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Abstract

We propose a new method for describing sharp features€dges and vertices) of implicitly defined surfaces. We a®rsan
initial implicitly defined surface, which is representedias zero set of £! smooth scalar field with non—vanishing gradients. In
order to represent sharp edges and vertices, this surfacgimented by adding new types of implicit representaticaited edge
descriptors and vertex descriptors. They are defined witthéip of the distance field of edge curves. In our implemantatve
use circular splines to describe these edge curves, siagestipport a fast and non-iterative closest point comprtati

After adding the edge and vertex descriptors to the initala field, the zero set of the augmented function conthiesharp
features. We apply the new representation to surface niogddly implicitly defined surfaces with sharp features anabect
reconstruction. In the latter case we describe an algorithirdetecting the sharp curves and vertices of a shape whighvén by
an unorganized point cloud, which are then approximatedroylar splines, in order to define the edge and vertex datscs.

Key words: Sharp features, circular spline, edge descriptor, surfameling, surface fitting

1. Introduction then combined using Boolean (or other) operations. If impli
itly defined surfaces are used for geometry reconstructim f
We consider implicitly defined surfaces, i.e., surfacescivhi unorganized point cloud data, then it is not always easy t fin
are described as the zero set @'asmooth scalar field. Implic- such a decomposition of the given data.
itly defined surfacesfier various advantages, such as the non- Even for more general representations, the extraction of
existence of the parameterization problem for scatterafita  sharp features from 3D data and the modeling of objects with
ting, repairing capabilities of incomplete data, and sienmber-  features is clearly an important and challenging proble®j.[3

ations of shape editing [33]. Difficulties arise due to the feature-insensitive sampling bed t
noise of the given data. Various approaches have been @mdpos
1.1. Related work to address this problem, mostly for surfaces which are dmesitr

by triangular meshes [2, 11, 36].

Different possibilities for representing the scalar field have In particular, the so-called bilateral filter for feature-
been explored in the literature. Besides polynomials [23, 3 preserving mesh denoising has been proposed [8, 12, 18, 34]
and piecewise polynomials [3], these representationsidtecl and it was also successfully used in our previous work [49]. |
discretized level sets [22, 41], scalar spline functions 6],  a recent paper, the fitting of Loop subdivision surfaces ta da
radial basis functions [7, 21], T-spline level sets [38,,8)bb-  sampled from objects with sharp features has been discussed
Trees [29] and hybrid representations obtained by blending in [16].
gebraic surfaces via radial basis functions [20]. Morepivés
easily possible to combine implicitly defined surfaces inags ~ 1.2. Our contribution
ways, e.g., by blending them together or by Boolean operatio  We propose a new approach for feature modelling and recon-
(CSG), see e.g. [4, 15, 23]. struction with implicitly defined surfaces. As the mairtdi-

Clearly, sharp features (i.e., edges and vertices) of onpli ence to the use of Boolean operations, our approach works wit
itly defined surfaces can be modelled by combining several imexplicit parametric representations of the curves whidinde
plicitly defined objects by Boolean operations. Howeveraas the sharp edges.
potential problem with this approach, the precise locatibn We assume that an initial surface is already available, kvhic
the sharp features is not explicitly available. This infation,  describes the desired geometry very well, except for thiaityc
which is extremely helpful for guiding polygonization algo of the sharp features. The features are then added to thet obje
rithms such as marching triangles [9], is only implicityreo by augmenting the underling scalar field with a novel implici
tained in the description of the initial objects. representation: edge descriptors and vertex descriptors.

This approach (via Boolean operations) also requires a de- Consequently, we decouple the description of the features
composition of the geometric objects into patches, whi@h arfrom the representation of the base geometry. We demoastrat
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the potential of the new representation for sharp featwekd  2.1. Implicitly defined surfaces
cussing shape modelling and the problem of surface reammstr  An implicitly defined surface is the zero level set
tion from unorganized point cloud data.

In the shape modeling part, given an initial implicitly defih Z(f)=110)={xe Q| f(x) = 0} 1)
surface, we define the edge descriptor functions usinginerta
spatial curves on thefiset surface. After adding the edge func-
tions to the initial surface, an augmented surface with shar et 4
edges at the spatial curves is obtained. By specifyinglsieita V! do€s notvanish if, then the surface is algf smooth.

range and magnitude functions of the edge descriptors, eve ar N many situations, the scalar fiefdis represented by a lin-
able to edit the sharp features on the new surface. ear combination of certain basis functions, such as radisisb

In the shape fitting part, an initial implicitly defined suéa functions, T-splines or products of univariate B-splinksthis

is generated by using an existing algorithm (the method ®f [1 paper we adopt the latter approach. Clearly, the edge niglell

14] in our case, but other methods can also be used). Then tI?(échniques described below can be used for other typeslaf sca

of a real function (a scalar field) : Q — R whereQ c R®is
the domain off. If f is aC* smooth function whose gradient

sharp edges and vertices in the initial surface are detésted |ell\(/|js, too. iselv. let

triangulation and edge decimation algorithm. We add theeedg ore precisely, le

descriptors, which are defined for the sharp edges and @sytic _ _ _

to this initial implicit function to get a new algebraic futin. ) = Z Grst Mi0a) Nj(2) Li(a), (2)

After an evolution process is used for fitting the edge curves Ik
this new function represents the sharp features well. wherex = (X1, X2, X3), be a trivariate tensor product spline func-
tion of tri-degree Y, n’, I’) with real codficientsd,s;. The do-
main Q is an axis-aligned box. The basis functioii;}",,
{Nj}?:l and{Lk}L=1 are B-splines of degre®’,n” andl’ with re-
spect to certain given knot sequences. The extremal caatsdin

, The remainc_ier of this paper is organized as fOIIOWS,' S€Cht the box are degree-fold boundary knots, and the innersknot
tion 2 summarizes the necessary background information CONyre chosen uniformly. The zero level s6¢f) will be called an
cerning implicitly defined surfaces and circular splinespéar- algebraic B-spline surface

ticular, we show that circular splines support a partidylsim- In order to simplify the notation, the cfiients and the basis
ple and dicient evaluation of the closest distance of a genera*unctions are gathered in two column vectors
query point to the curve.

The third section introduces implicitly defined edges and ve d = (..., dj,...)" andb(x) = (..., Mi(x))Nj(x2)Lk(X3),...)"
tices. Edge descriptors are defined with the help of therlista 3)
field of a given space curve, which is referred to as the edgeespectively. Then we can rewrifeas
curve. We analyze the smoothness of the edge descriptors and
show how to choose their free parameters. Further we address f(x) = d"b(x) (4)
the problem of blending several edge descriptors whose edge . .
curves share a common vertex. and the gradient of is the row vector

Section 4 discusses modelling with implicit surfaces. Be- of of of
sides adding regular features to existing smooth surfages, (VH) (%) = (67 v 67)
show how to obtain vertices with only two incoming edges, and Lo o
edges with “dead ends”, i.e., with end points within a smoothy 5 circular splines and distance computation

surface. L ) A circular arc inR® has the standardized rational Bézier rep-
The next section is devoted to the reconstruction of susface

. : ) resentation
with sharp features from unorganized point cloud data. We
_ (1= u)?bg + 2u(1 — u)wby + u?b,

briefly summarize an existing method for implicit surface fit W

ting and show how to generate edge and vertex descriptors by yiw = 1-u2+2ul-vw+uw2 °

fitting circular spline curves to the points which represtet ) ) o )

sharp features. The algorithm is illustrated by four exaspl with _the control pomtspi, whereb, lies in the bisector plane of
Finally we summarize this paper and conclude with suggest-he line segmertgh, i.e.,

tions for further research. IIbo — by|| = [Iby — bal. @)

1.3. Outline

= d"(Vh)(X). (5)

X

ue[0,1], (6)

The weightw satisfiesv = cosg, where

2. Preliminaries
2¢ = n — Z(bo, b1, b2) (8)

We recall the notion of implicitly defined surfaces and sum-is the sweep angle of the circular arc. We shall assume that th
marize the construction and rational spline represemtaticir- ~ sweep angle is less than Longer arcs are split into shorter
cular arc spline curves. segments.



A tangent continuous circular spline curge t — c(t) with 3. Implicitly defined edges and vertices
k segments, knotst,—()'j‘:O and domain = [to, t] is a sequence

of circular aTCS{Yj}'j‘:l of the form (6) with local parameters In order to_model the sharp feature; onan implicitly def.ined
surface, we introduce a new type of implicit representation
-t 9 edge descriptor functions.
Uj = —— 9)
tj — tj_1

3.1. Edge descriptors
which are pieced together with* cqntmwty. Consider & smooth space cune: | — R3with parameter
Compgred tp other represen_tauons of-space curves, such £3nd domain = [to,t1] < R, which is a collection o? seg-
polynomial splines, the use of circular splinégees various po- ments. This curve will be called theglge curveFor instanceg

tential ben_eﬂtg, such as th_e availability of an exa_ct_emgﬂle .. may be a circular spline curve, as described in Section 2. L
parameterization. As an important advantage, it is possibl

to perform closest point computation by a simple non-iteeat N = (xeR3: (1) (c(t) —x) = 0 13

method. ) ={ D c(t)- (c(t) - x) =0} (13)
More precisely, given a query poipt we want to find the  pe the normal plane of the edge curve@).

closest poinf = x(t*(p)) on the circular spline curve, where For any pointx € R3, lett* be the mapping which assigns to

_ x the parameter value of the closest poiniopn
t'(p) = argminfip — x(®)I (10)
t*(x) = arg min||x — c(t)]|. (14)
The shortest distance from a data point to the curve is the min tel
imum of the shortest distances to all arcs. Consider a fixe
circular arcy;, and letm; be its center. The parametemwhich
potentially realizes the shortest distance can be compaged
follows.

Q'he mapping* : R® — | defines a scalar field. Except for the
domain boundaries, t; of |, the level set* =t of this field is
contained in the normal plane(t).

In addition, leta: | — R andr : | — R be twoC* smooth

(1) We projectp orthogonally into the plane which contains functions defined on the same interval. They will be calles th
the arc,yj(t). The projected query point is denoted with magnitude functiomand theradius function respectively.

(2) If p° lies inside the sweep angle 9f(t), then the candi-
date values* of the global curve parameter are found by
computing the associated global parameter of the root(
of the equation

0= (P-m)yiw). weld  @n  9x= @000 (o) -lk-(eo )l 1s)

Definition 1. Theedge descriptor g which is determined by the
dge curves, the magnitude function a and the radius function
is the function

where the primédenotes the derivative with respect to the Where(y). = maxy, 0} forally e R.

local curve parametar;. Otherwise, the shortest distance o o4y function specifies the influence region of the

is not realized by this circular arc (but see the remark abouédge descriptor. The support of the edge descriptor cantain
open curves). ) i all pointsx whose distance to the edge curve does not exceed

(3) If a local candidate value of thg closest point parameteF(t*(X))_ The magnitude functioa controls the values of the
has been found, the corresponding value of the global Pa3sdge descriptor along the edge curve, which is equalrfo

rameter value is found as = tj-y + uj(tj - tj-a). The same idea has successfully been used for implicitly eefin
In the second step of the algorithm, we substitute (6) infg (1 Planar curves with sharp corners, see [39].
and get simply @juadraticequation We now analyze the smoothness of the edge descigptor

Let po denote the minimum curvature radius @f We as-
sume that the pipe surface with a certain constant radiugo,
which is closed by adding hemispherical caps at the two end
points of the curve (which are omitted in the case of closed
Since the sweep angle is assumed to be lesstithis equation  curves) does not have global self-intersections #2.be the in-
possesses a unique rapte [0, 1] terior of this pipe surface. The scalar field defined’big then

In order to keep the algorithm as simple as possible, we conmeontinuous irP.
pute the closest point by first finding the closest points In al  However, the scalar field defined byis not always dferen-
circular arcs, and then selecting the point with the minimumtiable. Discontinuities of the gradieRt* occur in the normal
distance among them. One may improve thiecency of the  planesN/(t) at points where is notC?.
algorithm by using a suitable hierarchy of bounding volumes  On the other hand, even in the presence of discontinuities of

In the case of an open spline curve, the closest point of théhe second derivative of the edge cucy¢he scalar field
given query poinp can also be one of the two boundary points.

Hence, the two end points have to be checked separately. X > [[X = (Co t)(X)|| (16)

0 = (p°-m))-[(1-uj)*w(bs - bo) +

+ ud-u) bz —bo) + Balb— byl (1P



which is defined by the closest distance of a pgitd the edge
curve, isC' smooth in the interioP of the pipe surface, except
for the points on the edge curve itself.

Finally, if h : | — R is anyC! smooth function whose first
derivative vanishes at the points wheris notC?, then fio t*)
is C! smooth inP. Consequently, the edge descriptpis C*
smooth in the interior of the pipe surface, except for thenfzoi
on the edge curve, provided that the first derivativea ahdr
vanish at the points where the edge curve is@fot

If the value of the radius function is smaller than the ragius
of the pipe surfacé®, then the support of is a subset of.
The edge descriptayis then globallyC?, except

(a) Data points

(b) Initial surfacg(f)

(1) for the points of the edge curve and

(2) for points in the normal plane¥(t) of the edge curve at
discontinuities of the second derivative.

Once again, if the derivatives @f andr vanish at the points
where the edge curweis notC?, then the latter discontinuities
of Vg are not present.

In the remainder of the paper we shall assume that the as
sumptionr < p regarding the radius function is always satis- (c) Edge curve (d) Final surfacg(F)

fied. Figure 1: By adding an edge descrip@to f, a sharp edge on the smooth

implicitly defined surfaceZ(f) is generated.
3.2. Implicitly defined edges

By adding an edge descriptor to the functibwhich defines

the surfaceZ(f), we obtain a new fun_cuoﬁ =1 +9. In value of the curve parametee |, let N(t) be the normal plane
order to model sharp features using this new function, we nee

fthe ed t th ioft), and ider th dient
to construct the curve(t) and choose suitable parametaiend of the edge curve at the poiatt), and consider the gradients
r for g. (VH(X) - c/(t) o

Ve F)X) = (VI)(X) - t 19
R (Vo ) = (THX - “oa=om=ec®  (@9)
a(t) = _( °2C)(t), (17)  of the restriction off to N/(t).
r
then the curve & c(t) lies on the surfac(F). Proposition 4. If the radius r of the edge descriptor g satisfies
Proof. Since every pointy = c(t) of the edge curve satisfies r(t) > ” 2(f o W)l (20)

(Ve P)(c)II”

f(co) then the surfac& (F) passes through(t) and the intersection
> =0 (18)  curve

c(t*(co)) = co, we get

F(co) = f(Co) + (a0 t*)(co) - 1* = f(Co) —

r
L(t) = Z(f) n N(t) (22)
of the surface and the normal plane possesses a corner point
Thus, by choosing the value afaccording to (17), one can with two tangent direction31(t) and T»(t), which are difer-
modify Z(f) such that it contains the edge curve. We demon-ent provided that the inequality is strictly satisfied. Qthise,
strate this observation in the following example. if (20)is violated, therc(t) is an isolated point of(t).

Consequently, the cunggt) is contained inZ(F).

Example 3. Fig. 1 shows a first example. The smooth im- Proof. We consider the restrictiorfs, f andg of F, f andg to
plicitly defined surface shown in (b) is an algebraic B-splin the normal planeV(t). In particular, we consider the surfaces
surface which was generated by approximating sample pointshich are defined by the graphs Bf f andg. The graph of
taken from two circular cones with common base (a). UsingF intersects the plane in the cury&t). The graph oy has a
an edge descriptor which is based on a single circle as tree edgingular point at(t), where it touches a circular cone with slope
curve (c), one obtains an implicitly defined surfagéf + g) |2ar|. On the other hand, the slopeatc(t) is [[(V ) f)(c(D)Il.
with a sharp edge (d). If the slope of the circular cone is smaller than the slopé,of

) then £ has a corner point with two directioig andT,. The
Next we analyze the behaviour of the surfaCéf + g) along inequality (20) is now obtained by using (17). 0
the edge curve. We shall assume that the magnitude function

a of the edge descriptor is chosen according to (17). For any We visualize this observation in the following example.
4



andB’]- which include a user-specified small anghith B; and
also contain the line (23).
Let 8 be the ball with radiu® > p and centew. The radius

R of the ball 8 is chosen such that the intersections of the

pipe surface$; around thev edge curves with the sphes&
;{%‘;E‘fe)z(gr'g;')szﬁg?fcfges are mutually disjoint. The blending half-planes dividestball
(red) with the normal plane intov primary WedgeSWJp a_ndv blending Weglges_/!/]b, where
N(t) atc(t) for different val-  the primary wedges contain the tangent directignand the
ues ofr. blending wedges contain the bisector half—plaags 8.

For each blending wedg#’®, we choose two blending func-
tions 8; andy; which are positive in the interior oW and
whose value and gradient vanish on one of the two blending
half—planes, respectively. For instance, one may choose th
squared linear equations describing the blending halfigda

_ o Definition 6. Thevertex descriptor g of the common vertex of
Example 5. Flg 2 shows the situation in the normal plane of the v edge curves with edge descripto}’mbtained by blend-

the edge curve. The green curve is the intersec0f) NN(t),  ing together the v edge descriptors,

and the red curves are the intersectiadd + g) N N(t) for

different values of the radius The radii are visualized by the gj(x) if x € (Wf

circles. If the radius is too small, the(t) is an isolated point. gx) =1 Bj(x) gj(x) + () gj+1(X) b (24)
For suficiently large values of, the value ofr controls the B, + ;%) fxe Wi

angle between the tangents at the cor{grwhich tends tor

whenr is increased. where j=1,...,v.

Due to the smoothness andferentiability ofg, the surface By adding the vertex descriptor to the scalar fiéldescrib-
Z(f +9) is C! smooth everywhere, except along the edge curvéng an initial implicit surfaceZ(f), we obtain a new scalar field
¢ and in the normal planes of the points wherés notC2.  whose zero set describes a surface with a vertex. More pre-
Moreover it can be shown that the two normals of the surfacé&isely, we definé= as
along the edge curve then depend continuously dnagain

v . i 3

provided that the edge curve 6f smooth. Fof)+] 2 gi(x) ifxeR*\B (25)
a(x) if xeB

3.3. Implicitly defined vertices and consider the resulting zero level $&tF). Clearly, it is

We extend the notion of edge descriptors to sharp vertices gfossible to add several vertex descriptors.
an object which is represented by an implicitly defined stefa The dfect of vertex descriptors is demonstrated in the fol-
To this end, we shall consider each such vertex as a poinewhelowing example.
several edge curves meet.

Suppose that is the common end point of the edge curves
{cj }‘j’:l, enumerated according to their adjacehaeyhere every
edge curve has an associated edge descriptdrett; be the
tangent vector of curve; atv, oriented such that it points away
from the vertex. We consider the half-planes which are spdnn  As an alternative, one might define vertex descriptors by re-
by the tangent directions and the gradient ftv, placing the distance to the edge curve on (15) with the minimu

distance to all edge curves. However, the latter distance-fu
Li={v+atj+u(VE)(v): LueR, 2>0.  (22)  tionis notC! smooth in the bisectors of the edge curves, and

) ) hence this definition gives vertices with additional “pramt
They intersect in the normal of the level s&{f — f(v)) of f edges.

through the vertex,

Example 7. We sampled the data points from the upper part of
an octahedron and fitted them with an algebraic B-spline sur-
face. After adding the edge and vertex descriptors, we ohtai
faithful reconstruction of the object, see Fig. 3.

v+u(VE)(V) . peR}. (23) 4. Modeling surfaces with sharp features

We denote the bisector half-plane of every two consecutive Given an implicitly defined surfacg(f), we model an im-
half-planes planek andL j,; with Bj, whereL ;1 = L1. For plicitly defined surface with sharp features by adding eduk a

each bisector half—plane we define two blending half-pla@es Vertex descriptors td, cf. (25). In order to obtainfacient
methods for evaluating the edge descriptor functions, weere

sent all edge curvet) by circular splines. For any query point,
1The curves are projected orthogonally in the plane with morgaf)(v) W€ can then e_aS”y find the CIOS_ESt p_omton_the edge curvgusin
throughv, and then ordered clockwise. the non-iterative method described in Section 2.2.




(a) initial surface (b) surface with circle feature

(a) data points Figure 4: Adding a circle feature to the catenoid.

(b) initial surface (c) surface with vertex

Figure 3: The #ect of a vertex descriptor for four edge curves meeting in a (a) initial surface (b) surface with swirl-shaped feature

vertex.
Figure 5: Adding an edge descriptor to the sphere.

Clearly, the circular splin_es are generally oiy §mooth, . In the second step, one can use any of the well-known tech-
and hence the edge descriptors have a non-continuous graﬂ?ques for circular spline generation, e.g., biarc intéapon

ent field not only along the edge curves, but also across th|f6 5,10, 17, 19, 24, 27, 35]. The performance of the method
nprmal planes of the edge curves.where the indiyidual aes adepends on the particular method for arc spline generation.
pieced together. However, according to our experiences:ith our implementation, which relies on equal chord biarc jper
fects of the latter gradient discontinuities are quite $raad lation, we achieve real-time performance. Due to spacedimi

can be ”69'e°ted- In addition, we choose the cir_cular spfrme tions, we do not describe any details of these methods.
lie approximately on fiset surfaces afZ(f) and with a radius

functionr which does not change much. Thus, bataindr are  Example 8. We present four examples for surface modeling

almost constant along the edge curves, which again redoees twith sharp features.

effects of the gradient discontinuities. 1. We add a circle-shaped feature to a surface of revolution
If required, these féects can further be decreased by choos-  which approximately represents a catenoid, see Fig. 4.

ing a circular spline with a larger number of segments, where 2. Starting from a sphere, we add a swirl-shaped feature to

the jumps of the second derivative are reduced. Clearlyefise this surface. The result is shown in Fig. 5. Since circular

a trade-@ between the f€ort of the closest point computation, splines are able to model exactly spherical curves, the edge

which increases with the number of segments, and fieets curve lies exactly on anftset surface of the initial sphere.

of the second derivative discontinuities, which decreagh w 3. We start from a p|pe surface with a circular Spine curve

the number of segments. and a linearly varying radius. The edge curve is chosen as
The method consists of three steps. a spiral curve on anftset surface. The initial surface and

the surface with the sharp feature are shown in Fig. 6.

4. The edge descriptor technique can also be applied to edges
with “dead ends”, i.e., to edges which start or end some-
where within a smooth surface. In this case, the edge curve
c starts or ends directly on the initial surfaggf), and the
radius functiorr vanishes at this point.

(1) We define circular splines which approximately lie dft o
set surfaces o (f).

(2) We choose the magnitude functions according to Lemma
2 and the radius functions either as a certain constant mul-
tiple of the dfsetting distance used in step 1 or such that

the edge possesses a pre-defined angle (¢2)., Similarly, one can model vertices with only two incoming
(3) We add the edge and vertex descriptors to the initiabscal edges. This does not require any adaptation of the concept

field f and evaluate the resulting implicitly defined surface of the vertex descriptor; it can be used as described in Sec-

Z(f). tion 3.3. Please note that the use of a @h-smooth edge



(a) initial surface V(f) (b) surface with twist feature

Figure 6: Adding a twist feature.

(a) initial surface

(b) surface with features

Figure 7: Edge and vertex descriptors for “dead ends” anticesrwith two
incoming edges

curve would not give the desired result, since the scalar
field is then not necessarily continuous, not even in a suf-

ficiently small neighborhood of the edge curve.

Generate a triangular mesty representingZ(f) using
a suitable triangulation algorithm, e.g., marching trian-
gles [9].

(2) Select the data poim{spis}i’\i 1 Which represent the sharp
features of the original shape from the input data points
by analyzing the dihedral angles of the m&Ghand the
distances between the input data points and the initial sur-
faceZ(f).

(3) Generate the initial circular spIineg and the associated

edge descriptorg?. Fit the points{pf}ﬁl representing the
features with circular spline{ﬂci}iN:1 and edge descriptors

{gi}i“il, whereN is the number of open and closed edge
curves.

(4) Generate the augmented scalar fieldy adding the edge
and vertex descriptors tb. The surfaceZ(f) represents
the object with the sharp features.

We shall now describe the individual steps in more detail.

5.2. Implicit surface fitting

Several techniques for reconstructing implicitly definad s
faces from unorganized point cloud data exist. As a major ad-
vantage compared to parametric representation, no atyxilé
rameterization of the data has to be generated. In our exaampl
we use the simple method which has been described in [13, 14],
which assumes that each ponis equipped with an associated
unit normaln;.

This method uses three main ingredients to build the objec-
tive function. First, the algebraic distance

N
L(d) = > [f(p)]? (26)
i=1

Starting from an initial surface describing a circular cone is used in order to measure the deviationZiff) to the given
we add a feature with two dead ends and with a vertex withdata. Second, the term

only two edges. The result is shown in Fig. 7.

5. Surface reconstruction

Given unorganized point data with associated normal infor

N
N(d) = )" IVE(p) - nill 27)
i=1

expresses the deviation between the surface and the given no

Malsn;. Third, we use the smoothing term

mation, we reconstruct an algebraic B-spline surface, fwtic
augmented by adding edge and vertex descriptors. We give an

outline of the method, describe the individual steps in nitere 54 :ff £2 062 L2 422 4 22 4 212 dxdvdz (28
tail and present several examples. @ in+ fopt Ta+ 2M5+ 2155 + 205 dxdy dz (28)
Q

5.1. Outline where the indicedj; indicate diferentiation with respect tg

We consider a given unorganized point clapg,, which  and Xj. By combining the three terms with user-specified pos-
is assumed to represent a shape with sharp features. The fitive weightsws, w», where 1> w; > w> > 0 we obtain the
lowing algorithm constructs an algebraic B-spline surfand  objective function
augments it with edge and vertex descriptors such that the im
plicitly defined surfaceZ(F) represents the shape. F(d) = L(d) + w1N(d) + w2G(d) — Min (29)
(1) Constructthe initial implicitly defined surfacg(f) by us-

ing an existing method to fit the input data poimg;}i’il.

Its minimization leads to a linear system with a symmetris-po
itive definite and sparse (due to the local support of B-gsljn



matrix which can be solvedigciently, e.g., using sparse direct to be isolated during the decimation: If the deletion of ageed
solvers. The solution gives the deientsd = (..., dijk,...)" would isolate one of the frozen points, then it is not allowed
of the initial algebraic B-spline surfacg(f). be deleted.

Since the marching triangulation method [9] is able to pro- For an open edge with two end points, one should freeze
duce a high-quality triangular mesh, we use this methode ge an arbitrary pair of two points in the corresponding coneéct
erate the mesh representatiog of the initial implicit surface  component off; realizing a maximum of the shortest distance
Z(f). Other polygonization methods (see e.g. [33]) can also béetween any two points ;. Similarly, for an open edge with

considered. one end point, one freezes a point which realizes a maximum
of the shortest distance to a skeletGnwhich was generated
5.3. Edge detection and decimation without freezing this point.

After generating the initial implicitly defined surface, we For instance, if an object has three edges with one common

need to detect the sharp features of the original shape. Moreéqd pointand one end point on the surface, then it will be mod-

precisely, we generate triangle strips representing theateres eled asdan OP‘;” edge ‘(’j\"th _tWO end points, combined with one
on the initial mesky, as follows. open edge with one end point.

(1) Project all the data poin{g;}Y, to the initial mesivo. 5.4. Edge curve fitting and triangulation
) ] First we define the “sharp” data points, which form the sub-
(2) Compute the dihedral angle of every edge in the m&sh et of the data points which corresponds to the featureseof th

If this angle exceeds a user-specified threshold, then wgpject. Two criteria are used. A poiptis said to be “sharp”, if
call the edge a sharp edge. If all three edges of a triangle

are sharp edges, we call the triangle a candidate triangle. (1) the Sampson distarfeé (p;)/II(V f)(p)Il exceeds a user—
defined threshold, and
(3) For every candidate triangle, we compute the average dis : ,
tance between the projected points in this triangle and thel?) the dihedral angle of the closest edgeptan 7o exceeds

associated data points. If this exceeds a user-specified ~2another user—defined threshold.

threshold, then we call the triangle a “sharp” triangle. Let we use a collection of circular splines to approximate the
71 be the mesh which consists of all sharp triangles. “sharp” data points. The topology of this spline networkés d
In the next step we generate skeletons of the n¥&gsh.e., termined by the_skeletdﬁz. : .
) The vertices in7> are all points with a valency other than
polygons which correspond to the sharp features. These-skel ; . :
! . -~ . two. We split the skeletof> into simple open polygons at these
tons are generate with the help of the following decimation """ . .
vertices. For each open polygon we generate a circularesplin
method. . . " .
using an adaptive method for least-squares fitting of ccul
(1) Mark the edges with at most one neighbouring triangle ircP!ines which is described in [30]. _ .
The method consists of two steps. First, an initial circular
71 as boundary edges. o . ) . . . .
spline is obtained by biarc interpolation of decimated icars
(2) If there exists a boundary edge 9n which has exactly of the open polygons. Second, an evolution process — which
one neighbouring triangle i, then delete this edge and corresponds to a Gauss-Newton type method for orthogonal
the triangle (but keep the remaining two edges). If all thesalistance regression — is used in order to reduce the approxi-
edges have been deleted, then continue with (1). If no suchnation error, by driving the circular spline curve to thegeir
boundary edge did exist, then continue with (3). point. This second step is coupled with an adaptive refinémen
procedure, which splits segments with large errors. Théuevo

(3) If there exists a boundary edgg with the property that  tjon process keeps all verticesdn as boundary points of the
one of its end points is not adjacent to any other boundary;rcylar splines.

edge, then delete this edge from. If all these bound- | order to define the edge descriptors, we choose the mag-
ary edges are deleted, then continue with (1). If no suchyitude function according to Lemma 2 and the radius function
boundary edge did exist, then continue with (4). depending on the distance to the initial surface, but suah th

: e inequality (20) is satisfied.
(4) If no boundary edges can be deleted, then the aIgonthrH1 . ) .
stops: the triangle strips have been decimated to poly- We define the augmented scalar fi€ldoy adding the edge

gonsT; and vertex descriptors tb. For visualizing the surfac&(f),
z we generate a polygonization using the marching triangudat

The result of this simple decimation method does not depenf€thod [9]. In order to get a triangulation of the surfaceckihi
on the order in which the edges are considered. preserves the features, we define the initial curve for tiast

Open edges on the surface (edges with one or two end pointdf!lation method as a polygon which has been sampled from the
are not yet contained ifi,, since the third step of the algorithm €d9€ curves. See also [1, 37] for more advanced polygoarzati
will shrink them. In order to prevent thisfect, one may freeze te€chniques forimplicit defined objects.
some of the points iff,. More precisely, steps 2 and 3 of the
algorithm are modified such that these points are not allowed 2The valuef (x)/||(V f)(x)|| approximates the Euclidean distance, cf. [28].
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(d) Final surface, close-up views of initial surface (top

(c) Skeletons of sharp triangles and close-up view right) and final surface (bottom right)

Figure 8: Example 9: Surface reconstruction with sharpfeatfrom a data set with 13k points.

Example 9. We consider a collection of 13k data points which  Figs. 9-11 present three additional examples. The comgutin
have been sampled from the surface of a deformed cube-shaptties for these examples, as well as for Example 9, are regbort
object with a circular hole, see Figure 8. The minimizationin Table 1. All computations were performed on a PC with a
of the objective function (28) gives the surface shown in (a) Pentium IV processor with 1.73GHz and 1.0GB RAM.

right, which does not yet contain the sharp features. A elose

up view of the triangulation is provided in (d), top right. &h

computation time for the fitting and the triangulation wa4 6 6. Conclusion

and 63 seconds on a standard PC, respectively.

We apply the sharp triangle detection to the triangular mesh , o qer 1o model sharp features with implicitly defined sur-

Of the initial surfage. _The mesfi; consisting of all “sharp” faces, we defined the new concept of edge and vertex descrip-

triangles is shown in Fig. 8b. o i tors. These are scalar fields which can be added to any smooth
As the next step we apply the decimation algorithm to th‘?mplicitly defined surface.

triangle meshes of “sharp triangles™. This leads to 12 open Their definition is based on the shortest distance of a query

polygons, which meet in 8 vertices, and 2 additional closed oint in space to a space curve. In order to be able to evaluate

po(ljygtonts,dseet F|g.t_80.” N(_T_tﬁ thai_ thed Iogatlct)_n oftthe vte_rtlce%is distance ficiently, we use circular splines as edge curve.
is detected automatically. The entire decimation (triartip In the case of circular splines, the closest point of a quegtp

ge;_e raélgn ﬁ nd Slt(r? Ieft.onllzatlor:t) tOIOk Iessﬂt}han Il second.. fcan be computed with a non-iterative method, simply by solv-
ig. 8d shows the final result, along with a close-up view o ing a quadratic equation.

the triangulation (bottom right). Using the concept of edge and vertex descriptors, the grecis
location of the edge curve is known and can be taken into ac-

number time (sec) count for the polygonization, e.g., by choosing this curvée
data ofpoints| Ts | Tt | Ta | Tc initial boundary curve in the marching triangulation aligfom.
C;i‘:]%eer ?’207103 613:‘81' 5'339 (?"(?8 cié)e Thus, it is possible to generate a triangulation of the augete
Double torus|| 4,352 | 5.2| 0.89|0.33| 1.9 surface which is compatible with the sharp features.
Fandisk 6475 [54] 0.7 ) 0.7 | 3.7 We also proposed a technique for modeling implicitly de-

fined surfaces with sharp features, and for reconstructiegt

Table 1: The execution times of the given examplds: initial surface re- from unorganlzed point cloud data. ) )
construction; T initial surface triangulation;Ty initial mesh decimation;T, As a matter of future work, one might try to improve the

circular spline (edge curve) fitting. reconstruction method, e.g., by developing automatic agsoi
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(c) Final surface

(a) Input data points

Figure 9: Reconstruction of a double
torus from 4,352 sample points (a). Ini-
tial surface (b,d) and final result (c,e). (d) Close-up view of (b) (e) Close-up view of (c)

(a) Input data points (b) Initial surface (c) Final surface

Figure 10: Reconstruction of a cylinder
from 3,270 sample points (a). Initial sur-
face (b,d) and final result (c,e). (d) Close-up view of (b) (e) Close-up view of (c)

(a) Input data points

ST
>
B
/

Figure 11: Reconstruction of the fandisk
model from 6,475 sample points (a). Ini-
tial surface (b,d) and final result (c,e). (d) Close-up view of (b) (e) Close-up view of (c)
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for the various user-defined parameters which take the tdvel [23]
noise in the data into account.

Other topics of interest include the use of other geometricm]
primitives as edge curves, preferably with higher orderitf d
ferentiability thanC! smoothness, and the speed up of the al{25]
gorithm for closest point computation, e.g., using a bongdi
volume hierarchy. In the case of the fitting procedure, even al?®!
dynamic hierarchy is required.

27
Acknowledgement. The authors were supported by the Aus-[ !
trian Science fund (FWF) through the national researchotw  [28]
S92, subproject 2. The work of Xinghua Song was partially
supported by the China Scholarship Council. [29]

References
(1]
[2]

(30]

S. Akkouche and E. Galin. Adaptive implicit surface pgyization using
marching trianglesComputer Graphics Forup20(2): 67-80, 2001.

M. Attene, B. Falcidieno, J. Rossignac, and M. Spagnudharpen &
Bend: Recovering curved sharp edges in triangle meshesigeddby
feature-insensitive samplinglEEE Transactions on Visualization and
Computer Graphicsl1(2):181-192, 2005.

C. Bajaj, J. Chen, and G. Xu. Free-form Surface Desigh wWipatches.
Proc. Graphics Interfacel74-181, 1994

L. Barthe, N. Dodgson, M. Sabin, B. Wyvill and V. Gaildratwo-
dimensional potential fields for advanced implicit modglioperators,
Computer Graphics Forun22(1):23-33, 2003.

U. Bauer and K. Polthier. Parametric reconstructioneftttube surfaces.
Proc. CyberWorld: Workshop on New Advances in Shape Asadysl
Geometric ModelinglEEE Press, 2007, 465-474.

K. M. Bolton. Biarc curvesComputer-Aided Desigr7:89-92, 1975.

J. C. Carr et al. Reconstruction and representation ofoB@cts with
radial basis functions. IRroc. SIGGRAPHpages 67-76, 2001.

S. Fleishman, 1. Drori, and D. Cohen-Or. Bilateral meghaising. ACM
Trans. Graph. (Proc. SIGGRAPH22(3):950-953, 2003.

E. Hartmann, A marching method for the triangulation offaces.The
Visual Computer13(3):95-108, 1998.

J. Hoschek. Circular spline€omputer-Aided Desigr24:611-618, 1992.
A. Hubeli and M. H. Gross. Multiresolution feature eattion from un-
structured meshes. Froc. of IEEE Visualization’0lpages 16-25, 2001.
T. Jones, F. Durand, and M. Desbrun. Non-iterativetuieapreserving
mesh smoothing.ACM Trans. Graph. (Proc. SIGGRAPH)2(3):943—
949, 2003.

B. Jittler. Least-squares fitting of algebraic splieves via normal vec-
tor estimation. IrProceedings of the 9th IMA Conference on the Mathe-
matics of Surfacepages 263-280, London, UK, 2000. Springer-Verlag.
B. Jittler, A. Felis. Least—squares fitting of algebigpline surfacesAd-
vances in Computational Mathematids/:135-152, 2002.

Q. Li, Smooth piecewise polynomial blending operasidior implicit
shapesComputer Graphics Forun26(2):157-171, 2007. [41]
R.T. Ling, W. Wang and D.M. Yan, Fitting Sharp Featureghw_oop
Subdivision SurfacesComputer Graphics ForurfProc. Symposium on
Geometry Processing), 27(5):1383-1391, 2008

D. S. Meek and D. J. Walton. Approximation of discreteaday G* arc
splines.Computer-Aided Desigr24:301-306, 1992.

A. Miropolsky and A. Fischer. Reconstruction with 3Dageetric bilat-

eral filter. In9th ACM Symposium on Solid Modeling and Applicatjons
pages 225-231, Genoa, Italy, 2004.

A. W. Nutbourne and R. R. Martiifferential geometry applied to curve
and surface design, Vol. Ellis Horwood, Chichester, 1988.

Y. Ohtake, A. Belyaev, M. Alexa, G. Turk and H. P. Seiddulti-level
partition of unity implicits. INnACM Transactions on Graphics (Proc. SIG-
GRAPH) 22(3):463-470, 2003.

Y. Ohtake, A. Belyaev, and H. P. Seidel. 3D scatterea daproximation

with adaptive compactly supported radial basis functiom&®roceedings

of Shape Modeling Internationgbages 31-39, 2004.

S. Osher and R. FedkiiLevel Set Methods and Dynamic Implicit Sur-
faces Springer Verlag, New York, 2002.

(31]

32
] (32]
[4] [33]

34
5] (34]

35
6] (35]
(7]
(8]
El

[10]
(11]

(36]

(37]

(38]
(12]

a3 [39]

(14] [40]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

[22]

11

G. Pasko, A. Pasko and T. Kunii, Bounded blending forction-basd
shape modellinglEEE Computer Graphics and Applicatiqng5(2):36-
45, 2005.

L. A. Piegl and W. Tiller. Data approximation using kiarEngineering
with Computers18:59-65, 2002.

V. Pratt. Direct least-squares fitting of algebraicfaces. InProc. SIG-
GRAPH pages 145-152, New York, NY, USA, 1987. ACM.

A. Raviv and G. Elber. Three dimensional freeform stalpvia zero sets
of scalar trivariate functions. IRroceedings of 5th ACM Symposium on
Solid Modeling and Applicationgpages 246-257, 1999.

M. A. Sabin. The use of circular arcs to form curves iptdated through
empirical data pointsBritish Aircraft Corporation VTO/MS/164, 1976.
P. D. Sampson. Fitting conic sections to very scattel@d: An iterative
refinement of the Bookstein algorithr@omputer Graphics and Image
Processing18:97-108, 1982.

R. Schmidt, B. Wyvill, M.C. Sousa, and J.A. Jorge. St&ipap: sketch-
based solid modeling with BlobTrees. 2md Eurographics Workshop on
Sketch-Based Interfaces and Modelisg—62, 2005.

X.H. Song, M. Aigner, F.L. Chen and B. Juttler. Ciraulspline fitting
using an evolution process, available as report no. 76 at vmaustrial-
geometry.gtechrep.php.

G. Taubin. Estimation of planar curves, surfaces, aodpianar space
curves defined by implicit equations with applications togedand
range image segmentatiofEEE Trans. Pattern Anal. Mach. Intell.
13(11):1115-1138, 1991.

W. B. Thompson, J. C. Owen, H. J. de St. Germain, S. RkSgd T. C.
Henderson. Feature-based reverse engineering of meahpaits.|EEE
Transactions on Robotics and Automatid2(1):57-66, 1999.

L. Velho, J. Gomes, and L. H. Figueiredmnplicit Objects in Computer
Graphics Springer Verlag, New York, 2002

C. Wang. Bilateral recovering of sharp edges on feaitisensitive sam-
pled mesheslEEE Transactions on Visualization and Computer Graph-
ics, 12(4):629-639, 2006.

W. Wang and B. Joe. Robust computation of the rotationimizing
frame for sweep surface modelirgomputer-Aided Desigh9:379-391,
1997.

K. Watanabe and A.G. Belyaev. Detection of salient atuxe features on
polygonal surfacesComputer Graphics Forum (Proc. Eurographics’01)
20(3):385-392, 2001.

B. Wyvill and K.V. Overveld. Polygonization of implitisurfaces with
constructive solid geometryournal of Shape Modelling2(4):257-274,
1996.

H. Yang, M. Fuchs, B. Jittler, and O. Scherzer. Evolif T-spline level
sets with distance field constraints for geometry recontitm and im-
age segmentation. Proceedings of Shape Modeling Internatiordges
247-252. |IEEE Press, 2006.

H. Yang and B. Jittler, Fitting Implicitly Defined Cugs to Unorganized
Points with Sharp Features, i@urve and Surface Design: Avignon 2006
P. Chenin, T. Lyche and L.L. Schumaker (eds.), NashborosPpmes
274-283, 2007.

H. Yang and B. Jittler. Evolution of T-spline Level Sé&r Meshing Non—
Uniformly Sampled and Incomplete Daithe Visual Compute4:435—
448, 2008.

H. K. Zhao, S. Osher, and R. Fedkiw. Fast surface recoctsbn using
the level set method. IRroc. IEEE Workshop on Variational and Level
Set Methodspages 194-201, 2001.



