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Abstract
In many applications, iso-surface is the primary method for visualizing the structure of 3D density
maps. We consider a common scenario where the user views the iso-surfaces from a distance and
varies the level associated with the iso-surface as well as the view direction to gain a sense of the
general 3D structure of the density map. For many types of density data, the iso-surfaces associated
with a particular threshold may be nested and never visible during this type of viewing. In this paper,
we discuss a simple, conservative culling method that avoids the generation of interior portions of
iso-surfaces at the contouring stage. Unlike existing methods that perform culling based on the current
view direction, our culling is performed once for all views and requires no additional computation
as the view changes. By pre-computing a single visibility map, culling is done at any iso-value with
little overhead in contouring. We demonstrate the effectiveness of the algorithm on a range of bio-
medical data and discuss a practical application in online visualization.

1. Introduction
1.1. Motivation

Iso-surfaces are commonly used for visualizing 3D density maps, such as MRI and CT scans
in bio-medical applications. With the increasing complexity of today’s imaging data,
contouring a density map easily yields iso-surfaces with high polygon counts that are costly
to produce, store and render. Often times, however, the number of elements contained in the
iso-surface does not correspond proportionally to visual complexity perceived by the viewer.
Consider the iso-surface in Figure 1 (a) from the CT scan of a human foot. There are many
interior surface pieces, which are highlighted in Figure 1 (b). These interior parts account for
close to half of the total triangles in the iso-surface, and yet they are not visible if one views
the foot from the outside.

One method for handling this issue is to cull invisible components of the iso-surfaces at
rendering time using existing visibility culling methods [2]. While this approach is feasible,
the extraction and storage of the original, un-culled iso-surface is still required. A better solution
would be to perform culling at the contouring stage, thus avoiding the generation of invisible
surface components in the first place. We call this second approach contour culling. While
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there have been a number such methods proposed, these methods are all view-dependent (see
a brief review in the next section). This means that culling has to be performed whenever the
user changes the viewing angle. As a result, a significant overhead can be added to the run-
time rendering pipeline.

1.2. Contribution
In this paper, we explore an alternative, view-independent contour culling approach that adds
little computational overhead at run-time. We consider a specific but common scenario of iso-
surfaces visualization, which we call far-field viewing. In this scenario, the user views the iso-
surfaces from a distance (e.g., the view taken in Figure 1 (a)) and varies the iso-value associated
with the iso-surface as well as the viewpoint and viewing direction to gain a sense of the general
3D structure of the density map. At each iso-value, our method culls parts of the iso-surface
invisible to any viewpoints located outside the volume (e.g., highlighted parts in Figure 1 (b)).
Once the iso-surface is generated, it can be viewed from different directions with no more
computations needed other than rendering.

There has been active research into visibility culling methods that cull based on views from a
region rather than from a single point (see a brief survey in [15]). However, these methods
cannot be directly applied to iso-surface visualization as they usually require considerable pre-
computation that is specific to the surface to be culled. When the user changes the iso-value,
such pre-computation needs to be performed again.

In contrast, our method performs a single pre-processing step for iso-surfaces at all iso-values.
The key observation is that values in a density map (especially bio-medical images) typically
drop off at the boundary of the map. During far-field viewing of such a map, a point x in the
map that is completely invisible when viewing from outside the map at some iso-value c will
also stay invisible for iso-values lower than c. We call the minimal iso-value that x is visible
to some outside views the contour visibility function (CVF), or gf (x) (detailed in Section 2).
With a pre-computed CVF, the visible parts of the iso-surface at any iso-value c can be easily
extracted by contouring only in parts of the map where gf (x) ≤ c.

Our main contribution is a simple dynamic-programming algorithm for computing a discrete
approximation of CVF for tri-linearly interpolated 3D density functions (see Section 3). We
show that this piece-wise constant approximation can be easily utilized by a tri-linear
contouring algorithm or typical polygonal contouring algorithms (such as Marching Cubes
[11]) to perform culling, and the result is guaranteed to be conservative: the culled portions of
the iso-surface are not to the viewer at any view angle for far-field viewing (see Section 4).

An example result of our method is shown in Figure 1 (c). Note that the visible parts of the
iso-surface are well preserved, whereas a significant amount of interior pieces are removed
(see (d)). When tested on several real-world bio-medical data (see Section 5), we observed that
our view-independent culling approach performs well for density maps that contain large inner
iso-surface pieces, sometimes achieving up to 80% surface reduction.

1.3. Application
The reduced run-time overhead of our view-independent culling approach applies naturally to
online and mobile platforms with limited access to computational and rendering resources. As
a concrete example, we incorporated the culling algorithm into an online visualization applet
for 3D density maps of macromolecular structures (such as viruses) as part of the Electron
Microscopy Databank (EMDB). The iso-surfaces of such data often contain large nested,
interior portions, and the biologists most often take views from outside of the volume. Hence
our culling method is particularly suited. In this application, both contouring (using Marching
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Cubes) and culling are performed on the server side, and the resulting surface is transformed
to the client-side applet for viewing. Due to bandwidth limits, the iso-surface needs to be
simplified before transmission [6]. With culling turned on, simplification becomes more
efficient (since there are fewer triangles to start with), and the simplified result better preserves
the details on the visible parts of the iso-surface. This is demonstrated in Figure 2. Note that
since our culling is view-independent, no extra computation is needed on the client-side applet
as the user inspects the surface from different views.

1.4. Related work
Visibility culling is a well-studied problem in computer graphics. Previous work on visibility
culling has focused on the problem of culling the invisible portions of a polygonal mesh with
respect to a view direction. Classic techniques that try to address the visibility culling problem
include Z-buffer, back-face culling, view-frustum culling, and visibility space partitions (see
the survey [2]). Our approach differs from traditional approach in that we focus on avoiding
the generation of unnecessary polygons when extracting level-sets from a density map. Most
of the previous methods are compatible with our method since they can be applied after a
polygonal mesh has been extracted from the density map.

Several algorithms for culling iso-surfaces based on visibility have been proposed in the past.
Given an iso-value, these algorithms generate only part of the iso-surfaces visible to the viewer.
Livnat and Hansen [10] perform a front-to-back sweep of an octree representation of the density
volume to quickly identify regions of the space occluded by the iso-surface. In a similar
approach, Gao and Shen [4] improve the culling performance on multiple processors using an
image space culling algorithm and a load-balanced workflow. Pesco et al. [16] uses an implicit
culling scheme based on the scalar values at the voxels instead of actual triangles on the iso-
surface. Recently, Gregorski et al. proposes a culling algorithm for iso-surfaces extracted from
hierarchical tetrahedral meshes that exploits frame-to-frame coherence between consecutive
views [7].

While theses methods can dramatically reduce the number of polygons that need to be rendered,
their view-dependence requires culling and surface extraction to be performed whenever the
view is changed. In addition, culling in these methods can add significant overhead (in both
implementation complexity and running time) to the contouring algorithm and is specific to
the iso-value used to generate the iso-surface. In contrast, our approach does not require re-
generation of iso-surfaces as the view changes, and our method adds little overhead to the
contouring algorithm regardless of the iso-value used.

Our work is closely related to methods that compute occlusion maps to accelerate rendering.
One of the earliest works is by Zhang et al., who propose computing a hierarchy of occlusion
maps to accelerate the rendering of scenes with large number of primitives [17]. Our work
differs from Zhang et al’s work in that our method targets density maps. In particular, our
visibility function can be viewed as an occlusion map, but it performs culling for all iso-values.
Li et al. extended the idea of occlusion maps into the domain of volume rendering. In their
method, the occlusion map is updated at every frame (i.e. view dependent). In contrast, we
compute a single, conservative occlusion map for all-directions [9].

Also related to contour culling is the class of methods that cull occluded voxels for volume
rendering [3, 5]. Like iso-surface culling, most of these methods are view-dependent. A notable
exception, and one that is most related to our work, is the works by Mroz and colleagues [13,
12] that perform culling for Maximum Intensity Projection (MIP), a rendering method that
displays the maximum intensity along each ray through the volume. Similar to us, the authors
observe that a (possibly large) fraction of the voxels do not contribute to the MIP image at
any viewing angle. Hence they identify such voxels in a pre-processing stage and preclude

Feng et al. Page 3

Comput Graph. Author manuscript; available in PMC 2012 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



them in the rendering stage. The identification is done either by recursive ray search at each
voxel [13], or by a front-moving algorithm [12] that is similar in spirit to the dynamic
programming algorithm proposed in this paper.

There are a number of key differences between our work and that of Mroz and colleagues.
First, the two works are designed for different visualization modes (MIP versus iso-surfaces),
hence the culling criteria is different. Second, while MIP culling creates a binary mask (kept
or removed) for the voxels, our approach builds a floating-point visibility function over the
volume that provides the culling information at all iso-values. Third, comparing to front-
moving in [12], our dynamic programming algorithm offers the additional control over the
aggressiveness of surface reduction while maintaining a conservative culling.

2. The contour visibility function
We proceed to provide a mathematical basis for our technique. We will first formulate the
contour visibility function (CVF), which gives the exact range of level sets at which a point in
space is visible when viewed at infinity. We will then consider approximations of such
functions with conservative guarantees, which allow efficient computations (to be discussed
in Section 3).

2.1. The definition
Defining the CVF of a given density function f (x) is fairly straightforward. Assuming again
that the values of f (x) lie in the range [0, 1] and that tend towards zero as x → ∞. Let rx be a
ray from x to infinity and frx be the maximum of f taken at all points (including x) along the
ray rx (i.e. maxz∈rx f (z)). We define the CVF, denoted as gf (x), to be the minimum of frx over
all possible rays rx.

We now claim that given some iso-surface f (x) = c where 0 < c < 1, a point x (which may or
may not be on the iso-surface) lies in the visible space when viewed from infinity in some
direction if and only if gf (x) ≤ c. To prove this, note that a ray intersects with the iso-surface
if and only if there are some values along the ray above c and some below c (assuming the
intersection is in a general position and that the iso-surface avoids the singularity of f ). Since
f tends to zero at infinity, a ray rx intersects with the iso-surface if and only if frx > c. As a
result, x is un-blocked by the iso-surface in some direction if and only if frx ≤ c for some rx,
and likewise gf (x) ≤ c.

Figure 3 illustrates the CVF of a 1D function (shown in top-left). In 1D, there are only two
possible rays associated with each point x that go toward either the positive or negative infinity,
which we denote respectively as  and . The ray maxima ,  are plotted respectively in
top-right and bottom-left for each x, and the CVF gf (x), the minimum of the two ray maxima,
is plotted in bottom-right. Observe that, by our definition, f (x) ≤ gf (x).

2.2. Conservative approximations
While computing CVF is relatively straightforward in 1D, it is much more difficult in 2D and
3D . Even in the case where f (x) has a simple structure, such as being piece-wise constant, the
function gf (x) is likely to have a much more complex structure that is challenging to compute
both accurately and efficiently.

From the computational perspective, we are mostly interested in approximations of the exact
CVF. In particular, we are interested in approximations g(x) that are conservative: given any
iso-surface f (x) = c, a point x such that g(x) > c should never be visible in any direction when
viewed from infinity. In this way, culling away all points x on the iso-surface where g(x) > c
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will not affect the visible part of the surface in any views (even though some hidden, interior
parts may still remain).

It is easy to show that an approximation g(x) is conservative if 0 < g(x) ≤ gf (x) for any x. The
closer g(x) approaches gf (x), the tighter the approximation, and larger portions of the iso-
surfaces could be culled using g(x). Note that f (x) itself is a conservative approximation, as f
(x) ≤ gf (x). Intuitively, f (x) > c meaning that x lies in the “inside” of the iso-surface f (x) = c,
hence invisible to the outside.

3. Computing the approximated CVF
In many contouring applications, the density map is provided as scalar values associated with
points on a 3D integer grid. These values are then interpolated to form f(x), typically using tri-
linear interpolation. Our goal in this section is to develop an efficient algorithm that computes
a conservative approximation of the CVF in a tri-linearly interpolated density function.

3.1. Motivation
The algorithm is motivated by the piece-wise nature of tri-linear interpolation. The interpolated
function f(x) is made up of smooth pieces within each grid “cell” formed by eight grid points.
Likewise, tri-linear contouring algorithms are typically performed in a cell-by-cell manner,
producing one piece within a cell. If we know which cells are invisible, we can easily modify
the contouring algorithm to skip the invisible cells. To make such decisions quickly and
accurately, all we need is a conservative approximation to gf(x) that assumes a constant value
in each cell. If this value is greater than the current iso-value, the conservativeness guarantees
that the entire cell is never visible in any view directions.

For ease of explanation, we will start by describing the algorithm for computing this piece-
wise constant approximation of CVF in 2D. We will then show how the implementation can
be extended to work on 3D volumes.

3.2. Algorithm in 2D
Consider the problem of approximating the CVF for a 2D density function f(x) over an integer
grid with n×n squares such that the function gives a constant value gi,j for each grid square
pi,j. To be a conservative approximation, we ask gi,j ≤ gf (x) for any x ∈ pi,j where gf (x) is the
actual CVF.

We start by examining the discrete path of grid squares, denoted as ri,j, that is intersected by
the ray rx from some point x ∈ pi,j to infinity (see the shaded squares in Figure 4 (a)). Observe
that consecutive squares in the path share common edges (highlighted in the picture) that are
intersected by the ray. Now, consider the minimum of f along each of these common edges,
and let fri,j be the maximum of such minima over all edges along the path ri,j. We first point
out that fri,j is a lower-bound of frx, which is the maximum of all values of f along the continuous
ray rx. With this observation, we can see that a conservative choice of gi,j would be the minimum
of fri,j over all possible discrete paths ri,j whose defining rays come out of some point x ∈
pi,j.

In the parlance of digital geometry, the path of grid squares intersected by a straight ray is
known as a digital straight line [8]. To compute gi,j as described above, we could just enumerate
all digital straight lines starting from pi,j. Unfortunately, as shown in [8] and [1] there are O
(n3) digital straight lines that pass through a given grid square, so that approach does not seem
to be a feasible method for computing gi,j for all n2 grid squares. In 3D (our ultimate goal), the
situation appears to be even worse. Instead, our approach will compute a lower bound of gi,j
as described above, by taking the minimum of fri,j over a larger set of edge-adjacent square
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paths ri,j coming out of pi,j that includes all the digital straight lines. Unlike digital straight
lines, this expanded set of paths can be enumerated much more efficiently using local
operations.

The algorithm starts by partitioning all view angles into a finite number of view cones. For
each view cone, we compute at each grid square pi,j a lower bound of fri,j for all digital straight
lines ri,j whose defining rays lie in the view cone. This is done using an efficient two-part
dynamic programming algorithm. Performing the algorithm for each view cone yields one
value at each grid square pi,j, and finally gi,j is taken as the minimum of such values computed
at pi,j over all view cones. The algorithm is detailed below and summarized in the pseudo-code
in Program 1.

Partitioning the view angles—To partition all view angles into a set of view cones,
consider a 2m × 2m integer grid centered at the origin as shown in Figure 4(b) (where m = 3).
Forming vectors from the origin to the boundary grid points yields a set of 8m vectors. Each
pair of adjacent vectors defines a view cone for those ray whose slopes lie in the given cone.
For example, the shaded cone in Figure 5 is bounded by the vectors (3, 1) and (3, 2).

Approximating CVF within each view cone—Without loss of generality, we now focus
on the computation for a single view cone. For the sake of simplicity, we consider the view
cone that lies in the lower right half of the first quadrant and is bounded by the rays (m, l) and
(m, l + 1) where 0 ≤ l < m. (The remaining cases can be converted to this case via the appropriate
horizontal, vertical or diagonal reflection of f.)

Program 1: Pseudo-code for approximating the CVF for a 2D piece-wise density function
f

Partition the view cone into 8m cases /* m is a small non-negative 
integer*/
For each view cone
Flip f vertically, horizontally or diagonally such that the view cone is 
bounded by the vectors (m, l) and (m, l + 1) where 0 ≤ l < m
Let S be be set of squares whose intersection with the convex hull of p0,0, 
pm,l and pm,l+1 is non-empty
Let gi,j = 0 for n ≤ i < n + m and n ≤ j < n + l + 1 /* g is an n × n density 
grid */
For i = n − 1 to 0 by −1 and j = n − 1 to 0 by −1
Let h0,0 = 0
For c = 0 to m by 1 and d = 0 to l + 1 by 1
If pc,d ∈ S
Let hc,d = min (max (f(i+c)−, j+d, hc−1,d), max (fi+c,(j+d)−, hc,d−1))
Let gi,j = min (max (hm,l, gi+m, j+l), max (hm,l+1, gi+m, j+l+1))
Perform the inverse of the flips applied f to g
Let the final g be the minimum of the g computed for each view cone

Our goal is to compute at each grid square (i.e. p0,0) a lower bound of fr0,0, noted as g0,0, for
all digital straight lines r0,0 defined by rays in the view cone. Our key observation here is any
segment of a digital straight line in the view cone is also a digital straight line in the same view
cone. We thus compute the desired lower bound g0,0 in two stages. In the first stage, we consider
all digital straight lines r0,0 with horizontal span m in the view cone. Note that such lines must
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end either at the grid square pm,l or pm,l+1. We obtain the lower bound of fr0,0 over all r0,0
ending at pm,l and pm,l+1 respectively as hm,l and hm,l+1 (elaboration to follow). In the second
stage, we obtain the final lower bound g0,0 for all digital straight lines in the view cone (with
horizontal spans no smaller than m) using a simple dynamic programming pass. Assuming
g(m,l) and g(m,l+1) have been computed correctly, we compute

(1)

To obtain the lower bounds hm,l, hm,l+1, one could enumerate the digital straight lines starting
at p0,0 and ending at either pm,l or pm,l+1. Since m is small, such enumeration wouldn’t be so
costly. Alternatively, one can use a dynamic programming scheme similar to the above
description to compute a more conservative bound, which is implemented here. Specifically,
let us consider the set of all edge-adjacent square paths r0,0 starting from grid square p0,0,
moving only rightward or upward, ending at either pm,l or pm,l+1, and visiting only those grid
squares intersecting with the convex hull of squares p0,0, pm,l, pm,l+1. An example of the allowed
squares for m = 3, l = 2 is shown shaded in Figure 5). Note that these paths include all digital
straight lines with slope bounded by the view cone. These paths can be enumerated, and the
minimum of fr0,0 over these paths can be updated in a single dynamic programming pass.
Starting with h0,0 = 0, we compute hc,d for all allowed squares pc,d inductively as

(2)

where fc−,d denotes the minimum of f along the edge shared by squares pc,d and pc−1,d.

Overall, the dynamic programming sweep in Equation 1 processes the squares pi,j in decreasing
values of i and j. To apply this recurrence near the right and upper boundaries of the grid, we
pad the grid with l + 1 rows and m columns of zeros. At each square pi,j, the dynamic
programming pass in Equation 2 is performed to supply the outer dynamic programming sweep
with the necessary quantities hm,l, hm,l+1 (see the pseudo-code in Program 1).

3.3. Generalization to 3D
To extend the algorithm to a 3D density function f(x), we will similarly compute an
approximation to the CVF gf(x) that is constant within each grid cell. The value gi,j,k for a cell
pi,j,k is computed as a lower bound of fri,j,k over all digital straight lines ri,j,k (consisting of face-
adjacent cells intersecting some ray) passing through pi,j,k. Here, fri,j,k is the maximum of the
minimum of f on each grid face between successive cells on ri,j,k. Using a similar argument as
in 2D, such choice of gi,j,k is a conservative approximation, i.e., gi,j,k ≤ gf (x) for any x ∈
pi,j,k.

To compute gi,j,k, the 2D dynamic programming algorithm only needs to be slightly modified.
To partition the view angles, we use a cube of size 2m×2m×2m centered at the origin, whose
boundary is divided into 24m2 unit squares. Each unit square defines a view pyramid bounded
by four vectors of the form (m, l, o), (m, l+1, o), (m, l, o + 1), and (m, l+1, o+1) where 0 ≤ l,
o < m. The rest of the algorithm proceeds as before.

Complexity—The most time-consuming step is the inner dynamic programming pass
(Equation 2), which has the complexity of O(m) (equalling the number of cells intersecting
with the convex hull of the view pyramid, which is bounded by mk for some constant k). This
pass needs to run once for each grid cell and once for each view pyramid, hence the total
asymptotic complexity is O(n3m3). The algorithm has an “embarrassingly parallel” structure,
as the computation for each of the 24m2 view pyramids is completely independent of each
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other. Hence the practical performance can be easily improved by employing multiple
processors (or cores).

4. Contour culling using CVF
Our algorithm outputs a 3D visibility volume containing one value gi,j,k for each grid cell
pi,j,k in the input volume. For a tri-linear contouring algorithm to take advantage of this output,
simply skip cells whose g values are greater than the iso-value. The conservativeness of our
computation ensures that culling does not affect the visible part of the iso-surfaces in any views.
This is illustrated in 2D in Figure 6. Note that the interior part of the iso-curve (red curve in
(d)) is culled during contouring, since the gi,j values of the enclosing grid squares are greater
than the iso-value (such grid squares are outlined by purple dots).

The visibility volume can also be utilized by polygonal contouring algorithms that approximate
the tri-linear contours and proceed in a similar cell-by-cell fashion, such as Marching Cubes.
Culling in these algorithms based on gi,j,k is also conservative (i.e. the visible part of the
polygonal surface is not affected in any views) if the polygonal contours satisfy a mild
condition: a grid face whose scalar values at all four corners are above the iso-value always
lies inside the polygonal iso-surface. Note that this condition holds in most algorithms like
Marching Cubes.

5. Results
We demonstrate our algorithm on a suite of synthetic data as well as real-world bio-medical
images (e.g., MRI, CT, cryo-EM). To quantify the effectiveness of culling, we consider the
percentage of total triangles generated by Marching Cubes [11] that are culled using our
approach (as described in Section 4) and refer to this as the reduction rate.

Choice of m
This is the only parameter of our algorithm, which determines the number of view partitions.
Increasing m would result in a better approximation to the actual CVF because more and finer
view cones (pyramids) are explored and because longer segments of discrete paths are used to
approximate digital straight lines. However, larger m would also significantly increase the
computational cost due to the m3 part in the algorithm complexity (see Section 3). In practice,
we notice that higher values of m typically do not yield significantly better reduction rate. This
is demonstrated in Figure 7, which shows the computational cost for increasing m on the Foot
example (Figure 1) and the reduction rate at all iso-values for m = 1 and m = 6. In our examples,
we used m = 2 which provides a good balance between the amount of reduction and running
time. Figure 8 shows the corresponding visual impact of the m parameter.

Results
Figure 9 shows the graph of reduction rate for all test examples in this paper. Each curve
represents a single density map. The “test128” example is synthetically created by randomly
perturbing a constant density volume. The graph shows that the reduction can react sharply
with respect to the iso-value, with best rates typically occurring in the middle range. In some
cases, it is possible to achieve up to an 80% reduction in polygon counts.

Table 1 visually shows the amount of reduction (for one iso-value) in these test examples. To
visualize the hidden surface parts, we used depth-peeling and line drawing to reveal the inner
layer of each mesh extracted with Marching Cubes. This rendering technique, called blueprint
rendering, was described by Niehaus and Dollner [14]. We modified their original algorithm
to produce red lines for the inner layers of the depthpeeled image. Generally, the inner layers
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reveals the inner polygons that are invisible when viewed from infinity. Table 2 shows culling
on one example (a cryo-EM image of a virus) at different iso-values.

Performance
Our algorithm is tested on an Intel Xeon machine of 8 cores with clock-rate of 2.5Ghz. As
mentioned in the complexity analysis, our algorithm is easily parallelizable. Table 3 shows the
execution time with respect to the number of cores used in the computation, exhibiting an
expected linear speed-up. Table 4 shows the timing results for all examples, using 4 cores with
our implementation. Observe that the computation on our largest dataset (256×256×397)
finishes in less than 10 minutes. Note that the computation is done once for each volume, after
which the only operation needed during contouring is a scalar value comparison for each cell
to determine its visibility.

6. Conclusion and discussion
We have described a novel contour culling method for far-field viewing of density maps that
reduces the complexity of surfaces extracted by standard contouring techniques without
altering their visual appearance. The algorithm pre-computes a visibility function (CVF) that
is independent of view directions and considers all iso-values. The function can be used in
conjunction with contouring to cull internal surface components at any iso-value with little
overhead added to the contouring method. The effectiveness of the approach is demonstrated
on several bio-medical data, and an application for online viewing of molecular density maps
is presented.

Obviously, our culling method is not a replacement for existing view-dependent methods,
which work for any viewpoints and also cull more triangles from any particular view point
than our method. Our method offers some unique features in the far-field viewing scenario,
such as the minimal run-time computational cost. It is also simple to incorporate it into any
contouring implementations (the only addition is a comparison test between values in the data
and values in the visibility map). These features make our method suited for light-weight
visualization tools, which are explored in this paper, and also allow potential integration of our
method into existing view-dependent culling systems to offer improved culling efficiency when
the viewpoint is taking from outside the volume (since fewer triangles need to be considered
for culling at any particular view).

For future work, we will explore other methods for enumerating digital straight lines that
provide a better coverage and lower complexity than the current dynamic programming
algorithm. In this work, we were not able to provide an error bound on our approximation to
the ideal CVF, and proving such bound might be another possibility for future research.
Additionally, we would like to further explore the trade-off space of the accuracy of rendering
versus the amount of culling. While we only consider conservative culling in this paper, in
most visualization applications the conservative constraint can be possibly relaxed to allow
more aggressive culling with a small sacrifice in visual accuracy.
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Figure 1.
(a,c): Iso-surfaces of a CT foot scan at the same iso-value generated by Marching Cubes without
and with culling, containing 1020570 and 592456 triangles respectively. (b,d): Transparent
rendering of the polygons in (a,c) (see details in Section 5), showing internal structures in the
original iso-surface that have been largely culled away using our technique.
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Figure 2.
This is a poliovirus with an inner surface not visible from a far-field view. All meshes are
generated from a 2013 volume and simplified to 100K triangles. The mesh generated from the
original density data contains an inner surface (a,c), and the one generated from our contour-
culled density shows that the inner surface has been removed (b,d). Images (c) and (d) show
the meshes colored by curvature. By comparing the variation in curvature, we see that the
contour-culled version retains more surface details than the mesh from the original volume.
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Figure 3.
The contour visibility function in 1D: f(x) is the original function, ,  are maximum values
along the two rays respectively from x to +∞ and −∞, and gf (x) is the minimum of  and

.
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Figure 4.
(a) A ray rx and the digital straight line it defines (shaded) which consists of edge-adjacent
squares. (b) The partition of the view angles into view cones. The highlighted triangle is a
single view cone.
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Figure 5.
Grid squares that intersect with the convex hull of a view cone (marked by the dotted line).
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Figure 6.
2D example of contour culling. (a): A tri-linearly interpolated density function (from the Foot
data). (b): The gi, j computed by our algorithm for each grid square. (c,d): iso-curves of (a) at
low and high iso-values, where interior curve parts invisible to the outside (red) are culled
away. Purple dots outline those grid squares whose gi, j are greater than the iso-value, and hence
where the culling takes place.
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Figure 7.
(a): Running time of our algorithm on the Foot data as m increases. (b): Reduction rate at all
iso-values for m = 6 (blue solid line) and m = 1 (purple dashed line).
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Figure 8.
The foot data iso-contoured for m = 2 (a) and m = 6 (b). The chosen iso-value is .351. Modified
Marching Cubes generated 884135 and 778579 triangles for m = 2 and m = 6 respectively.
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Figure 9.
Reduction rate of culling on several datasets at varying iso-values.
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Table 1

Comparisons of iso-surfaces extracted by Marching Cubes on several data sets without culling (first column) and
with culling (third column) at a single iso-value. The transparent renderings (second and fourth columns) reveal
the internal portions.
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Table 2

Contour culling on virus particle e1175 (Epsilon 15) from the Electron Microscopy Data Bank (EMDB) at various
iso-values, showing the iso-surface extracted by Marching Cubes (top row), internal portions before culling
(second row) and after culling (last row).
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Table 3

Running time on the Foot data using multiple cores (with m = 2).

# of cores 1 2 4

time (min) 13.43 6.91 3.64
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Table 4

The running time of our algorithm on all datasets. The timings for running regular marching cubes and our
modified marching cubes are shown in the rightmost two columns. The results suggest no significant difference
in running time.

dataset size contour culling (min) MC (sec) mod-MC (sec)

test128 128 × 128 × 128 .46 .229 .168

vismale 256 × 256 × 128 1.86 .092 .100

tooth 256 × 256 × 161 2.42 .172 .150

foot 203 × 418 × 189 3.64 .159 .156

e1175 288 × 288 × 288 5.29 .204 .178

turtle 256 × 256 × 397 6.10 .185 .191
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