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Abstract

We propose a new method for describing sharp features (i.e.,edges and vertices) of implicitly defined surfaces. We consider an
initial implicitly defined surface, which is represented asthe zero set of aC1 smooth scalar field with non–vanishing gradients. In
order to represent sharp edges and vertices, this surface isaugmented by adding new types of implicit representations,called edge
descriptors and vertex descriptors. They are defined with the help of the distance field of edge curves. In our implementation, we
use circular splines to describe these edge curves, since they support a fast and non-iterative closest point computation.

After adding the edge and vertex descriptors to the initial scalar field, the zero set of the augmented function contains the sharp
features. We apply the new representation to surface modelling by implicitly defined surfaces with sharp features and toobject
reconstruction. In the latter case we describe an algorithmfor detecting the sharp curves and vertices of a shape which is given by
an unorganized point cloud, which are then approximated by circular splines, in order to define the edge and vertex descriptors.
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1. Introduction

We consider implicitly defined surfaces, i.e., surfaces which
are described as the zero set of aC1 smooth scalar field. Implic-
itly defined surfaces offer various advantages, such as the non-
existence of the parameterization problem for scattered data fit-
ting, repairing capabilities of incomplete data, and simple oper-
ations of shape editing [33].

1.1. Related work

Different possibilities for representing the scalar field have
been explored in the literature. Besides polynomials [25, 31]
and piecewise polynomials [3], these representations include
discretized level sets [22, 41], scalar spline functions [14, 26],
radial basis functions [7, 21], T-spline level sets [38, 40], Blob-
Trees [29] and hybrid representations obtained by blendingal-
gebraic surfaces via radial basis functions [20]. Moreover, it is
easily possible to combine implicitly defined surfaces in various
ways, e.g., by blending them together or by Boolean operations
(CSG), see e.g. [4, 15, 23].

Clearly, sharp features (i.e., edges and vertices) of implic-
itly defined surfaces can be modelled by combining several im-
plicitly defined objects by Boolean operations. However, asa
potential problem with this approach, the precise locationof
the sharp features is not explicitly available. This information,
which is extremely helpful for guiding polygonization algo-
rithms such as marching triangles [9], is only implicitly con-
tained in the description of the initial objects.

This approach (via Boolean operations) also requires a de-
composition of the geometric objects into patches, which are

then combined using Boolean (or other) operations. If implic-
itly defined surfaces are used for geometry reconstruction from
unorganized point cloud data, then it is not always easy to find
such a decomposition of the given data.

Even for more general representations, the extraction of
sharp features from 3D data and the modeling of objects with
features is clearly an important and challenging problem [32].
Difficulties arise due to the feature-insensitive sampling and the
noise of the given data. Various approaches have been proposed
to address this problem, mostly for surfaces which are described
by triangular meshes [2, 11, 36].

In particular, the so–called bilateral filter for feature-
preserving mesh denoising has been proposed [8, 12, 18, 34]
and it was also successfully used in our previous work [40]. In
a recent paper, the fitting of Loop subdivision surfaces to data
sampled from objects with sharp features has been discussed
in [16].

1.2. Our contribution

We propose a new approach for feature modelling and recon-
struction with implicitly defined surfaces. As the main differ-
ence to the use of Boolean operations, our approach works with
explicit parametric representations of the curves which define
the sharp edges.

We assume that an initial surface is already available, which
describes the desired geometry very well, except for the vicinity
of the sharp features. The features are then added to the object
by augmenting the underling scalar field with a novel implicit
representation: edge descriptors and vertex descriptors.

Consequently, we decouple the description of the features
from the representation of the base geometry. We demonstrate
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the potential of the new representation for sharp features by dis-
cussing shape modelling and the problem of surface reconstruc-
tion from unorganized point cloud data.

In the shape modeling part, given an initial implicitly defined
surface, we define the edge descriptor functions using certain
spatial curves on the offset surface. After adding the edge func-
tions to the initial surface, an augmented surface with sharp
edges at the spatial curves is obtained. By specifying suitable
range and magnitude functions of the edge descriptors, we are
able to edit the sharp features on the new surface.

In the shape fitting part, an initial implicitly defined surface
is generated by using an existing algorithm (the method of [13,
14] in our case, but other methods can also be used). Then the
sharp edges and vertices in the initial surface are detectedby a
triangulation and edge decimation algorithm. We add the edge
descriptors, which are defined for the sharp edges and vertices,
to this initial implicit function to get a new algebraic function.
After an evolution process is used for fitting the edge curves,
this new function represents the sharp features well.

1.3. Outline

The remainder of this paper is organized as follows. Sec-
tion 2 summarizes the necessary background information con-
cerning implicitly defined surfaces and circular splines. In par-
ticular, we show that circular splines support a particularly sim-
ple and efficient evaluation of the closest distance of a general
query point to the curve.

The third section introduces implicitly defined edges and ver-
tices. Edge descriptors are defined with the help of the distance
field of a given space curve, which is referred to as the edge
curve. We analyze the smoothness of the edge descriptors and
show how to choose their free parameters. Further we address
the problem of blending several edge descriptors whose edge
curves share a common vertex.

Section 4 discusses modelling with implicit surfaces. Be-
sides adding regular features to existing smooth surfaces,we
show how to obtain vertices with only two incoming edges, and
edges with “dead ends”, i.e., with end points within a smooth
surface.

The next section is devoted to the reconstruction of surfaces
with sharp features from unorganized point cloud data. We
briefly summarize an existing method for implicit surface fit-
ting and show how to generate edge and vertex descriptors by
fitting circular spline curves to the points which representthe
sharp features. The algorithm is illustrated by four examples.

Finally we summarize this paper and conclude with sugges-
tions for further research.

2. Preliminaries

We recall the notion of implicitly defined surfaces and sum-
marize the construction and rational spline representation of cir-
cular arc spline curves.

2.1. Implicitly defined surfaces

An implicitly defined surface is the zero level set

Z( f ) = f −1(0) = {x ∈ Ω | f (x) = 0} (1)

of a real function (a scalar field)f : Ω → R whereΩ ⊆ R
3 is

the domain off . If f is aCk smooth function whose gradient
∇ f does not vanish inΩ, then the surface is alsoCk smooth.

In many situations, the scalar fieldf is represented by a lin-
ear combination of certain basis functions, such as radial basis
functions, T-splines or products of univariate B-splines.In this
paper we adopt the latter approach. Clearly, the edge modelling
techniques described below can be used for other types of scalar
fields, too.

More precisely, let

f (x) =
∑

i, j,k

drst Mi(x1) N j(x2) Lk(x3), (2)

wherex = (x1, x2, x3), be a trivariate tensor product spline func-
tion of tri-degree (m′, n′, l′) with real coefficientsdrst. The do-
main Ω is an axis-aligned box. The basis functions{Mi}

m
i=1,

{N j}
n
j=1 and{Lk}

l
k=1 are B-splines of degreem′,n′ andl′ with re-

spect to certain given knot sequences. The extremal coordinates
of the box are degree-fold boundary knots, and the inner knots
are chosen uniformly. The zero level setZ( f ) will be called an
algebraic B-spline surface.

In order to simplify the notation, the coefficients and the basis
functions are gathered in two column vectors

d = (. . . , di jk , . . .)⊤ andb(x) = (. . . ,Mi(x1)N j(x2)Lk(x3), . . .)⊤

(3)
respectively. Then we can rewritef as

f (x) = d⊤b(x) (4)

and the gradient off is the row vector

(∇ f ) (x) =

(

∂ f
∂x1
,
∂ f
∂x2
,
∂ f
∂x3

)
∣

∣

∣

∣

∣

∣

x

= d⊤(∇b)(x). (5)

2.2. Circular splines and distance computation

A circular arc inR
3 has the standardized rational Bézier rep-

resentation

y(u) =
(1− u)2b0 + 2u(1− u)ωb1 + u2b2

(1− u)2 + 2u(1− u)ω + u2
, u ∈ [0, 1], (6)

with the control pointsbi , whereb1 lies in the bisector plane of
the line segmentb0b2, i.e.,

‖b0 − b1‖ = ‖b1 − b2‖. (7)

The weightω satisfiesω = cosφ, where

2φ = π − ∠(b0, b1, b2) (8)

is the sweep angle of the circular arc. We shall assume that the
sweep angle is less thanπ. Longer arcs are split into shorter
segments.
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A tangent continuous circular spline curvec : t 7→ c(t) with
k segments, knots (t j)k

j=0 and domainI = [t0, tk] is a sequence

of circular arcs{y j}
k
j=1 of the form (6) with local parameters

u j =
t − t j−1

t j − t j−1
(9)

which are pieced together withC1 continuity.
Compared to other representations of space curves, such as

polynomial splines, the use of circular splines offers various po-
tential benefits, such as the availability of an exact arc-length
parameterization. As an important advantage, it is possible
to perform closest point computation by a simple non-iterative
method.

More precisely, given a query pointp, we want to find the
closest pointf = x(t∗(p)) on the circular spline curve, where

t∗(p) = arg min
t∈I
||p − x(t)|| (10)

The shortest distance from a data point to the curve is the min-
imum of the shortest distances to all arcs. Consider a fixed
circular arcy j , and letm j be its center. The parametert∗ which
potentially realizes the shortest distance can be computedas
follows.

(1) We projectp orthogonally into the plane which contains
the arcy j(t). The projected query point is denoted withp0.

(2) If p0 lies inside the sweep angle ofy j(t), then the candi-
date valuest∗ of the global curve parameter are found by
computing the associated global parameter of the root(s)
of the equation

0 = (p0 −m j) · y′j(u j), u j ∈ [0, 1], (11)

where the prime′ denotes the derivative with respect to the
local curve parameteru j. Otherwise, the shortest distance
is not realized by this circular arc (but see the remark about
open curves).

(3) If a local candidate value of the closest point parameter
has been found, the corresponding value of the global pa-
rameter value is found ast∗ = t j−1 + u j(t j − t j−1).

In the second step of the algorithm, we substitute (6) into (11)
and get simply aquadraticequation

0 = (p0 −m j) · [(1 − u j)2ω(b1 − b0) +
+ u j(1− u j) (b2 − b0) + u2

j ω(b2 − b1)]. (12)

Since the sweep angle is assumed to be less thanπ, this equation
possesses a unique rootu j ∈ [0, 1]

In order to keep the algorithm as simple as possible, we com-
pute the closest point by first finding the closest points in all
circular arcs, and then selecting the point with the minimum
distance among them. One may improve the efficiency of the
algorithm by using a suitable hierarchy of bounding volumes.

In the case of an open spline curve, the closest point of the
given query pointp can also be one of the two boundary points.
Hence, the two end points have to be checked separately.

3. Implicitly defined edges and vertices

In order to model the sharp features on an implicitly defined
surface, we introduce a new type of implicit representations:
edge descriptor functions.

3.1. Edge descriptors

Consider aC1 smooth space curvec : I → R
3 with parameter

t and domainI = [t0, t1] ⊂ R, which is a collection ofC2 seg-
ments. This curve will be called theedge curve. For instance,c
may be a circular spline curve, as described in Section 2.2. Let

N(t) = {x ∈ R
3 : c′(t) · (c(t) − x) = 0} (13)

be the normal plane of the edge curve atc(t).
For any pointx ∈ R

3, let t∗ be the mapping which assigns to
x the parameter value of the closest point onc,

t∗(x) = arg min
t∈I
||x − c(t)||. (14)

The mappingt∗ : R
3 → I defines a scalar field. Except for the

domain boundariest0, t1 of I , the level sett∗ = t of this field is
contained in the normal planeN(t).

In addition, leta : I → R andr : I → R be twoC1 smooth
functions defined on the same interval. They will be called the
magnitude functionand theradius function, respectively.

Definition 1. Theedge descriptor g which is determined by the
edge curvec, the magnitude function a and the radius function
r is the function

g : x 7→ (a ◦ t∗)(x) ·
(

(r ◦ t∗)(x)) − ||x − (c ◦ t∗)(x)||
)2

+
(15)

where(y)+ = max{y, 0} for all y ∈ R.

The radius functionr specifies the influence region of the
edge descriptor. The support of the edge descriptor contains
all pointsx whose distance to the edge curve does not exceed
r(t∗(x)). The magnitude functiona controls the values of the
edge descriptor along the edge curve, which is equal toa r2.
The same idea has successfully been used for implicitly defined
planar curves with sharp corners, see [39].

We now analyze the smoothness of the edge descriptorg.
Let ρ0 denote the minimum curvature radius ofc. We as-

sume that the pipe surface with a certain constant radiusρ ≤ ρ0,
which is closed by adding hemispherical caps at the two end
points of the curve (which are omitted in the case of closed
curves) does not have global self-intersections. LetP be the in-
terior of this pipe surface. The scalar field defined byt∗ is then
continuous inP.

However, the scalar field defined byt∗ is not always differen-
tiable. Discontinuities of the gradient∇t∗ occur in the normal
planesN(t) at points wherec is notC2.

On the other hand, even in the presence of discontinuities of
the second derivative of the edge curvec, the scalar field

x 7→ ||x − (c ◦ t∗)(x)|| (16)
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which is defined by the closest distance of a pointx to the edge
curve, isC1 smooth in the interiorP of the pipe surface, except
for the points on the edge curve itself.

Finally, if h : I → R is anyC1 smooth function whose first
derivative vanishes at the points wherec is notC2, then (h ◦ t∗)
is C1 smooth inP. Consequently, the edge descriptorg is C1

smooth in the interior of the pipe surface, except for the points
on the edge curve, provided that the first derivatives ofa andr
vanish at the points where the edge curve is notC2.

If the value of the radius function is smaller than the radiusρ
of the pipe surface∂P, then the support ofg is a subset ofP.
The edge descriptorg is then globallyC1, except

(1) for the points of the edge curve and

(2) for points in the normal planesN(t) of the edge curve at
discontinuities of the second derivative.

Once again, if the derivatives ofa and r vanish at the points
where the edge curvec is notC2, then the latter discontinuities
of ∇g are not present.

In the remainder of the paper we shall assume that the as-
sumptionr ≤ ρ regarding the radius function is always satis-
fied.

3.2. Implicitly defined edges

By adding an edge descriptor to the functionf which defines
the surfaceZ( f ), we obtain a new functionF = f + g . In
order to model sharp features using this new function, we need
to construct the curvec(t) and choose suitable parametersa and
r for g.

Lemma 2. If

a(t) = −
( f ◦ c)(t)

r2
, (17)

then the curve t7→ c(t) lies on the surfaceZ(F).

Proof. Since every pointc0 = c(t) of the edge curve satisfies
c(t∗(c0)) = c0, we get

F(c0) = f (c0) + (a ◦ t∗)(c0) · r2 = f (c0) −
f (c0)
r2

r2 = 0. (18)

Consequently, the curvec(t) is contained inZ(F).

Thus, by choosing the value ofa according to (17), one can
modifyZ( f ) such that it contains the edge curve. We demon-
strate this observation in the following example.

Example 3. Fig. 1 shows a first example. The smooth im-
plicitly defined surface shown in (b) is an algebraic B-spline
surface which was generated by approximating sample points
taken from two circular cones with common base (a). Using
an edge descriptor which is based on a single circle as the edge
curve (c), one obtains an implicitly defined surfaceZ( f + g)
with a sharp edge (d).

Next we analyze the behaviour of the surfaceZ( f +g) along
the edge curve. We shall assume that the magnitude function
a of the edge descriptor is chosen according to (17). For any

(a) Data points (b) Initial surfaceZ( f )

(c) Edge curve (d) Final surfaceZ(F)

Figure 1: By adding an edge descriptorg to f , a sharp edge on the smooth
implicitly defined surfaceZ( f ) is generated.

value of the curve parametert ∈ I , letN(t) be the normal plane
of the edge curve at the pointc(t), and consider the gradients

(∇N(t) f )(x) = (∇ f )(x) −
(∇ f )(x) · c′(t)

c′(t) · c′(t)
c′(t) (19)

of the restriction off toN(t).

Proposition 4. If the radius r of the edge descriptor g satisfies

r(t) ≥
2|( f ◦ c)(t))|
‖(∇N(t) f )(c(t))‖

, (20)

then the surfaceZ(F) passes throughc(t) and the intersection
curve

L(t) = Z( f ) ∩ N(t) (21)

of the surface and the normal plane possesses a corner point
with two tangent directionsT1(t) and T2(t), which are differ-
ent provided that the inequality is strictly satisfied. Otherwise,
if (20) is violated, thenc(t) is an isolated point ofL(t).

Proof. We consider the restrictions̄F, f̄ andḡ of F, f andg to
the normal planeN(t). In particular, we consider the surfaces
which are defined by the graphs of̄F, f̄ and ḡ. The graph of
F̄ intersects the plane in the curveL(t). The graph of ¯g has a
singular point atc(t), where it touches a circular cone with slope
|2ar|. On the other hand, the slope of̄f atc(t) is ‖(∇N(t) f )(c(t))‖.
If the slope of the circular cone is smaller than the slope off̄ ,
thenL has a corner point with two directionsT1 andT2. The
inequality (20) is now obtained by using (17).

We visualize this observation in the following example.
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Figure 2: Intersection curves
ofZ( f ) (green) andZ( f +g)
(red) with the normal plane
N(t) at c(t) for different val-
ues ofr .

Example 5. Fig. 2 shows the situation in the normal plane of
the edge curve. The green curve is the intersectionZ( f )∩N(t),
and the red curves are the intersectionsZ( f + g) ∩ N(t) for
different values of the radiusr. The radii are visualized by the
circles. If the radius is too small, thenc(t) is an isolated point.
For sufficiently large values ofr, the value ofr controls the
angle between the tangents at the cornerc(t) which tends toπ
whenr is increased.

Due to the smoothness and differentiability ofg, the surface
Z( f +g) is C1 smooth everywhere, except along the edge curve
c and in the normal planes of the points wherec is not C2.
Moreover it can be shown that the two normals of the surface
along the edge curvec then depend continuously ont, again
provided that the edge curve ofC2 smooth.

3.3. Implicitly defined vertices

We extend the notion of edge descriptors to sharp vertices of
an object which is represented by an implicitly defined surface.
To this end, we shall consider each such vertex as a point where
several edge curves meet.

Suppose thatv is the common end point of the edge curves
{c j}

v
j=1, enumerated according to their adjacency1, where every

edge curve has an associated edge descriptorg j. Let t j be the
tangent vector of curvec j atv, oriented such that it points away
from the vertex. We consider the half-planes which are spanned
by the tangent directions and the gradient off atv,

L j = {v + λt j + µ(∇ f )(v) : λ, µ ∈ R, λ > 0}. (22)

They intersect in the normal of the level setZ( f − f (v)) of f
through the vertexv,

{v + µ(∇ f )(v) : µ ∈ R}. (23)

We denote the bisector half–plane of every two consecutive
half-planes planesL j andL j+1 with B j , whereL v+1 = L 1. For
each bisector half–plane we define two blending half–planesBl

j

1The curves are projected orthogonally in the plane with normal (∇ f )(v)
throughv, and then ordered clockwise.

andBr
j which include a user-specified small angleθ with B j and

also contain the line (23).
LetB be the ball with radiusR > ρ and centerv. The radius

R of the ballB is chosen such that the intersections of thev
pipe surfacesP j around thev edge curves with the sphere∂B
are mutually disjoint. The blending half–planes divide this ball
into v primary wedgesWp

j andv blending wedgesWb
j , where

the primary wedges contain the tangent directionst j and the
blending wedges contain the bisector half–planesB j ∩ B.

For each blending wedgeWb
j , we choose two blending func-

tions β j andγ j which are positive in the interior ofWb
j and

whose value and gradient vanish on one of the two blending
half–planes, respectively. For instance, one may choose the
squared linear equations describing the blending half–planes.

Definition 6. Thevertex descriptor ḡ of the common vertex of
the v edge curves with edge descriptors gj is obtained by blend-
ing together the v edge descriptors,

ḡ(x) =























g j(x) if x ∈ Wp
j

β j(x) g j(x) + γ j(x) g j+1(x)

β j(x) + γ j(x)
if x ∈ Wb

j

, (24)

where j= 1, . . . , v.

By adding the vertex descriptor to the scalar fieldf describ-
ing an initial implicit surfaceZ( f ), we obtain a new scalar field
whose zero set describes a surface with a vertex. More pre-
cisely, we defineF as

F = f (x) +

{
∑v

j=1 g j(x) if x ∈ R
3 \ B

ḡ(x) if x ∈ B
(25)

and consider the resulting zero level setZ(F). Clearly, it is
possible to add several vertex descriptors.

The effect of vertex descriptors is demonstrated in the fol-
lowing example.

Example 7. We sampled the data points from the upper part of
an octahedron and fitted them with an algebraic B-spline sur-
face. After adding the edge and vertex descriptors, we obtain a
faithful reconstruction of the object, see Fig. 3.

As an alternative, one might define vertex descriptors by re-
placing the distance to the edge curve on (15) with the minimum
distance to all edge curves. However, the latter distance func-
tion is notC1 smooth in the bisectors of the edge curves, and
hence this definition gives vertices with additional “phantom”
edges.

4. Modeling surfaces with sharp features

Given an implicitly defined surfaceZ( f ), we model an im-
plicitly defined surface with sharp features by adding edge and
vertex descriptors tof , cf. (25). In order to obtain efficient
methods for evaluating the edge descriptor functions, we repre-
sent all edge curvesc(t) by circular splines. For any query point,
we can then easily find the closest point on the edge curve using
the non-iterative method described in Section 2.2.
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(a) data points

(b) initial surface (c) surface with vertex

Figure 3: The effect of a vertex descriptor for four edge curves meeting in a
vertex.

Clearly, the circular splines are generally onlyC1 smooth,
and hence the edge descriptors have a non-continuous gradi-
ent field not only along the edge curves, but also across the
normal planes of the edge curves where the individual arcs are
pieced together. However, according to our experiences, the ef-
fects of the latter gradient discontinuities are quite small and
can be neglected. In addition, we choose the circular splines to
lie approximately on offset surfaces ofZ( f ) and with a radius
functionr which does not change much. Thus, botha andr are
almost constant along the edge curves, which again reduces the
effects of the gradient discontinuities.

If required, these effects can further be decreased by choos-
ing a circular spline with a larger number of segments, where
the jumps of the second derivative are reduced. Clearly, there is
a trade-off between the effort of the closest point computation,
which increases with the number of segments, and the effects
of the second derivative discontinuities, which decrease with
the number of segments.

The method consists of three steps.

(1) We define circular splines which approximately lie on off-
set surfaces ofZ( f ).

(2) We choose the magnitude functions according to Lemma
2 and the radius functions either as a certain constant mul-
tiple of the offsetting distance used in step 1 or such that
the edge possesses a pre-defined angle (e.g.,π/2).

(3) We add the edge and vertex descriptors to the initial scalar
field f and evaluate the resulting implicitly defined surface
Z( f ).

(a) initial surface (b) surface with circle feature

Figure 4: Adding a circle feature to the catenoid.

(a) initial surface (b) surface with swirl-shaped feature

Figure 5: Adding an edge descriptor to the sphere.

In the second step, one can use any of the well-known tech-
niques for circular spline generation, e.g., biarc interpolation
[6, 5, 10, 17, 19, 24, 27, 35]. The performance of the method
depends on the particular method for arc spline generation.In
our implementation, which relies on equal chord biarc interpo-
lation, we achieve real-time performance. Due to space limita-
tions, we do not describe any details of these methods.

Example 8. We present four examples for surface modeling
with sharp features.

1. We add a circle-shaped feature to a surface of revolution
which approximately represents a catenoid, see Fig. 4.

2. Starting from a sphere, we add a swirl-shaped feature to
this surface. The result is shown in Fig. 5. Since circular
splines are able to model exactly spherical curves, the edge
curve lies exactly on an offset surface of the initial sphere.

3. We start from a pipe surface with a circular spine curve
and a linearly varying radius. The edge curve is chosen as
a spiral curve on an offset surface. The initial surface and
the surface with the sharp feature are shown in Fig. 6.

4. The edge descriptor technique can also be applied to edges
with “dead ends”, i.e., to edges which start or end some-
where within a smooth surface. In this case, the edge curve
c starts or ends directly on the initial surfaceZ( f ), and the
radius functionr vanishes at this point.
Similarly, one can model vertices with only two incoming
edges. This does not require any adaptation of the concept
of the vertex descriptor; it can be used as described in Sec-
tion 3.3. Please note that the use of a non–C1–smooth edge
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(a) initial surface V(f) (b) surface with twist feature

Figure 6: Adding a twist feature.

(a) initial surface (b) surface with features

Figure 7: Edge and vertex descriptors for “dead ends” and vertices with two
incoming edges

curve would not give the desired result, since the scalar
field is then not necessarily continuous, not even in a suf-
ficiently small neighborhood of the edge curve.
Starting from an initial surface describing a circular cone,
we add a feature with two dead ends and with a vertex with
only two edges. The result is shown in Fig. 7.

5. Surface reconstruction

Given unorganized point data with associated normal infor-
mation, we reconstruct an algebraic B-spline surface, which is
augmented by adding edge and vertex descriptors. We give an
outline of the method, describe the individual steps in morede-
tail and present several examples.

5.1. Outline

We consider a given unorganized point cloud{pi}
N
i=1, which

is assumed to represent a shape with sharp features. The fol-
lowing algorithm constructs an algebraic B-spline surfaceand
augments it with edge and vertex descriptors such that the im-
plicitly defined surfaceZ(F) represents the shape.

(1) Construct the initial implicitly defined surfaceZ( f ) by us-
ing an existing method to fit the input data points{pi}

N
i=1.

Generate a triangular meshT0 representingZ( f ) using
a suitable triangulation algorithm, e.g., marching trian-
gles [9].

(2) Select the data points{ps
i }

N
i=1 which represent the sharp

features of the original shape from the input data points
by analyzing the dihedral angles of the meshT0 and the
distances between the input data points and the initial sur-
faceZ( f ).

(3) Generate the initial circular splinesc0
i and the associated

edge descriptorsg0
i . Fit the points{ps

i }
N
i=1 representing the

features with circular splines{ci}
N
i=1 and edge descriptors

{gi}
N
i=1, whereN is the number of open and closed edge

curves.

(4) Generate the augmented scalar fieldF by adding the edge
and vertex descriptors tof . The surfaceZ( f ) represents
the object with the sharp features.

We shall now describe the individual steps in more detail.

5.2. Implicit surface fitting

Several techniques for reconstructing implicitly defined sur-
faces from unorganized point cloud data exist. As a major ad-
vantage compared to parametric representation, no auxiliary pa-
rameterization of the data has to be generated. In our example
we use the simple method which has been described in [13, 14],
which assumes that each pointpi is equipped with an associated
unit normalni .

This method uses three main ingredients to build the objec-
tive function. First, the algebraic distance

L(d) =
N

∑

i=1

[ f (pi)]
2 (26)

is used in order to measure the deviation ofZ( f ) to the given
data. Second, the term

N(d) =
N

∑

i=1

‖∇ f (pi) − ni‖
2 (27)

expresses the deviation between the surface and the given nor-
malsni . Third, we use the smoothing term

G(d) =
∫∫∫

Ω

f 2
11+ f 2

22+ f 2
33+2 f 2

12+2 f 2
13+2 f 2

23 dxdydz (28)

where the indicesfi j indicate differentiation with respect toxi

andx j . By combining the three terms with user-specified pos-
itive weightsω1, ω2, where 1> ω1 > ω2 > 0 we obtain the
objective function

F(d) = L(d) + ω1N(d) + ω2G(d)→ Min (29)

Its minimization leads to a linear system with a symmetric pos-
itive definite and sparse (due to the local support of B-splines)
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matrix which can be solved efficiently, e.g., using sparse direct
solvers. The solution gives the coefficientsd = (. . . , di jk , . . .)⊤

of the initial algebraic B-spline surfaceZ( f ).
Since the marching triangulation method [9] is able to pro-

duce a high-quality triangular mesh, we use this method to gen-
erate the mesh representationT0 of the initial implicit surface
Z( f ). Other polygonization methods (see e.g. [33]) can also be
considered.

5.3. Edge detection and decimation

After generating the initial implicitly defined surface, we
need to detect the sharp features of the original shape. More
precisely, we generate triangle strips representing thesefeatures
on the initial meshT0, as follows.

(1) Project all the data points{pi}
N
i=1 to the initial meshT0.

(2) Compute the dihedral angle of every edge in the meshT0.
If this angle exceeds a user-specified threshold, then we
call the edge a sharp edge. If all three edges of a triangle
are sharp edges, we call the triangle a candidate triangle.

(3) For every candidate triangle, we compute the average dis-
tance between the projected points in this triangle and the
associated data points. If this exceeds a user-specified
threshold, then we call the triangle a “sharp” triangle. Let
T1 be the mesh which consists of all sharp triangles.

In the next step we generate skeletons of the meshT0, i.e.,
polygons which correspond to the sharp features. These skele-
tons are generate with the help of the following decimation
method.

(1) Mark the edges with at most one neighbouring triangle in
T1 as boundary edges.

(2) If there exists a boundary edge inT1 which has exactly
one neighbouring triangle inT1, then delete this edge and
the triangle (but keep the remaining two edges). If all these
edges have been deleted, then continue with (1). If no such
boundary edge did exist, then continue with (3).

(3) If there exists a boundary edgeT1 with the property that
one of its end points is not adjacent to any other boundary
edge, then delete this edge fromT1. If all these bound-
ary edges are deleted, then continue with (1). If no such
boundary edge did exist, then continue with (4).

(4) If no boundary edges can be deleted, then the algorithm
stops; the triangle strips have been decimated to poly-
gonsT2.

The result of this simple decimation method does not depend
on the order in which the edges are considered.

Open edges on the surface (edges with one or two end points)
are not yet contained inT2, since the third step of the algorithm
will shrink them. In order to prevent this effect, one may freeze
some of the points inT2. More precisely, steps 2 and 3 of the
algorithm are modified such that these points are not allowed

to be isolated during the decimation: If the deletion of an edge
would isolate one of the frozen points, then it is not allowedto
be deleted.

For an open edge with two end points, one should freeze
an arbitrary pair of two points in the corresponding connected
component ofT1 realizing a maximum of the shortest distance
between any two points inT1. Similarly, for an open edge with
one end point, one freezes a point which realizes a maximum
of the shortest distance to a skeletonT2 which was generated
without freezing this point.

For instance, if an object has three edges with one common
end point and one end point on the surface, then it will be mod-
eled as an open edge with two end points, combined with one
open edge with one end point.

5.4. Edge curve fitting and triangulation
First we define the “sharp” data points, which form the sub-

set of the data points which corresponds to the features of the
object. Two criteria are used. A pointpi is said to be “sharp”, if

(1) the Sampson distance2 f (pi)/||(∇ f )(pi)|| exceeds a user–
defined threshold, and

(2) the dihedral angle of the closest edge topi in T0 exceeds
another user–defined threshold.

We use a collection of circular splines to approximate the
“sharp” data points. The topology of this spline network is de-
termined by the skeletonT2.

The vertices inT2 are all points with a valency other than
two. We split the skeletonT2 into simple open polygons at these
vertices. For each open polygon we generate a circular spline
using an adaptive method for least-squares fitting of circular
splines which is described in [30].

The method consists of two steps. First, an initial circular
spline is obtained by biarc interpolation of decimated versions
of the open polygons. Second, an evolution process – which
corresponds to a Gauss-Newton type method for orthogonal
distance regression – is used in order to reduce the approxi-
mation error, by driving the circular spline curve to the target
point. This second step is coupled with an adaptive refinement
procedure, which splits segments with large errors. The evolu-
tion process keeps all vertices inT2 as boundary points of the
circular splines.

In order to define the edge descriptors, we choose the mag-
nitude function according to Lemma 2 and the radius function
depending on the distance to the initial surface, but such that
the inequality (20) is satisfied.

We define the augmented scalar fieldF by adding the edge
and vertex descriptors tof . For visualizing the surfaceZ( f ),
we generate a polygonization using the marching triangulation
method [9]. In order to get a triangulation of the surface which
preserves the features, we define the initial curve for this trian-
gulation method as a polygon which has been sampled from the
edge curves. See also [1, 37] for more advanced polygonization
techniques for implicit defined objects.

2The valuef (x)/||(∇ f )(x)|| approximates the Euclidean distance, cf. [28].
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(a) Input data points and initial surface (b) Strips of sharptriangles and close-up view

(c) Skeletons of sharp triangles and close-up view
(d) Final surface, close-up views of initial surface (top

right) and final surface (bottom right)

Figure 8: Example 9: Surface reconstruction with sharp features from a data set with 13k points.

Example 9. We consider a collection of 13k data points which
have been sampled from the surface of a deformed cube-shaped
object with a circular hole, see Figure 8. The minimization
of the objective function (28) gives the surface shown in (a),
right, which does not yet contain the sharp features. A close-
up view of the triangulation is provided in (d), top right. The
computation time for the fitting and the triangulation was 6.4
and 6.3 seconds on a standard PC, respectively.

We apply the sharp triangle detection to the triangular mesh
of the initial surface. The meshT1 consisting of all “sharp”
triangles is shown in Fig. 8b.

As the next step we apply the decimation algorithm to the
triangle meshes of “sharp triangles”. This leads to 12 open
polygons, which meet in 8 vertices, and 2 additional closed
polygons, see Fig. 8c. Note that the location of the vertices
is detected automatically. The entire decimation (triangle strip
generation and skeletonization) took less than 1 second.

Fig. 8d shows the final result, along with a close-up view of
the triangulation (bottom right).

number time (sec)
data of points Ts Tt Td Tc

Cube 13,013 6.4 6.3 0.9 2.0
Cylinder 3,270 1.8 0.39 0.08 0.86

Double torus 4,352 5.2 0.89 0.33 1.9
Fandisk 6,475 5.4 0.7 0.7 3.7

Table 1: The execution times of the given examples.Ts: initial surface re-
construction;Tt initial surface triangulation;Td initial mesh decimation;Tc

circular spline (edge curve) fitting.

Figs. 9-11 present three additional examples. The computing
times for these examples, as well as for Example 9, are reported
in Table 1. All computations were performed on a PC with a
Pentium IV processor with 1.73GHz and 1.0GB RAM.

6. Conclusion

In order to model sharp features with implicitly defined sur-
faces, we defined the new concept of edge and vertex descrip-
tors. These are scalar fields which can be added to any smooth
implicitly defined surface.

Their definition is based on the shortest distance of a query
point in space to a space curve. In order to be able to evaluate
this distance efficiently, we use circular splines as edge curve.
In the case of circular splines, the closest point of a query point
can be computed with a non-iterative method, simply by solv-
ing a quadratic equation.

Using the concept of edge and vertex descriptors, the precise
location of the edge curve is known and can be taken into ac-
count for the polygonization, e.g., by choosing this curve as the
initial boundary curve in the marching triangulation algorithm.
Thus, it is possible to generate a triangulation of the augmented
surface which is compatible with the sharp features.

We also proposed a technique for modeling implicitly de-
fined surfaces with sharp features, and for reconstructing them
from unorganized point cloud data.

As a matter of future work, one might try to improve the
reconstruction method, e.g., by developing automatic choices
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(a) Input data points (b) Initial surface (c) Final surface

Figure 9: Reconstruction of a double
torus from 4,352 sample points (a). Ini-
tial surface (b,d) and final result (c,e). (d) Close-up view of (b) (e) Close-up view of (c)

(a) Input data points (b) Initial surface (c) Final surface

Figure 10: Reconstruction of a cylinder
from 3,270 sample points (a). Initial sur-
face (b,d) and final result (c,e). (d) Close-up view of (b) (e) Close-up view of (c)

(a) Input data points (b) Initial surface (c) Final surface

Figure 11: Reconstruction of the fandisk
model from 6,475 sample points (a). Ini-
tial surface (b,d) and final result (c,e). (d) Close-up view of (b) (e) Close-up view of (c)
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for the various user-defined parameters which take the levelof
noise in the data into account.

Other topics of interest include the use of other geometric
primitives as edge curves, preferably with higher order of dif-
ferentiability thanC1 smoothness, and the speed up of the al-
gorithm for closest point computation, e.g., using a bounding
volume hierarchy. In the case of the fitting procedure, even an
dynamic hierarchy is required.
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