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Abstract

We introduce WarpCurves, a technique for interactively manipulating an implicit surface using curve-based spatial deformations.
Although implicit surfaces have several advantages in 3D modeling, current workflows are limited by the compositional nature of
implicit modeling. Wide classes of surface features that are easy to create with the direct manipulation tools available for explicit
surface representations are difficult to reproduce using volumetric implicit operations. We describe a novel spatial deformation
that can be used to approximate direct surface manipulation. With our method an artist first draws a curve on the current surface
to indicate the feature region-of-interest. Deformations applied to this handle curve are transferred to the implicit surface via
an automatically-constructed C2 continuous space mapping. Additional curves can be added in a hierarchical manner to create
complex shapes. Our technique is implemented as a node in the BlobTree hierarchical implicit volume representation, and hence
can be used along with other volumetric nodes (operators) such as blending and CSG. Our results show that surface deformations
which would be difficult to reproduce using existing volumetric operations can be quickly constructed using warp curves, making
them a valuable addition to the implicit modeling toolbox.
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1. Introduction

Implicit surfaces offer several modeling advantages com-
pared to parametric and point-sampled representations [5].
Since blending and CSG operators can be defined with simple
formulations, smooth transitions and topological changes can
be easily handled. By organizing these operators in a hierar-
chical structure called the BlobTree [37], complex solid models
can be created. Tools like ShapeShop [27] have demonstrated
that even novice users are capable of creating 3D models with
implicit surfaces.

Despite these benefits, volumetric implicit modeling requires
the artist to think in terms of shape composition, rather than
surface manipulation. While composition is suitable for creat-
ing initial forms, direct manipulation of the 3D surface can be
much more efficient when attempting to refine the shape, al-
ter features, and add details. Schmidt & Singh [25] noted that
artists preferred explicit representations for such tasks, but their
mesh-based ”Surface Tree” is incompatible with implicit op-
erators. Hence, our goal is to enable explicit manipulation of
implicit surfaces.

To integrate into the BlobTree functional hierarchy we must
treat the input surface as a ”black box”, so direct manipula-
tion must be formulated as a spatial deformation. Furthermore,
unlike with point-based surfaces the ”reverse” deformation is
required [38], and should be very efficient to compute if it is to
be used in interactive contexts. Several space warp techniques
have been developed for implicit surfaces [21, 38, 23, 28], but
these cannot be easily adapted to the task of surface manipula-
tion. Recently Sugihara et al [33] described a space deformer

based on a curve handle which can approximate small surface
deformations, but no attempt is made to have the surface explic-
itly track the curve.

We present WarpCurves, a curve-based spatial deformation
technique which can be used to apply local and global deforma-
tions to implicit models, including approximate direct manipu-
lation of an implicit surface. Our interface is inspired by curve-
based deformation techniques such as Wires [31] and Fiber-
Mesh [19]. Similar to FiberMesh, warp curves can be placed
by sketching on the surface and can be manipulated using peel-
ing techniques [12]. As the artist modifies the warp curves, our
method constructs appropriate inverse warps which result in the
surface approximately tracking the curve. These C2 continuous
variational warps are automatically bounded to limit their spa-
tial influence. We demonstrate our techniques with the Blob-
Tree [37], but the general approach is applicable to any implicit
(or explicit) surface. The resulting spatial deformation can be
integrated as a node in the BlobTree, allowing blending and
CSG operators to be applied before or after deformation (Fig-
ure 1). Our contributions can be summarized as follows:

• A novel and flexible curve-based spatial deformation tech-
nique which can be integrated into procedural implicit
modeling as an operator node.

• An artist-oriented curve-based interface supporting direct
manipulation of implicit surfaces.

• A new technique to automatically bound the influence of
curve-based spatial deformations.
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Figure 1: An overview of the WarpCurves tool. The implicit point primitive (a) is deformed using 3 warp curves to create facial features (b). Soft-CSG operators
are then used to add eyes and a mouth, and the ears are added with blending operators (c).

2. Related Work

Deformation has a long history in computer graphics, so we
restrict our review to spatial and curve-based deformation. For
a more detailed overview of the deformation literature, we refer
the reader to recent surveys of the area [18, 10, 32].

A well known artist-oriented deformation technique is free-
form deformation (FFD), which is based on spatial deforma-
tion, originally introduced by [29]. Conceptually, the target
object is embedded in a 3D grid or lattice, which is used to
define a deformation field. As the artist manipulates the control
points of the lattice, the embedded surface is deformed. Several
extensions have been developed to make a 3D lattice more con-
trollable [7, 16, 20]. Implicit fields are also used as deformation
fields of FFD [8], although the target object of this technique is
limited to point-based surfaces.

Recently, cage-based methods have been proposed which
embed the target object within an arbitrary non-convex poly-
hedral cage, and then generate a spatial deformation based on
deformations of the cage [14, 13, 15, 3]. The cage is a closed
surface and typically a coarse mesh of the target object is used.
Thus, a cage is geometrically and topologically more flexible
than a lattice as a deformation controller. In general, FFD-style
techniques provide simple and intuitive control over spatial de-
formation, but it is difficult to control changes to the surface, as
the target object is not edited directly. Also, they are designed
for point-based surfaces and do not easily extend into the im-
plicit domain.

Curve-based techniques are often more efficient when adding
or modifying surface features via deformation. The Wires sys-
tem [31] binds the target object with several curves called Wires
and then constructs a bounded spatial deformation according to
the displacements of the Wires. This approach is highly in-
teractive, easy to incorporate into procedural models, and in-
tuitive for artists, and hence is used extensively in commercial
modeling tools. Since the Wires can be aligned with important
features of the target object, it is easy to directly manipulate
specific parts of the surface. This idea has been extended to
edit man-made objects while automatically preserving salient
features (iWIRES [11]). In sketch-based modeling, curves are
also used to define the features of the free-form surfaces [19].

All of these techniques provide efficient, artist-oriented inter-
faces, and have inspired our approach, however they are limited
to point-based surface representations because they are difficult
and/or inefficient to invert.

Sculpting interfaces can also be used to deform surfaces.
Swirling Sweepers [1] and zero-divergence vector field defor-
mation [36] are efficient and highly intuitive tools for direct ma-
nipulation of discrete 3D surfaces. These techniques can be
applied to functional surfaces, but involve a relatively expen-
sive path integration for each point. During interactive sculpt-
ing this cost is amortized over many frames, but in the implicit
context each evaluation of the scalar field would require a pro-
hibitively expensive reverse-integration along the entire path. A
recent curve-based sculpting technique for level-set models [9]
has similar limitations, and also involves a temporal component
in the form of per-frame partial differential equation (PDE) evo-
lution. In this case the result is not strictly a spatial deformation
and cannot be directly applied to functional implicit models.

To be applied to an arbitrary implicit surface, a deforma-
tion must be formulated as a spatial deformation and the ”in-
verse warp” (the map from the deformed to initial surface) is
required. Early work adapted the Barr deformations [2] for sev-
eral implicit representations such as the function-representation
(FRep) [21], skeletal implicit surfaces [38], and the Blob-
Tree [37]. The work of Wyvill and van Overveld [38] also pre-
sented deformation fields suitable for animation, such as those
which squash or stretch implicit models as they pass through the
field. A variational warp was applied to implicit surfaces in [24]
and this technique was incorporated into a general framework
for FRep deformations called extended space mapping [23]. A
deformation field is constructed by interpolating the displace-
ments of control points. Since this technique interpolates an
arbitrary set of control points, the control points can be placed
on the important features of the target object. Due to a global
feature of the variational technique, however, local influence
cannot be guaranteed. A more controllable deformation tech-
nique for FRep was developed by [28] which defines another
FRep object as a deformation field. However, such deforma-
tion fields must be defined manually by the artist, which is time
consuming and can be unpredictable. Also, because the inverse
warp is required, defining deformation fields is more compli-
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Figure 2: The WarpCurves interface. A curve can be placed anywhere on the surface by sketching (a). The artist can grab a vertex of the curve and drag it to the
desirable place parallel to the screen, and accordingly the implicit model is deformed (b). Multiple curves can be used at the same time by simply sketching another
curve (c). Several vertices can be manipulated in one curve (d). In our interface, when the cursor touches a curve, it becomes a hand and the curve is available to be
edited. The cursor becomes a cross during dragging. The selected curve becomes red while the other curves are blue.

cated than the deformation techniques which can be applied to
point-based surfaces.

Recently an FFD-style deformation for implicit surfaces was
described in which the artist manipulates a curve handle, which
in turn guides the automatic construction of a variational de-
formation field [33]. If a surface curve is used this approach
can provide the appearance of local control over the surface,
but the deformation is based on regular 3D lattice and so the
deforming surface often will not track the curve handle, and
larger deformations inevitably become global warps. In addi-
tion, to achieve real-time performance a coarse approximation
was necessary. The techniques we present do not share these
limitations.

3. Overview

The WarpCurves interface is modeled after FiberMesh [19]
as shown in Figure 2. The artist first draws a polyline curve
on the portion of the surface which is to be manipulated. The
curve can be modified by pulling or pushing individual vertices.
The translation of a vertex is transferred to the rest of the curve
based on the peeling technique proposed by Igarashi et al [12],
which automatically specifies the deformation region of interest
(ROI) based on the maximum displacement of the vertex during
the interaction. Essentially, as the control vertex is pulled fur-
ther and further, a correspondingly larger portion of the curve
adjacent to the control vertex is deformed. As the curve is ma-
nipulated, the surface is modified accordingly by a WarpCurve
spatial deformation. The ROI of this deformation is also deter-
mined according to how far the artist pulls the curve. Hence,

the WarpCurves tool allows the artist to interact with an im-
plicit model as if editing the surface directly, but creates this
effect by deforming the underlying scalar field of the implicit
model (Figure 3).

Figure 3: The scalar fields before (a) and after (b) deformation. These scalar
fields are sampled from a slice along a plane and the fields which store the field
values greater than the iso-value are marked in red. As a curve is manipulated,
the system deforms the underlying scalar field of the implicit point primitive
and then renders the iso-surface of the deformed scalar field (b).

WarpCurve deformations are designed to be used as an oper-
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ator which can be incorporated into procedural implicit model-
ing, as shown in Figure 1. To accomplish this, we implemented
an interactive WarpCurves tool within ShapeShop [27], which
is a sketch-based modeling system that uses the BlobTree hier-
archical implicit volume representation [37]. The BlobTree can
represent complex models defined by a tree of primitives and
composition operators. The primitives are stored at the leaves
and combined at the interior nodes using composition operators
such as blending and CSG. A warp node is generally defined as
a unary node which takes a scalar field as input and generates
a deformed scalar field as output. We also represent our curve-
based deformation as a unary node, a Warp composition node
which constructs and applies the spatial deformation to its in-
put. The Warp node stores a WarpCurve as the control curve
for the deformation. To ensure interactivity, cache nodes [26]
are inserted above the constructed Warp nodes. Note that if
several WarpCurve operations are applied in the same region of
space, the most straightforward structure with one Warp node
per curve cannot guarantee that all curves remain on the surface
(Figure 4). To address this problem we introduce a HybridWarp
node in Section 4, which integrates multiple deformations so
that the surface tracks all the input curves.

Figure 4: The hybrid warp node. In the current BlobTree structure, the first
drawn curve does not have influence when the second drawn curve constructs
deformation (a). By using a HybridWarp node introduced in Section 4 in the
BlobTree, both of the curves can affect the deformation (b).

As the artist manipulates the input curves, the Warp node
constructs two types of fields, the deformation field and the
bounding field, and combines them to create a spatial deforma-
tion. The deformation field is an inverse warp computed from
the displacements of the curves. We construct the deformation
field using the variational warp technique [24, 6] because it can
interpolate an arbitrary set of displacements with C2 continuity.
Since the variational technique has global influence (Figure 5a),
however, we also construct a bounding field to restrict the warp
to a local region. Application of the bounding field is similar to
the bounded blending technique [22], however there the artist
had to manually define a bounding field using primitive com-
position. The Warp node automatically constructs a bounding
field using the stored WarpCurve as a skeleton. The bounding
field has the structure of a skeletal primitive, where the scalar
field drops off from 1 to 0 as distance to the skeleton increases.
By applying the bounding field to the deformation field, the in-
fluence of the warp smoothly decays away from the input curve,
and there is no influence at all outside the bounding field (Fig-
ure 5b). Mathematically, the scalar field fM′ of the deformed

implicit model can be defined as follows:

fM′ (p) = fM(p + fbounding(p) · D(p)) (1)

where fM is the scalar field of the original implicit model, p is
a sample 3D point, fbounding : R3 → R is the bounding field,
and D : R3 → R3 is the deformation field. In the implicit do-
main, deformation is realized by displacing the sample points
instead of deforming the scalar field itself. The deformation
field D returns the displacement of a point p, and the displace-
ment is then modulated by the bounding field fbounding which
returns a scalar value [0, 1]. Note that this deformation field is
actually the ”reverse” deformation, so the sum takes p from its
deformed to undeformed position. The constructions of the de-
formation field D and the bounding field fbounding are described
in Section 5 and Section 6 respectively.

Figure 5: The curve constructs the deformation field. Since the deformation
field has global influence, however, undesirable artifacts appear in (a). By ap-
plying the bounding field, the influence can be localized inside the bounding
field (b). The bounding field is visualized with a transparent surface.

4. Hybrid Warp Node

Our deformation is represented by a composition node in the
BlobTree, a unary Warp node which stores a WarpCurve as
the deformation parameter (see Figure 6a). When the tree is
traversed for a particular point p in space, the WarpCurve is
used to determine the displacement of p, and then the child of
the Warp node is evaluated using this new position, yielding a
scalar value. The problem with this structure is that once the
warp is applied, the WarpCurve does not have influence if there
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are subsequent deformations, and as a result the curve handle
can become detached from the surface (Figure 6a). While this
may be desirable in some cases, in others the artist may find it
confusing.

Figure 6: The BlobTree model without (a) and with (b) the HybridWarp node.
In a HybridWarp node, the WarpCurves of the Warp nodes in the subtree are
considered when applying the final Warp, so all the descendant curves remain
on the surface. In this figure, a green box represents a Warp node where a
WarpCurve is stored on the right side and the warp result is shown on the left
side.

To deal with this problem we can optionally define a Hybrid-
Warp node when multiple curves are applied. A HybridWarp
node is a type of ”super-node” that encapsulates multiple Warp
nodes. Essentially, we do not modify the BlobTree structure,
but the WarpCurves of the descendent Warp nodes in the sub-
tree of a Warp node also work as constraints if the descendent
Warp nodes are contained in the same HybridWarp node. An
example of a HybridWarp node is shown in Figure 6b. In our
implementation, we assume that if the artist applies multiple
WarpCurve actions in sequence, the behavior of a HybridWarp
node is intended, and so one is automatically added (Figure 7a).
Any two sequentially-constructed Warp nodes are grouped into
the same HybridWarp node, and as additional WarpCurves are
added, they are added into this HybridWarp node. If another
implicit modeling operator is applied, its node is inserted above
the HybridWarp node and the HybridWarp is considered to be
complete. Of course, the artist is also free to explicitly modify
the tree, grouping or breaking up Warp nodes into HybridWarp
nodes.

Evaluation of a HybridWarp node involves a special traver-
sal, in which the descendant Warp nodes are processed sequen-
tially. Conceptually, after each deformation is applied, we want

the next deformation to preserve the position of all descendant
warp curves. The traversals of two- and three-child Hybrid-
Warp nodes are illustrated in Figure 7b, and performed as fol-
lows:

1. A Warp node WN is evaluated.
2. The subtree of WN is traversed until a node other than a

Warp node is found.
3. The system recognizes that the traversed subtree is in a Hy-

bridWarp node and returns the WarpCurves within the Hy-
bridWarp node to WN. We call the returned WarpCurves
indirect warp curves specified with pink arrows in Figure 7
while the stored WarpCurve of WN is a direct warp curve.

4. A deformation field D and bounding field fbounding are con-
structed using the direct warp curve and the indirect warp
curves, and Equation 1 is evaluated in WN.

Figure 7: An example BlobTree structure with HybridWarp nodes (a). Two
HybridWarp nodes are defined yet they do not have relationship, because an-
other type of node is applied between the two HybridWarp nodes. (b) shows
an example of traversing a HybridWarp node. When WN2 is evaluated, WC1 is
returned to WN2 as an indirect warp curve and deformation is constructed using
WC1 and WC2.

5. Deformation Field

In this section, we describe how to construct a deformation
field D of Equation 1 using the direct warp curve and the indi-
rect warp curves at each Warp node. A deformation field takes
a sample point as input and returns the displacement as output.
Since this deformation warps sample points in the scalar field
of the original implicit model instead of warping the scalar field
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itself, the deformation field is an inverse warp (Figure 8). To
create such a field, we interpolate the “negative” displacement
vectors at each vertex of a curve. We denote the constraints for
the interpolation as (vi,−di), where di is the displacement vec-
tor stored at a vertex vi of a curve. This interpolation technique
is described in Section 5.2. To enhance the deformation behav-
iors, we also define additional constraints along a curve. We call
such constraints off-curve constraints. Since the indirect warp
curves do not have displacements at the evaluated Warp node,
zero displacements are assigned as their constraints which are
denoted as (vi, 0) and do not have off-curve constraints. Zero
displacements can prevent deformation of space in the assigned
regions.

Figure 8: The deformation process of implicit surfaces. When a curve is edited
(a), the system constructs a deformation field D which is an inverse warp. In
(b), when a sample point p is evaluated, the deformation field D displaces p
to q = p + D(p) and the field value of q is returned. (c) is the result of this
deformation.

5.1. Defining Off-Curve Constraints
We define 4 off-curve constraints oci to each vertex vi of a

curve and assign them zero displacements (oci, 0) to ensure that
the amount of displacements decreases from the curve. Two of
the off-curve constraints are placed along the normalized dis-
placement vector d̂i of vi. The other off-curve constraints are
along the orthogonal vector to d̂i and the curve. The 4 off-curve
constraints are then defined as follows:

oci =

{
vi ± ∆li · d̂i

vi ± ∆li · (d̂i × T (vi))
(2)

where ∆li is the distance between vi and oci, T is the trajectory
of a curve. Since a curve is a 3D polyline composed of several
vertices, T (vi) can be found by calculating (vi+1 − vi) + (vi −

vi−1) and normalizing it. ∆li varies depending on the length of
the displacement vector di. The longer the length of di is, the
longer ∆li we set in order to increase the ROI. From several
experiments we use 2‖di‖ as ∆li. The locations of the off-curve
constraints are illustrated in Figure 9.

Off-curve constraints sometimes cause a displacement inter-
polation error, particularly when ∆li is long or the shape of a
curve is sharp. That is because some of the off-curve con-
straints may intersect each other. To filter out such off-curve
constraints, we find the shortest distance from an off-curve con-
straint oci to each vertex of a curve. If the ratio of the shortest
distance and ∆li (the distance between oci and its parent vertex
vi) is smaller than the tolerance, we filter oci out. We choose as
the tolerance ratio 2/3 which is also used in ShapeShop [27] to

Figure 9: The locations of the off-curve constraints. 4 offset-curve constraints
oci are added to each vertex vi of a curve along the normalized displacement
vector d̂i and the trajectory of the curve T (vi) (a). ∆li is proportional to the
length of the displacement di (b).

filter constraints during variational scalar field construction. A
deformation field is constructed using the remaining off-curve
constraints and the constraints at the curve vertices.

5.2. Variational Warp
We construct a deformation field using the variational warp

technique [24, 6], which has the advantage of interpolating an
arbitrary set of constraints with C2 continuity. This interpolant
is fit to the constraints placed at vertices of the direct and in-
direct warp curves, and the off-curve constraints of the direct
warp curve. As described above, the off-curve constraints and
the constraints of the indirect warp curves store zero vectors
as displacements, preventing deformation of space in these re-
gions. A deformation field D is then defined in terms of con-
straints (vi,−di):

D(p) =

m∑
i=1

wiϕ(‖p − vi‖) + P(p) (3)

where p is a 3D sample point, m is the number of constraints,
ϕ(r) = r3, and P(p) = pxc1 + pyc2 + pzc3 + c4. The weights wi ∈

R3 and coefficients c1, c2, c3, and c4 ∈ R3 can be calculated
by solving a dense linear system defined by the evaluation of
Equation 3 at each known solution D(vi) = −di. A reasonable
deformation field with a sufficient number of constraints can be
maintained at interactive rates despite the O(N3) computational
cost of the linear solve (see Section 7.1 for the performance
details).

Since the variational technique has global influence, undesir-
able deformations occur in the regions where constraints are not
placed, as can been seen in Figure 5a. To localize the deforma-
tion effects, therefore, we construct a bounding field (Section 6)
which modulates the deformation field.

6. Bounding Field

In this section we describe how to construct the bounding
field fbounding of Equation 1. This field is a scalar field which
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falls from a maximum value of one to zero at a finite distance.
The function that generates the field takes a sample point as
input and returns a scalar value [0, 1] as output. We generate
such a scalar field with convolution using the direct warp curve,
which is a 3D polyline, as a skeleton. Note that unlike the de-
formation field the indirect warp curves are not used for the
bounding field construction.

6.1. Convolution Field

The problem of using a polyline as a skeleton is that the
resulting field will have bulges at joints [5]. Convolution can
avoid the bulges even if several scalar fields are combined. A
convolution field f is created by convolving a skeleton S with
a kernel function h:

f (p) =

∫
S

h(p,S)dS (4)

We choose as our kernel function the Cauchy kernel [17, 30]
which is often used to generate convolution surfaces having
bounded scalar fields from polylines, such as [34, 4]:

h(p,S) =
1

(1 + s2r2(p,S))2 (5)

where s is a tangent parameter controlling the kernel width
and r is the distance between a sample point p and a skeleton
S. A convolution field of a polyline is generated by summing
the convolution field of each line segment. Thus, we calcu-
late Equation 4 by replacing the skeleton S with a line segment
L(t) = b + tâ, 0 ≤ t ≤ l (b is the base vector and â is the nor-
malized direction vector):

fline(p) =
1

2p2

[
h

s2h2 + p2 +
l − h

s2(l − h)2 + p2

]
+

1
2sp3

[
tan−1

(
sh
p

)
+ tan−1

(
s(l − h)

p

)]
(6)

where h = (p − b) · â and p2 = 1 + s2(‖p − b‖2 − h2). More
details of this calculation can be found in [17, 34]. By summing
the resulting scalar field fline of each line segment, we can get a
scalar field fpolyline generated from a curve.

To control the size of a bounding field, we adjust a tan-
gent parameter s which controls the kernel width. The size
of a bounding field is proportional to how far the artist pulls
a curve (Figure 10). The more the artist pulls the curve, the
bigger bounding field is required to increase the ROI. Thus, we
search for the longest displacement vector dlongest from the ver-
tices of the curve and determine the value of s according to
the length of dlongest. Based on several experiments, we define
s = 1/‖dlongest‖ which can create a bounding field with a rea-
sonable size. Note that if ‖dlongest‖ is equal to zero, a bounding
field is not created.

Convolution can generate a scalar ”falloff” field, which de-
creases to zero at a finite distance from the curve polyline, but
the field values inside the scalar field cannot be controlled. We
need to scale the range of field values to [0, 1] in order to en-
sure that the deformation behaves in a predictable manner. We
describe this field value adjustment in the next section.

Figure 10: The convolution field generated from the direct warp curve. The
more the artist pulls the curve, the larger the spatial extent of the constructed
convolution field.

6.2. Field Value Adjustment

To be used for our deformation, the scalar bounding field
must have a value equal to one at the curve and decrease to zero
at some distance. This is necessary because the full vector dis-
placement must be applied to vertices on the curve if the surface
is to appear to track it. If the field value at curve is greater or
less than one, the deformation is scaled and the deformed sur-
face will become detached from the curve. Convolution does
not have parameters to control the field values and the resulting
scalar field of Figure 10 becomes like Figure 11a.

We adjust the field values of a bounding field using the Wyvill
function [5]. A useful feature of the Wyvill function is that it
has a zero first derivative at the point where a value reaches zero
or one. That means we can smoothly clamp field values greater
than one to one, or less than zero to zero. The Wyvill function is
a falloff function which can generate a bounded scalar field by
taking a distance field as input. We convert a convolution field
fpolyline generated in Section 6.1 into a distance field, and then
apply the Wyvill function to the distance field. The resulting
field is our bounding field fbounding which is defined as follows:

fbounding(p) = gwyvill

(
1 −

fpolyline(p)
vone

)
(7)

gwyvill(x) =


1 x ≤ 0
(1 − x2)3 0 < x < 1
0 x ≥ 1

(8)

where gwyvill is the Wyvill function and vone is a field value of
fpolyline which we want to adjust to one. Since a bounding field
should store one as a field value at a curve, we sample the field
values of fpolyline at the vertices of the curve and set vone to the
average of the sampled values. With this field value adjustment,
we can get a bounding field whose range is [0, 1] (Figure 11b).
The resulting bounding field fbounding is replaced in Equation 1
and smoothly modulates a deformation field as shown in Fig-
ure 5b.

7. Results

The WarpCurves tool lets the artist to efficiently create and
modify features and details on implicit models. In particular,
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Figure 11: The scalar field generated with convolution (a). By sampling the
field values at the vertices of the curve, the value vone is computed. (b) is the
scalar field which (a) is converted into using the Wyvill function. The part
where the field value is equal to one is highlighted in red. As can been seen, the
field values near the curve are one after conversion.

cavities and projections can be easily added using WarpCurves.
The ear model shown in Figure 12 was created from a simple
flat implicit shape using 3 curves. The features of the ear model
were easily added just by manipulating the curves. Adding
such features to an implicit model in a controllable and pre-
dictable way is virtually impossible with the existing composi-
tional modeling tools available in ShapeShop.

Figure 12: The ear model. The ear model was created by adding details on the
flat implicit shape using 3 curves.

The face model shown in Figure 1 demonstrates how
WarpCurves can be used to efficiently create large-scale fea-
tures which would take multiple steps with compositional op-
erators. The advantage of an implicit approach is that com-
position can be easily integrated with deformation. Since our
technique is implemented as an operator in the BlobTree, de-
formations are hierarchically defined and other operators such
as blending and CSG can be applied before or after deforma-
tion. In Figure 1, the ears, the mouth, and the eyes were added
to the face model using blending and CSG operators after cre-
ating the general head shape with WarpCurves.

One significant drawback of compositional modeling is that
it can be very difficult to edit existing models. Deformation is
often more efficient for editing tasks. The WarpCurves tool al-
lows existing BlobTree models to be quickly deformed. For ex-
ample, the dog model shown in Figure 13a is an implicit model
created with ShapeShop [27]. The face and the body of the dog

model were deformed using WarpCurves (Figure 13b). In this
example, a BlobTree model is used as an input implicit model,
but WarpCurves are not limited to BlobTree models. Our tech-
nique is applicable to any implicit model as input, and effec-
tively constructs a BlobTree structure using the input implicit
model as a leaf node.

We also asked an artist to experiment with WarpCurves dur-
ing a 3D modeling session, the results are shown in Figure 14.
The models were created from scratch using ShapeShop’s
sketch-based composition operators and WarpCurves. The
main contribution of WarpCurves is to support explicit manipu-
lation of implicit surfaces. When the artist wants to make mod-
ifications to a model, he or she usually does not think to blend
some volumes, but rather to ”push or pull” the surface. Our
WarpCurves tool allows the artist to interact with the surface
in a more natural way. For example, the mouth of Figure 14a
and the feelers of Figure 14b could be created by blending a set
of simpler volumes. Using WarpCurves, however, they can be
created by directly manipulating the surface.

Figure 13: The dog model. The dog model (a) is an input implicit model which
was created with ShapeShop. The artist can edit an existing implicit model
using curves (b).

7.1. Implementation Details

Compared to parametric or mesh modeling, interactive im-
plicit modeling is computationally intensive because we must
literally search through space at each frame to visualize the sur-
face. Due to this, many trade-offs must be made to maintain
minimal levels of visual fidelity.

In our implementation, an individual curve handle contains
approximately 20 vertices. Higher sampling rates can be used
to increase control and improve how closely the surface tracks
the curve, at the cost of interactivity. We provide the artist with
a slider to manipulate this trade-off. Since computing a vari-
ational warp (Section 5.2) is so expensive, we improve inter-
activity by only using every third set of off-curve constraints
along the curve, so one curve contains roughly 45 constraints
in total as the default set. The number of off-curve constraints
varies during deformation because some may be filtered out to
avoid a displacement interpolation error. The poly-line convo-
lution used to construct our bounding field (Section 6.1) is also
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Figure 14: These models were created by an artist. The mouth of the model (a) was created by pulling out the surface using WarpCurves. The feelers of the model
(b) were also created using WarpCurves. Because WarpCurves are integrated into a procedural implicit modeling framework, blending and CSG operators were
intermixed with deformation during modeling.

a computationally expensive technique. We automatically re-
duce the number of line segments via curve simplification to
reduce this cost. Empirically, we found that reducing to 4-6
line segments was sufficient for most deformations.

The recursive evaluation of the BlobTree structure becomes
increasingly expensive as multiple WarpCurves are applied. Af-
ter a deformation is completed, we insert a cache node [26]
above the Warp or HybridWarp node to reduce the evaluation
time. Hence, during interactive curve manipulation, once the
cache is populated only the top Warp node is actually evalu-
ated. This is critical to maintain interactivity.

Table 1 shows the performance of WarpCurves. All timings
in Table 1 were measured on a workstation with Intel 2.66GHz
Core 2 Quad CPU and 2.75GB of RAM. ShapeShop is not
multi-threaded, and we note that a re-polygonization of the en-
tire model is computed at each frame. The polygonization res-
olution was fixed at a cube size of 0.075. The performance
was evaluated using the models shown in this paper: the point
primitive (Figure 2), the face model 1 (Figure 1), the ear model
(Figure 12), the horse model (Figure 5), the squid model (Fig-
ure 14b), the face model 2 (Figure 14a), and the dog model
(Figure 13). The table shows the number of constraints for
variational warping, the voxel dimensions of polygonization,
the number of vertices after polygonization, and the frame rates
(fps). We show the approximate data in the table, because they
vary during deformation. Note that the models shown in this pa-
per were rendered using high-resolution polygonizations gener-
ated after interactive modeling was completed.

Constraints Voxel Dimensions Vertices fps
Point 55 22x22x22 360 30
Face1 104 22x25x27 444 21
Ear 89 34x34x25 650 16

Horse 44 51x37x24 946 15
Squid 127 88x85x57 1350 7
Face2 85 38x36x99 1476 6
Dog 75 110x109x85 7380 2

Table 1: The timings of deformations.

8. Limitations

The WarpCurves tool demonstrates direct manipulation for
implicit surfaces but there are also some limitations. A major
limitation of our tool is that deformation cannot be controlled
geodesically. Since our deformation is ultimately a spatial de-
formation, the amount of deformation influence is dependent on
the Euclidean distance from the curve. The curve may strongly
influence portions of the implicit volume which are geodesi-
cally far from the curve yet nearby in Euclidean distance. In
this case unexpected deformations will occur (Figure 15). This
could be avoided by creating a more complex bounding field,
or by ensuring that the deformation constraints do not penetrate
geodesically distant portions of the surface. Note, however, that
in the implicit domain the deformation needs to influence a sup-
port region around the local surface, so that blends applied after
deformation are smooth and predictable. This generally means
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that a larger bounding field is required than what one might in-
tuitively expect.

Figure 15: Deformation is constructed according to the Euclidean distance, so
the part which is geodesically far from the warp curve yet close in the Euclidean
distance also gets strong deformation influence (b). A bounding field inflates
depending on the Euclidean distance as well, so it cannot localize such defor-
mation influence (c).

Another limitation is the curve manipulation. During curve
editing, the edited part of the curve is not allowed to collide with
other curves, or to self-collide. If such collisions occur, the vari-
ational warp will diligently interpolate the constraints, resulting
in bizarre and unexpected deformations. Although two curves
collide with each other in Figure 1, the collision point is not
edited. Also, a HybridWarp node allows the WarpCurves of
the descendent Warp nodes to have influence at the ascendent
Warp nodes but the descendent Warp node is not aware of any
WarpCurves of parent Warp nodes. This means that if the artist
draws two curves and manipulates the first drawn curve, the
second drawn curve is detached from the surface. One way to
avoid this problem would be to apply the forward-deformation
of the child node to any parent curves within a HybridWarp
node, perhaps followed by a gradient walk to make sure the
curve lies on the surface. However, this would require solving
for two variational warps instead of one, and in practice we did
not find that it was necessary.

9. Conclusion and Future Work

We have presented WarpCurves, a curve-based deformation
technique for implicit surfaces. A key benefit of our tool is
that the artist can explicitly manipulate implicit models using
curves. Direct manipulation is often a more efficient way to add
and edit features and details of 3D models. Functional implicit
surfaces are a representation suitable for shape composition via
blending and CSG, but to date it has not been possible to di-
rectly manipulate the iso-surface. Our technique provides an
approximate solution to this problem.

Our method is based on spatial deformation, but by con-
structing appropriate inverse warps according to curve manip-
ulation, the WarpCurves tool lets the artist interact with im-
plicit models as if manipulating the surfaces directly. Because
of curve-based deformation, features and details can be easily
added to implicit models. Our curve-based deformation tech-
nique has been integrated into the BlobTree procedural implicit
model framework as an operator, which allows the artist to ap-

ply blending and CSG operators before or after deformation.
These benefits have been shown in our results.

Our future work is to edit textured implicit models using
WarpCurves. Texturing for implicit models is often defined us-
ing local RGB fields [35]. Since our deformation technique
is spatial, the texture fields could also be deformed along the
curves. If the modified curve is constrained to the surface, then
the deformation could also be restricted to the texture field, pro-
viding a useful texture editing tool. Our deformation technique
can also be applied to point-based surfaces by changing inverse
warps into forward warps. This would essentially be a variant
of Wires [31], however by using variational warps and smooth
bounding fields we avoid some of the continuity limitations of
Wires.
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