single pixel. Once we have defined a suitable
set of weighting masks, we are able to assign the
most correct color to each point of the surface as
a weighted mean of all possible sources. The prob-
lem is how to choose those local quality evaluation
heuristics for our weighting method, which should
be local and efficient both in time and space.

4. The weighting mask generation

The core of our blending function is the weighting
mask that is generated for each image. The weight
mask states the quality of each pixel and, conse-
quently, how much it will contribute to the final color
of the 3D points it maps on.

Various metrics can be applied to evaluate the
quality of image pixels. Since we have not only the
images but also a faithful geometric representation
of the object, we can effectively use this information

Fig. 2. An example of the core weighting masks. From left to right: Angle Mask, Depth Mask, Border Mask. Rightmost, all
the masks combined in the final mask. Caveat: the contrast of the depth and border masks has been increased for enhanced

readability.

to perform a higher quality evaluation. Each met-
ric can take into account a different characteristic of
the source image. For example, pixel quality can be
measured based on camera orthogonality to the cor-
responding surface point, because orthogonal views
appear less “stretched”. But a pixel that is “good”
for this particular metric can at the same time be
considered “bad” by another metric that considers
the distance from the sensor (the farther the sur-
face, the less dense is the sampling available in the
image). Following this approach, we define multiple
metrics, and mix them all in a single measure. It is
clear that, following this strategy, we can evaluate
and mix an arbitrary number of metrics, making the
system flexible and extensible (as we will show in
Section 4.1).

Please note that, since we need a per-pixel blend-
ing, all the masks we compute have exactly the same
resolution of the corresponding photo image. Once
the camera parameters are known, it is possible to
calculate each metric with a series of controlled ren-
derings and video buffer processing. As introduced
before, the depth buffer corresponding to each im-
age is required to perform a correct color projection
(visibility check); this buffer is calculated just once
at the begin of the process and used as a base for
the computation of the other masks.

The basic weights used in our system are:

Angle mask: this is the simplest quality evalua-
tion for each image pixel, proportional to the an-
gle between the viewing ray and the surface nor-
mal. Similar to Lambertian illumination, the qual-
ity is higher when the view direction is orthog-

onal to the surface and lower when glazing. The
computation of this mask is quite straightforward:
we simply render the 3D model under the image
view, using a white lambertian material with a
light source placed in the viewpoint; the rendered
image is exactly the weight mask we need.

Depth mask: the weight of an image pixel is
higher as the surface is closer to the camera. This
is an approximation of the ratio pixel/surface
(informally, how dense is the sampling encoded
on this image part). Obviously this ratio depends
also on view orientation, but this has already
been taken in account when calculating the An-
gle mask. Calculation is, again, quite easy, using
the same depth map that has been calculated
at the begin of the process. Using directly the
depth map would imply a linear quality decrease
due to distance, that is incorrect. We produce
better results using a squared distance, that rep-
resents the fact that pixel/surface ratio decreases
following a quadratic law.

Border mask: this mask measures how far a pixel
in the image is from both image borders and
discontinuities in the depth map (silhouette bor-
ders). The farther we are from these borders, the
higher the quality of the photo sampling. To com-
pute this mask, the first step is to mark as point of
zero value both the image borders and the depth
discontinuities. The latter can be calculated by
simply using a Sobel filter on the non-normalized
depth map (every pixel contains the actual dis-
tance from the sensor, not the normalized [0-1]
value): using such wider range makes the Sobel
filter much more precise. For the rest of the pix-

els, the weight is calculated as the image-space
(pixel-to-pixel) distance from the borders on the
image space.

The composed weighting mask will be generated
by assembling various metrics through multiplica-
tion. In this way we maintain for each mask its con-
tinuity and minima. Preservation of minima is very
important to remove outliers. If a given pixel is con-
sidered “bad” according to a given metric, we should
be sure that it has the least probability of being
used. An example of the core masks described above
and the final assembled weight mask is showed in
Figure 2.

While the meaning of the first two weights is not
difficult to understand, the third one is a bit more
tricky. A discontinuity on the depth map indicates
a silhouette point for that point of view; on the cor-
responding image those pixels probably blend data
from two non-contiguous regions (or from the back-
ground), with problems of coherence in color, fo-
cusing and depth. Image borders are also problem-
atic; it is well known that (due to lens imperfec-
tions) the quality of a photograph is minimal on the
borders. Those two pixel regions should ideally not
contribute to color determination; the quality im-
proves the farther we go from those problematic ar-
eas. We use the depth map as a starting point be-
cause some discontinuities on the photo are more
easily detectable when looking at the 3D models.
Moreover, the image-space distance calculation en-
sures continuity of the weights, which is also a nice
property.

Similar weighting metrics are also presented in
a work by Pulli et al. (16); in particular the an-
gle mask, identical in scope and calculation, and a
feathering weight that is used by the authors to pro-
vide smooth transition between different images, but
without taking in account internal silhouettes and
quality degradation towards image borders.

4.1. Additional masking weights

The most interesting feature of this approach is
its flexibility; the system works by evaluating multi-
ple metrics and then mixing them in a single quality
measure. In order to improve our system, we can add
more metrics to address for specific dataset prob-
lems.

The masks described in the previous section are
the most important ones, i.e., the core masks of

the system. These masks are always applied to all
datasets, because they evaluate measures that are
related to photography in general and not to a spe-
cific dataset. In our experience, we found that there
are other two recurring problems in the dataset we
processed. For this reason, we implemented two ad-
ditional masks: the stencil and focus mask.

Stencil mask: in some cases there is the need to
exclude certain parts of the source image (e.g.,
people in front of a building, photographic arti-
facts). In those cases a simple stencil masking can
be applied. Images we need to correct are (man-
ually) marked with a specific color; the system
will then assign zero weight to those pixels. In
alternative, for each photo that requires a stencil
mask, we provide another grey-scale image that
basically contains the 0-1 mask that has to be
assigned.

Another situation that often occurs when process-
ing photos is to detect focusing problems. When do-
ing a photographic coverage of an objects there is the
need of being close to the object to obtain enough de-
tail. This closeness can results in problems with the
autofocus system; out of focus areas should not be
used for mapping, otherwise we will obtain a blurred
result. There can be two main problems:

— an entire image can result not perfectly in focus,
i.e., when the camera cannot focus correctly be-
cause it is too close to the surface or because the
object of interest is very small;

— just a portion of the image is out-of-focus, because
the depth extent covered by the image is large, and
some parts of the object falls beyond the focusing
range.

These two problems can be resolved by adding a

focus mask:

Focus Mask: to build this mask the focusing of
each pixel of the image is evaluated in a way
that is almost identical to the procedure used by
digital cameras while performing the autofocus
selection. Typically, the autofocus procedure set
the focus distance by maximizing the sharpness
of some reference points in the framed image.
Therefore, we evaluate the per-pixel “focusness”
of the source image using a sharpness operator
that is the energy of the image Laplacian (17),
applied on a window of 20x20 pixels centered on
each evaluated pixel.

Fig. 3. Focus masking example. An image of the wooden
statue with large depth extent. As detected by the focus
mask,the hands are out of focus due to depth of field, while
the red part of the cloth is perfectly focused.

Figure 3 shows an example of focus masking; in
this case the focus problem was due to excessive
depth of field. With this masking the out of focus
areas are assigned a very low weight. In this way
they do not introduce blurring when blended with
other images, but they could still be available as
color source if no other data can be mapped on the
same surface region.

4.2. Weights computation

It is important to note that the computation of
the various metrics is not computationally expen-
sive. Most of the computation is done in the image
space with simple image filters and does not require
the access to complex data structure such as the
topology of the 3D model.

The weight mask computation complexity is lin-
ear in the size of the input photos; more precisely,
linear in the number of pixels in the input images
which cover a portion of the 3D model (pixels cov-
ering the background are not processed).

We need to render the 3D model (using the view
specs of each image) in two phases: for the compu-
tation of the depth map and for the computation
of the angle map. Even in these cases, the time re-
quired is not large, since rendering a 3D model and
reading back the buffer is a matter of a fraction of
a second. This is true even when working with huge
3D models, assuming that those are rendered using
modern out-of-core multiresolution algorithms (18).

Another interesting characteristic is that the com-
putation of the metrics can be done independently
for each image; we will later exploit this property
to organize the out-of-core processing scheme (see
Section 7).

4.3. Weight normalization

Mixing the various intermediate masks to produce
the final one using a simple product is fine to pre-
serve properties of the different weights without nu-
merical problems.

However, numerical cancellation in the weighed
mean can show up when applying the function (Sec-
tion 5). If weights are quite discordant (very large
values vs. very small values) multiplying color val-
ues (normally in the range 0-1) for the weight, accu-
mulating and then dividing by the sum of all weight
can produce artifacts even when using double pre-
cision values.

As the number of masks used increases, it is neces-
sary to be cautious to select the range of the weights;
having all mask between 0 and 1 would be the best
thing. This condition is already fulfilled by the an-
gle mask, that is already in the desired range. For
border mask, it is possible to encode the distance
from border (in pixels) normalized with respect to
the largest image size (in pixels) in the dataset.

For the depth mask this can be obtained by nor-
malizing depth with respect to the range between
the minimum and maximum distance found among
all images. this, however, requires two pass: a first
pass to compute the depths, obtaining minimum
and maximum depths and a second pass for nor-
malization. A faster but still valid strategy is to
find an over-estimation of minimum and maximum
depth using camera positions and the object bound-
ing box and using the values to do calculate normal-
ized depth in a single step.

5. Application of the weighting function

Given a point on the 3D surface, it is easy (as
described in Section 3) to determine the set of source
images that effectively “see” that surface point and
the corresponding pixel coordinates. These source
colors will be multiplied by the weights contained
in the image masks and accumulated, assigning the
weighted mean as final color to the 3D point.

A very nice characteristic of this function is its
generality: given a point on the surface, a color is

Fig. 4. An example of color mapping. The 3D model is com-
posed by 1 million triangles, with a mapped photographic
dataset of 8 images 2560x1920. From left to right: original
photos, geometry, color + lambertian shading, color only.

returned. It is then possible to use it to fill a texture
map or, with a simpler approach, to compute per-
vertex colors on a 3D model. Moreover, the masks
are independent from the resolution of the mapping
target; after the weighting masks have been calcu-
lated once, it is possible to use them to apply the
color on different level of resolution of the 3D object.

If a parametrization of the 3D model is available,
it is possible to use the weighting function to com-
pute the color of each texel in the texture map. Since
there is a full correspondence between texels and
points on the 3D surface, it is necessary to calculate
the function for each texel. The generation of a suit-
able parametrization for an arbitrary model is not in
the scope of this paper and, especially when dealing
with very large or topologically unclean models, it
is often a very hard task. For this reason we believe
the simpler approach of computing per-vertex color
is a much better solution in all those cases where
both a high resolution geometry and photographic
data are available. With per-vertex color we mean
saving a color value for each vertex of the mesh, us-
ing simple interpolation of the three vertex colors
inside each triangle. Most 3D file formats can sup-
port this data, and most of the available viewer and
rendering engine can make profitable use of this kind
of encoding. The same is not true for texture map-
ping where, for example, programs may have a limit
in number, size and aspect ratio of texture images
and limitations on the kind of UV mapping storage
(per vertex, per wedge, atlas). A major advantage
of per-vertex encoding is space efficiency, since we
have just a color per vertex (rather than one tex-
ture coordinate per vertex and a texture atlas to be
transferred to the GPU).

The images shown in this paper are all obtained
using per-vertex color. When dealing with densely
scanned objects, it is common to have a sub-
millimetric geometric representation. This detail
can be used even in realtime, thanks to multires-
olution and out-of-core rendering techniques (18),
coupled with modern video cards. It is therefore
worth to try using this geometric density to store
the color information. Using a multiresolution ren-
dering engine, which renders each part of the scene
at a different resolution level, each triangle usu-
ally projects to a few display pixels. A per-vertex
encoding is then more than enough for a realistic
visualization. An example can be the capital shown
in Figure 6, where the per-vertex mapping is able
to convey a good color detail even on a small, 1
million triangles model; only a very close inspection
shows a small quality degradation. The limit of this
encoding is not the sheer size of the model: if not
presenting high frequency color details, a per-vertex
encoding would be good also for very simple models
(under 100.000 triangles). What matters most is
the ratio between the pictorial and geometric de-
tail: the per-vertex encoding begin to suffer when
the pictorial detail is 3-4 times higher than the geo-
metric detail and becomes useless as the ratio reach
one order of magnitude (I mm brush strokes on a
wall reconstructed at 1 cm resolution).

Using all the redundancy contained in the image
dataset, we are able to obtain a high quality color
mapping. Even if we are blending multiple images,
high frequency details are not lost thanks to the
weighting function. Image areas with more detail
will have a higher weight, that will dominate over
other lower, more blurred, images. At the same time,
discrepancy between different photos is no more de-
tectable, since blending the overlap area between
different images will mask the discontinuities.

Since the color blending function relies on redun-
dancy to determine the most correct color to ap-
ply, a good level of overlapping is essential to over-
come strong color discrepancies due to illumination
changes or color biasing between different images.
Having all points of the surface covered by at least
three images can be enough to correct most of this
problems. This may appear as a strong requirement,
but such a dense sampling of the surface is common
in 3D scanning. When not sufficient overlap is avail-
able, or some images present a poor color coherence
with the others, some artifacts can be perceived in
the resulted mapping. The next section presents a
partial solution to this sub-problem.

6. Image Color Correction

As stated before, the weights express the quality
of the pixels on a local basis. After mapping the color
to the mesh, we can also evaluate for each image its
global usefulness in terms of average, min and max
quality. If an image results much lower in quality
with respect to the others, a warning message can
be sent to the user: this allows the user to exclude
the image from the process or to further decrease the
weight values for the entire image. The second op-
tion is quite helpful if that critical image is the only
one that covers a portion of the 3D model; eliminat-
ing it completely would produce a non-mapped sec-
tion, while reducing the weight (e.g., to 1/2 or 1/4
of the original values) greatly reduces its influence
on the overlapping region, still conserving the data
on the unshared surface section.

The usefulness of this feature should not be under-
estimated: when dealing with a very large dataset
(e.g., the one used for the David 3D model is more
than 60 images), detecting imperfections and prob-
lems among all available images by visual analysis
can be a difficult task.

A Dbetter error evaluation can be done regard-
ing the color coherence. Every time we evaluate the
blending function for a 3D point, we sample the con-
tributing images to retrieve the source colors (with
associated weights) and then we compute the correct
color as the weighted mean. The difference between
the sampled color and the final color is a measure of
how much the source image was coherent with the
other neighbors. We can determine, for each image,
how severe this incoherence is by keeping track of
all those mapping errors. If we detect that the er-
ror value is above a threshold, it is possible to mark
that image as discordant.

In this case it is also possible to provide a correc-
tion for the erroneous image. For each pixel sampled
on this image, we know which is the color that, after
blending, is mapped onto the 3D surface. Each one
of those color couples represents a color transfor-
mation; we are interested in a global correction able
to make the image more coherent with its neigh-
bors. This global color transformation, described in
Agathos and Fisher (19), can be expressed as a 4x4
color correction matriz M, that can be evaluated
by solving a linear system showed in Equation 1:

Fig. 5. Apse of the Pisa Cathedral. A multiresolution model
(46 million triangles) with color applied from 36 4000x 4000
images.

R1G1B11 R1G1B11

M | = : (1)

R,GnBn1 Rn,GnBrl

samp final
where the vector of sampled colors is multiplied by
the correction matrix M (the unknown) to obtain
the vector containing the final colors.

The correction matrix can therefore be applied to
the image and the result can be presented to the
user; if the user believes the new image is better than
the older one, the image dataset is updated and the
mapping process is repeated. This color correction
is done, again, taking into account the weight asso-
ciated to the pixel and computing the matrix in the
CIE XYZ color space (20), to guarantee a more sta-
ble correction.

It is notable that, while this kind of correction is
technically sound, in practice it could fail. This is
because the color couples used to build the matrix
are not well distributed in the color space, since they
are only associated to the colors that are present
in the common areas of source images. In this case,
the linear system used to compute the color cor-
rection matrix could become ill-conditioned, intro-

ducing color-shifting problems. A similar approach
for color correction is used in Bannai et al.(21), but
also in the dataset presented in their paper a similar
color-shifting artifact is present. This is the reason
why we chose to have the system prompt the correc-
tion to the user for confirmation, instead of doing
the correction automatically.

To avoid this kind of color problems, it is much
advisable to perform a color calibration on the field,
during image acquisition. Including in each shot a
Macbeth color chart greatly helps in having a wide
sampling color space. Using the sampled color val-
ues from the chart image, compared to the color
chart reference, it is possible to obtain a stable color
correction matrix. We have a simple program that
automatically sample the image and build the cor-
rection matrix, the user just have to click on two
corners of the color chart on the image. Some im-
age acquisition programs do this step semi automat-
ically and there are Photoshop scripts and Matlab
code snippets with the same purpose. If the light-
ing setup is particularly stable, it is not necessary to
calibrate each photo with a color chart, but a global
color correction matrix can be derived from just a
few shots. In our acquisition campaigns we usually
apply this strategy, but we had to implement the
more generic correction approach described previ-
ously to deal with image datasets coming from other
sources.

7. Large Dataset Management

Executing the proposed pipeline for color recon-
struction from photos could require excessive mem-
ory resources on very large datasets.

The problem of dealing with large dataset de-
pends on the size of both the 3D geometry and the
photographic data. When “all in memory” approach
is adopted, we need sufficient RAM for storing the
3D geometry, each input photo with the associated
depth map and weight mask (both float vector, same
size of the image). The memory capacity can be eas-
ily exceeded. It is also impractical to set up a system
which adopts loading and discarding the images and
the maps upon request, since there is not much lo-
cality and the size of these “chunks” is quite large.
It is much more efficient to compute and organize
the data in a way that is easy to access on disk and
to adopt Out-Of-Core (OOC) strategies.

Designing the system, we distinguished two differ-
ent cases of OOC management: the most common

Fig. 6. Marble capital. Top row: 6 million triangles, bottom
row: 1 million triangles. The photographic dataset used was
8 images 1800x 1200, per-vertex mapping encoding. Even re-
ducing the complexity of the 3D model, the mapping quality
remains high; quality degradation due to the per-vertex ap-
proach starts to appear on the smaller model as we get very
close to the object (the eye of the small figure is 6mm wide).

case is when the 3D model fit in memory, but the
image and mask dataset have to be managed out-of
core. In the second case, also the 3D model is too
large to be kept in memory, requiring the interaction
of two OOC systems.

The mask computation can be done indepen-
dently for each image, since it is a local processing;
this greatly helps the OOC management, since it is
possible to calculate one mask at a time, keeping
the minimum data in main memory. Computing
the mask is easy if the 3D model fits in memory,
but it is also viable if the 3D model is kept OOC.
Since we only use controlled rendering, it is just
necessary that the OOC structure we are using for
the 3D model supports rendering. In this way it is
possible to generate all the data necessary to apply
the blending function. Moreover, the masking data
for each photo can be stored in a single image-buffer
file with a tight packing: for each pixel we store
the color values (from the image), the depth value
(for the shadow-mapping projection) and the mask
value (for blending). Thanks to these two proper-
ties (independent calculation and compact storage),
building the OOC scheme becomes easier.

Organizing the mapping phase is straightforward
when the model is in main memory. We can load
from disk one image-buffer at a time, for each mesh
vertex which maps on this photo we compute the
associated color contribution, the corresponding
weight value according to the image mask and fi-
nally accumulate this color and weight into the

vertex data structure. After all images have been
processed, we obtain the required mean weighted
color iterating again on each vertex and comput-
ing the mean of all the weighted contributions.
This strategy, with a dataset of N images requires
N+1 visit to all mesh vertices (one for each image,
plus one for mean color calculation), but minimize
memory-disk swapping. The same strategy of pro-
cessing one image at a time can be applied in the
case of texture-mapped color encoding to synthesize
the new texture.

Conversely, when the 3D model is too large to fit in
RAM and has to be managed using OOC structures,
the mapping phase is a bit more tricky. Using a mul-
tiresolution data structure like the one presented in
(18) makes it quite difficult to accumulate color and
weights by processing one image at a time, since for
each image we need to traverse the mesh vertices
in a random manner; traversing the multiresolution
data many times increases the processing time and
the lack of supporting structures for accumulation
is another issue. For this reason, we implemented
a color mapping strategy where the multiresolution
data structure is traversed just once. For each vertex
in the multiresolution mesh, we can efficiently detect
which images ”sees” this vertex (by just using the
inverse camera transformation); for each of these im-
ages, the color contribution and weight correspond-
ing to the vertex are retrieved by directly accessing
the various image-buffer files using memory map-
ping system calls. The overall reconstruction time is
therefore increased wrt. the all-in-memory case, but
in a sustainable manner (see the David and Apse
results in Table 1).

8. Results

To evaluate the effectiveness of our approach we
tested it on various datasets. In all cases, the input
images have been previously registered to the geom-
etry with the tool presented in (5). All 3D models
have been produced with 3D scanning technology,
therefore thee meshes are not watertight nor topo-
logically clean. The images included in this paper
show some of the models obtained with per-vertex
color. Table 1 lists some processed objects with de-
tails on their size, source images used and time re-
quired for performing color mapping. The examples
range from a small object with a relatively low geo-
metric and photographic complexity like the dog of
Figure Figure 4 to a complex, high resolution model

Fig. 7. Life-size painted wooden statue (5 million trian-
gles, photographic dataset 33 images 1694x2496). Left:
shaded+-color, center: color only, right: a more detailed view.

of a building with a very dense photographic as the
Apse of Figure 5.

In all dataset, the images have been aligned using
our image registration tool (5). The tool is able to
compute intrinsic and extrinsic camera parameters
by following the standard approach of using a series
of corresponding points selected by the user on the
photo and on the 3D geometry. The corresponding
points are processed iteratively using two different
algorithms to calculate the parameters (2; 4) un-
til convergence. The tool is able also to work using
image-to-image correspondences (to use also feature
that are only visible in the images, like paint details)
and is able to work directly on very large 3d models
like the one used in this tests, since it is possible to
use multiresolution models to render and pick the
correspondences. The tool proved flexible and accu-
rate; it has to be considered that the images in the
test datasets comes from at least 4 different cameras,
with very different intrinsic parameters and also the
models are of quite diverse nature.

All datasets have been processed using the three
core mask, the focus mask has been used on the
painted wooden statue (as some photos had out-of-
focus areas). For the Apse it was also used the stencil
mask, to cull out part of the scaffolding and other
extraneous elements (like pigeons).

Additionally, to demonstrate the possibility to
manage a very large dataset, we selected a test
case of an extraordinary size. We mapped on the
3D model of Michelangelo’s David two complete

Table 1

Specifications of the color mapped objects (note that for multiresolution models, the number of triangles indicated is the size
of the model extracted at full resolution and not the number of triangles in the entire multiresolution data structure, which

usually is around six times the former).

Object Resolution (# triangles) Images M pixel Time

Dog statuette 1M 8 (2560x1920) 39 3 min

Marble capital 6 M 8 (1800x1200) 17 8 min

Painted statue 5M 33 (1694x2496) 138 15 min

David, single resolution (pre-restoration) 15 M 60 (1920x2560) 294 3.0 hr
David, single resolution (post-restoration) 15 M 64 (2336x3504) 523 3.5 hr
David, multiresolution (pre-restoration) 56 M 60 (1920x2560) 294 13.0 hr

David, multiresolution (post-restoration) 56 M 64 (2336x3504) 523 15.5 hr
Apse, multiresolution 46 M 36 (4000x4000) 576 10.5 hr

photographic campaigns depicting the status of the
statue before and after the restoration. The two
photo dataset were taken by a professional photog-
rapher at the begin and at the end of the restoration
of the statue (2002-2004), the mapping of the first
dataset is shown in Figure 1. The photo dataset
are composed respectively by 61 images 1920 x 2560
and 68 images 2336x 3504 (around 300M and 500M
pixels). The 3D model comes from the scanning
campaign of the Digital Michelangelo Project per-
formed by Stanford University (22). We used two
different geometric datasets for mapping: the first
one composed by 15 million and the second 56 mil-
lion triangles. While in the first case it was possible
to keep the geometry in main memory (and perform
OOC mapping), in the second case both photo-
graphic and geometric data were accessed using
OOC structures.

As introduced previously, blending masks can be
reused to map an object at different resolution. We
generated the masks using the larger (56M trian-
gles) model and then used the data to apply color on
both (56M and 15M triangles). The time needed to
generate the OOC data necessary for color blending
was 30 minutes for the first dataset and 50 minutes
for the second one. The size on disk of the tempo-
rary data was, respectively, 3.6 GB and 6.2 GB for
pre- and post-restoration data.

The second phase, color blending and mapping
for the low resolution model, took 2.5 hours for
both datasets (in this phase, time is almost only
dependent on the number of function evaluation
performed). The time increased while mapping on
the larger dataset, since also the geometry was
stored OOC; mapping time was 12.5 hours for the
first dataset and 14 for the second. Moreover, the

increase in mapping time also follows the fact that
the mapped model is a multiresolution data struc-
ture (18) that contains a continuous LOD represen-
tation of the geometry (hence, many more vertices
to map).

The results are visible in Figure 8. There are still
parts without color, but this is caused by a lack
of photographic coverage and does not depend on
defects/bugs of the mapping process. These miss-
ing areas have been caused by the topology of the
statue, its size and the situation of the scaffolding,
that changed frequently over the course of restora-
tion, making it difficult both to plan the shoots and
to reproduce them correctly on site.

9. Open issues and future enhancements

One of the main problems in using calibrated
photos is that the quality of mapped color greatly
depends on the quality of camera calibration. If the
cameras are poorly calibrated the result will be a
blurred color information or, when sharp features
are present, ghosting effect (multiple copies of the
same feature). A simple strategy to detect local
misalignment when mapping the color can be to
consider the consistency of the various color can-
didates for the same point: if one sample is very
different with respect to the mean of the other
candidates, an image misalignment can be present.
However, to be effective, this consideration would
require many samples for each point; moreover, in
our case, this detection would be only detectable on
a per-point basis, making it very unreliable. More
complex strategies, like the one presented in our old
texture mapping paper by Rocchini et al.(23), will
require the availability of some form of topology for

Fig. 8. Details of the David with the two mapped datasets. Leftside: before restoration, Rightside: after restoration. (upper
part of head in the post restoration phase was not covered by the photographic campaign)

the 3D model, in order to correlate neighborhood
point misalignment and to apply an image-warping
process to correct the alignment. Unfortunately,
generating and storing topology for such large mod-
els is almost impossible. At the moment we have no
solution for this problem; if a misalignment artifact
is detected (blurriness and/or ghosting), the image
alignment is manually refined using our registration
tool and the mapping process is repeated. We plan
to make this iteration (color mapping - adjustment
- color mapping) more automatic, by sharing data
between the image alignment tool and the color
mapping tool.

A major problem when mapping photos onto a 3D
geometry is the presence of shadows and highlights.
For this reason an interesting goal could be to de-
tect parts of the image that need to be excluded be-
cause under shadow. Shadows have been widely an-
alyzed in literature for image and video processing
applications and several techniques for shadow de-
tection and removal have been developed in recent
years. Most of these techniques rely on color anal-
ysis. Suitable color models are exploited to classify
in-shadow pixels (24; 25). In general, geometric in-
formation of shadows are less used due to the fact
that the geometry depicted in the image is usually
unknown. Recently, Sato et al. (26) have addressed
the problem of estimating the illumination distri-
bution from images with known geometry and un-
known reflectance properties (which corresponds to
our cases). This method could be easily adapted to
our purposes: after the illumination distribution is
recovered, for each image, the pixels in shadow or
in an highlight can be identified with a good degree
of precision and a corresponding shadow/highlight
mask can be built. Following this idea the next ver-
sions of our photo blending system will account also

for this kind of artifacts.

Another open issue is how to deal with surface
sections not sampled by the photos, like the top of
the head of the David (post-restoration dataset).
Texture InPainting Approaches (27; 28) have been
recently proposed and can be adopted to synthesize
color information for unsampled regions.

A final issue is how to manage dataset where the
photo detail is sampled more densely than geometry.
Even when working with huge 3D models like the 56
Million triangles David, the number of vertices can
be still lower than the amount of available pixels. A
simple, brute-force refinement strategy (subdivide
all triangles to generate new vertices, thus accom-
modating more data) can solve the problem but will
increase the complexity of the geometric dataset. A
more interesting solution would be to refine selec-
tively the existing geometry only where there are
significant color changes. An even better solution
would be to store this refinement data (i.e., the col-
ors associated to the refined vertices) without refin-
ing explicitly the original geometry, but implement-
ing the refinement at the rendering stage, hopefully
finding proper support in the new features of future
programmable GPUs.

10. Conclusion

We have presented a framework for image blend-
ing and mapping onto 3D models. The system relies
on local and geometry-based per-pixel quality eval-
uation of the source images and a robust mapping
function. We showed that by using simple weight-
ing functions it is possible to take into account all
the typical problems related to the integration and
mapping of photographic datasets over scanned 3D
models. With this weighting mask we can efficiently

use all the redundancy present in the source images
to reduce illumination artifacts and incoherence be-
tween different images. We also show how it is possi-
ble to extend the basic system to overcome specific
dataset problems, like un-focused areas.

To demonstrate the capabilities of the proposed
approach, we tested it on various dataset proving its
robustness. To assess the possibility to manipulate
huge datasets, we selected some very large dataset
and applied the OOC version of the algorithm, ob-
taining high quality results in a reasonable time.

Aknowledgements. We would like to acknowledge
the contributions by Franca Falletti, the Director of
the Galleria dell’Accademia Museum and responsi-
ble for the David restoration. The David 3D model
is courtesy of the Digital Michelangelo Project,
Stanford University. The color images of the David
model have been produced by Rabatti and Domingie
Photographers and Galleria dell’Accademia, Flo-
rence, [taly. We gratefully acknowledge the financial
support of: “Friends of Florence” association (Flo-
rence), EU NoE IST-2002-507382 “EPOCH” and
the CNR Project “Fruizione - Tecniche di supporto
e modalita innovative”.

References

[1] P. Pingi, A. Fasano, P. Cignoni, C. Montani,
R. Scopigno, Exploiting the scanning sequence
for automatic registration of large sets of range
maps, Computer Graphics Forum 24 (3) (2005)
517-526.

[2] R. Tsai, A versatile camera calibration tech-
nique for high accuracy 3D machine vision
metrology using off-the-shelf TV cameras and
lenses, IEEE Journal of Robotics and Automa-
tion RA-3 (4).

[3] H. Lensch, W. Heidrich, H. Seidel, Automated
texture registration and stitching for real world
models, in: Proc. 8th Pacific Graphics 2000
Conf. on Computer Graphics and Application,
IEEE, Los Alamitos, CA, 2000, pp. 317-327.

[4] F.Dornaika, C. Garcia, Robust camera calibra-
tion using 2d to 3d feature correspondences, in:
Proceedings of the International Symposium
SPIE —Optical Science Engineering and In-
strumentation, Videometrics V, Volume 3174,
1997, pp. 123-133.

[6] T. Franken, M. Dellepiane, F. Ganovelli,
P. Cignoni, C. Montani, R. Scopigno, Mini-

[10]

[14]

[15]

[16]

mizing user intervention in registering 2d im-
ages to 3d models, The Visual Computer 21 (8-
10) (2005) 619-628, special Issues for Pacific
Graphics 2005.

E. Beauchesne, R. Roy, Automatic relighting
of overlapping textures of a 3d model, in: 2003
IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR
’03), Vol. 2, 2003, p. 166.

A. Sheffer, E. Praun, K. Rose, Mesh parameter-
ization methods and their applications, Foun-
dations and Trends in Computer Graphics and
Vision 2 (2) (2006) 105-171.

A. Bornik, K. Karner, J. Bauer, F. Leberl,
H. Mayer, High-quality texture reconstruction
from multiple views (2002).

P. Neugebauer, K. Klein, Texturing 3d mod-
els of real worls objects from multiple unregis-
tered photographic views, Computer Graphics
Forum (Eurographics’99 Proc.) 18 (3) (1999)
245-255.

M. Callieri, P. Cignoni, R. Scopigno, Recon-
structing textured meshes from multiple range
rgb maps, in: 7th Int.1 Fall Workshop on Vision,
Modeling, and Visualization 2002, IOS Press,
Erlangen (D), 2002, pp. 419-426.

L. Borgeat, G. Godin, F. Blais, P. Massi-
cotte, C. Lahanier, Gold: interactive display of
huge colored and textured models, ACM Trans.
Graph. 24 (3) (2005) 869-877.

Y. Yu, P. Debevec, J. Malik, T. Hawkins, In-
verse global illumination: recovering reflectance
models of real scenes from photographs, in:
A. Rockwood (Ed.), SIGGRAPH 99 Conf.
Proc., Annual Conf. Series, ACM SIGGRAPH,
Addison Wesley, 1999, pp. 215-224.

F. Bernardini, I. Martin, H. Rushmeier, High-
quality texture reconstruction from multiple
scans, IEEE Transactions on Visualization and
Computer Graphics 7 (4) (2001) 318-332.

A. Baumberg, Blending images for texturing
3d models, in: BMVC 2002, Canon Research
Center Europe, 2002.

V. Rankov, R. Locke, R. Edens, P. Barber,
B. Vojnovic, An algorithm for image stitch-
ing and blending, in: Proceedings of SPIE.
Three-Dimensional and Multidimensional Mi-
croscopy: Image Acquisition and Processing
XII, Vol. 5701, 2005, pp. 190-199.

K. Pulli, H. Abi-Rached, T. Duchamp,
L. Shapiro, W. Stuetzle, Acquisition and visu-
alization of colored 3d objects, in: Proceedings

[17]

[18]

23]

of ICPR 98, 1998, pp. 11,15.

M. Subbarao, T. Chio, A. Nikzad, Focusing
techniques, Optical Engineering 32 (11) (1993)
2824-2836.

P. Cignoni, F. Ganovelli, E. Gobbetti, F. Mar-
ton, F. Ponchio, R. Scopigno, Batched multi
triangulation, in: Proceedings IEEE Visualiza-
tion, IEEE Computer Society Press, Confer-
ence held in Minneapolis, MI, USA, 2005.

A. Agathos, R. B. Fisher, Colour texture fu-
sion of multiple range images., in: 3DIM, IEEE
Computer Society, 2003, pp. 139-146.

CIE, Commission Internationale de I’Eclairage
Proceedings, Cambridge University Press,
1931.

N. Bannai, A. Agathos, R. Fisher, Fusing mul-
tiple color images for texturing models, in:
3DPVTO04, 2004, pp. 558-565.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz,
D. Koller, L. Pereira, M. Ginzton, S. Ander-
son, J. Davis, J. Ginsberg, J. Shade, D. Fulk,
The digital michelangelo project: 3D scanning
of large statues, in: K. Akeley (Ed.), Siggraph
2000, Computer Graphics Proceedings, An-
nual Conference Series, ACM Press / ACM
SIGGRAPH / Addison Wesley Longman,
2000, pp. 131-144.

thesis and image inpainting, in: Computer
Graphics International (CGI 2003), IEEE,
Tokyo, Japan, 2003, pp. 120-125.

URLhttp://visinfo.zib.de/EV1ib/Show?EVL-2000-49

C. Rocchini, P. Cignoni, C. Montani,
R. Scopigno, Multiple textures stitching and
blending on 3d objects, in: D. Lischinsky,
G. Ward (Eds.), Rendering Techniques 99,
Springer-Verlag Wien, 1999, pp. 119-130.

T. Gevers, Reflectance-based classification of
color edges, in: 9th International Conference on
Computer Vision (ICCV’03), Vol. 2, 2003, p.
856.

E. Salvador, A. Cavallaro, T. Ebrahimi, Cast
shadow segmentation using invariant color fea-
tures, Computer Vision and Image Under-
standing 95 (2) (2004) 238-259.

I. Sato, Y. Sato, K. Ikeuchi, Illumination from
shadows, IEEE Transaction on Pattern Analy-
sis and Machine Intelligence 25 (3) (2003) 290—
300.

K. Zhou, X. Wang, Y. Tong, M. Desbrun,
B. Guo, H.-Y. Shum, Texturemontage: Seam-
less texturing of arbitrary surfaces from multi-
ple images, ACM Trans. Graph. 24 (3) (2005)
1148-1155.

H. Yamauchi, J. Haber, H.-P. Seidel, Image

restoration using multiresolution texture syn-

