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Abstract

In many applications, the first step into the topological analysis of a dis-
crete point set P sampled from a manifold is the construction of a simplicial
complex with vertices on P . In this paper, we present an algorithm for the
efficient computation of the Čech complex of P for a given value ε of the
radius of the covering balls. Experiments show that the proposed algorithm
can generally handle input sets of several thousand points, while for the topo-
logically most interesting small values of ε it can handle inputs with tens of
thousands of points. We also present an algorithm for the construction of all
possible Čech complexes on P .

Keywords: Čech complex, Vietoris-Rips complex, persistent topology,
topological data analysis

1. Introduction

In several computer graphics applications, the modelling and visualisa-
tion pipeline starts with the acquisition of the raw data in the form of an
unorganised point set, that is, a finite subset P ⊂ Rd. Typically, d = 2
or 3, however, data of higher dimensions also appear in practice. The ac-
quired data is then processed and geometric and topological information is
extracted from it. The final goal is to construct and visualize a mathematical
model of P , typically a polyhedral mesh capturing as faithfully as possibly
the geometry and topology of the original data.

As P is unparametrised, a common first processing step is the compu-
tation of a discrete geometric structure defined on it, such as a graph or a
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Figure 1: Left to Right: Increasing values of ε. Top: The Čech complex. Bottom:
The Rips-Vietoris complex.

simplicial complex connecting points that are close to each other. Regarding
graphs, we have the k nearest neighbour graph connecting each point with
the k points nearer to it, and the ε neighbour graph, connecting each point
with all points at distance less than ε from it. Regarding complexes, the
Vietoris-Rips complex [1] connects points in P with a simplex if the distance
between any two of them is smaller than ε. The Čech complex [2, 3] connects
points in P with a simplex if the radius minimal enclosing sphere of the sub-
set is less than ε. Fig. 1 shows a series of Čech and Vietoris-Rips complices
for increasing values of ε.

Recently there has been an increased interest in algorithms for fast com-
putations of neighborhood graphs and complexes [4]. In particular, there
is increased interest for algorithms that can efficiently compute a series of
neighborhood graphs or complexes for a point set P , corresponding to differ-
ent values of ε. The computed series of complexes is then further processed
to infer the persistent topology of the initial data [5, 6]. In this paper we
propose efficient algorithms for the fast computation of the Čech complex.

1.1. Motivation: Vietoris-Rips vs Čech complex
When the input data is voluminous, for example for data sets with several

thousand points, the Vietoris-Rips complex rather than the Čech complex
is the simplicial model of choice [4]. The main reason is the significantly
lower computational costs involved in the construction of the Vietoris-Rips
complex. However, this efficiency comes at the cost of some advantages of
the Čech complex, which are traded-off.

Firstly, a series of Čech complexes created for several values of ε is ex-
pected to be able to capture more topological information than the corre-
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Figure 2: For 1/2 ≤ ε <
√
3/3 the Čech and the VR complexes of the unit edge equilateral

triangle do not coincide.

sponding series of Vietoris-Rips complexes. Indeed, the Vietoris-Rips com-
plex is the clique complex of its skeleton graph, which is the ε-neighbourhood
graph of the input P . In other words, for a given ε, each simplex of the
Vietoris-Rips complex corresponds to a clique of the ε-neighbourhood graph.
That means that, for a given ε, the topological information captured by the
Vietoris-Rips complex is equivalent to the topological information captured
by the ε-neighbourhood graph. In contrast, a Čech complex conveys more
information than its skeleton graph, as it may or may not contain the simplex
defined by a clique of its skeleton graph.

To see this with a simple example, let S = {A,B,C} be the vertices of
an equilateral triangle with edge 1. The minimal enclosing sphere of any of
the three edges AB, BC, CA has radius 1/2, while the minimal enclosing
sphere of the triangle ABC, has radius

√
3/3, see Fig. 2. Thus, for ε < 1/2

the Čech complex contains neither the edges of the triangle nor the triangle,
for 1/2 ≤ ε <

√
3/3 it contains all three edges but not the triangle, while for

ε ≥
√
3/3 it contains both the edges and the triangle. In contrast, the VR

complex does not have such discriminatory power as it contains a triangle if
and only if it contains all its edges. The same phenomenon can be noticed
in the series of complices in Fig. 1.

A second advantage of the Čech complex is the lower asymptotic worst
case for the number of maximal simplices. Indeed, the maximal simplices
of the Čech complex correspond to maximal enclosing spheres which can be
defined by up to d + 1 points on them. That is, the number of maximal

3



simplices is bounded by a polynomial of order d + 1. This argument will
become more rigorous in section 2.1 where the details of the computation of
the maximal enclosing spheres will be discussed.

In contrast, the maximal simplices of a Vietoris-Rips complex may in-
crease exponentially with the number of points in P . To see this with a
simple example, consider a planar regular polygon with 2n vertices and di-
ameter 1. The largest distance between two vertices is 1, attained on pairs
of antipodal vertices and the second largest distance is cos(π/2n). There are
2n ways to create a set of n vertices by choosing exactly one vertex from each
pair of antipodal vertices and each such set of n vertices gives a maximal
simplex of the Vietoris Rips complex for cos(π/2n) < ε < 1. Indeed, the
addition of any other vertex in the set will create a pair of antipodal vertices
at distance 1 and thus, push the simplex outside the Vietoris Rips complex
for that value of ε.

1.2. Related work
Several simplicial constructions have been proposed and are used for the

topological analysis of point data. Alpha-shapes [7] is a simplicial construc-
tion with well understood properties. The bottleneck in the computation
of alpha-complices is the construction of the Voronoi diagram of the input
data. Its worst case computational complexity is similar to the the compu-
tational complexity of the proposed algorithm for the Čech complex, that
is O(nd) [8]. However, to the best of our knowledge, the construction of
the Voronoi diagram for an arbitrary input cannot be localised and thus, it
becomes inefficient for large number of input points n and large dimension
d.

The beta-complex [9] is a generalisation of the alpha-complex where the
input is a set of spheres of various radii rather than a point set. In beta-
complices, as in alpha-complices, the computational bottleneck is the con-
struction of the Voronoi diagram of the spheres. The construction of the
beta-complex can be accelerated by using quasi-triangulations, that is, the
duals of the Voronoi diagram of the spheres [10]. Techniques for the efficient
representation and manipulation of quasi-triangulations have been proposed
in [11, 12].

Witness complexes [13], which have been successfully used for surface
modelling from point clouds [14], can be computed efficiently, however, the
understanding of their properties rests on heuristic arguments rather than
mathematical proofs.
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Unlike the previous examples of simplicial structures which have their
roots in computational problems, the Vietoris-Rips and the Čech complex
have their roots in mathematical topology. Nevertheless, recently, there is a
considerable research effort towards the efficient construction of the Vietoris-
Rips complex, which is considered a more tractable problem than the efficient
construction of Čech complex. Apart from the academic interest in such con-
structions, the research is also driven from applications, ranging from cover-
age problems in sensor networks [15], [16], to the analysis and organisation
of large image databases [17].

The current state-of-the-art in computationally efficiency in the construc-
tion of the Vietoris-Rips complex is [4]. A memory efficient generation of a
stream of simplices for the construction of Vietoris-Rips complexes as re-
quired by persistence homology algorithms is proposed in [18]. Publicly
available implementations of the construction of the Vietoris-Rips complex
can be found in Stanford’s Plex family of software for the topological analysis
of data. JavaPlex [19], the most recent member of the family, extends Plex
[20] and JPlex [21], and incorporates the the construction in [4].

1.3. Contribution
The main contributions of the paper can be summarised as follows:

• A divide and conquer algorithm for the efficient computation of the
Čech complex for a given radius ε of the covering balls.

• An algorithm for the efficient computation of all possible Čech com-
plexes on a point set.

1.4. Overview
The rest of the paper is organised as follows. In Section 2, we describe

the basic algorithm for the computation of the Čech complex and its divide-
and conquer variant we used in the experiments. Section 3 describes an
algorithm for the construction of all possible Čech complexes on a point set.
In Section 4 we present and discuss experimental results on synthetic and
natural point sets and we briefly conclude in Section 5.

2. Construction of the Čech complex

We start with a rigorous definition of the Čech complex and some no-
tation. Consider a finite set P of n points in the d-dimensional Euclidean
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space Rd and denote by Bε (p) the open ball of radius ε centered at the point
p ∈ Rd:

Bε (p) =
{
x ∈ Rd | d (p, x) < ε

}
.

Consider an open cover of P that consists of all such balls centered at the
points of P . The Čech complex Nε (P ) of the point P at scale ε is a set
system that contains precisely those subsets of P for which the covers of all
elements of the subset have a common intersection:

Nε (P ) = {S ⊆ P | ∩p∈SBε (p) 6= ∅} .

Equivalently, S ⊆ P is a cell of Nε (P ) if and only if it is contained within
the interior of a sphere of radius ε.

We shall use small letters to name points (i.e. d-dimensional vectors)
and capital letters for names of sequences of points. Thus, P will usually
denote the sequence (p1, . . . pn), where n = |P | is the length of the sequence
P . P ∪ Q will denote the merger of the two sequences P and Q (in some
unspecified order unless explicitly stated otherwise). Whenever we use terms
like “disjoint”, “intersection”, etc applied to sequences, we consider these as
sets. Without loss of generality, we assume that there are no repetitions in
a sequence of points, i.e. all the points in the sequence are different.

2.1. Minimal Enclosing Sphere
The very basic computation regarding Čech complexes is checking if a

given subset of points S ⊆ P is a cell of of the complex Nε (P ), i.e.if all
the points in P are contained within a sphere of radius ε. This can be done
by calculating the minimal enclosing sphere for a set of points, a problem
that has been studied from both theoretical (e.g., [22]) and practical point
of view [23] (which provides a robust practical implementation). Here, we
use our own algorithm, which given a set of n points in Rd produces the
(unique) minimal-radius sphere that contains the points. This is the most
basic building block in our computation. We shall denote it by

[c, r] := MinSphere (P )

where the input P is a sequence of n d-dimensional points, and the out-
puts c and r are the centre and the radius of the minimal enclosing sphere,
respectively.

A trivial, but very useful, observation is that if the points are in general
position (no d + 2 or more of them are co-spherical), the minimal enclosing
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sphere has between 2 and d+1 points on its boundary (excluding the trivial
case of a single point, in which the sphere has radius zero). We call these
points the support of the sphere. It is now clear that we can easily enumer-
ate all simplices of the complex Nε (P ) by simply considering all potential
supports. Before we present such an algorithm, we make another trivial ob-
servation by noticing that we only need the maximal cells, i.e. the simplices
of maximal dimension. For a given subset of points Q ⊆ P , we can check if
it constitutes a maximal cell, denoted by

IsMaxCell (Q)

by first checking that the minimal enclosing sphere of the points in Q has a
radius smaller than ε and then verifying that for every point pi not in Q, the
minimal enclosing sphere of Q plus pi has a radius greater than or equal to
ε.

2.2. The basic algorithm
We can now describe Algorithm 1, the basic algorithm that enumerates

all maximal cells of the Čech complex. It is a simple recursive procedure that
generates all possible up-to-(d+ 1)-element subsets of a set of n elements.
The set F contains the elements that have already been fixed (to be in
the subset generated) while the set R contains the points that are yet to
be explored. Thus, the for loop in the else part of the algorithm above,
generates all the relevant subsets in lexicographical order. The basis case is
handled in the then part, which adds a subset to the output list only if it is
a legitimate support of a maximal cell. A call EnumCells (∅, P ) creates a list
of all maximal cells of the Čech complex Nε (P ).

2.3. Divide-and-conquer construction of Čech complex
We finally present a more efficient divide-and-conquer procedure, which

is based on the following simple idea. We first pick a direction, i.e. a d-
dimensional vector a of length one, ‖a‖ = 1 and a cutpoint (number) b and
partition the set of potential maximal cells C into two subsets CL and CR

of cells (spheres) whose centres c are to the left or on (i.e. (a, c) ≤ b) and
strictly to the right (i.e. (a, c) > b) of the cutpoint. Clearly, CL depends only
on the points x ∈ P that satisfy (a, x) ≤ b + ε, while CL can be computed
only from the points x ∈ P that satisfy (a, x) > b− ε. This is formalised in
the recursive Algorithm 2.
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Algorithm 1 C = EnumCells (F,R)
Input: F and R are disjoint sequences of points in Rd.
Output: C is the sequence of those maximal cells of the Čech complex
Nε (F ∪R) that contain all points from F .

if |F | = d+ 1 or |R| = 0

[c1, r1] := SphereThrough (F )

[c2, r2] := MinSphere (F )

S := {x ∈ F ∪R | ‖x− c1‖ ≤ r1}
if r1 = r2 and IsMaxCell (S)

C = ((c1, r1))

else

if F 6= ∅, C := EnumCells (F, ∅)
else C := ∅
for i := 1 to |R|
C := C ∪ EnumCells

(
F ∪ (ri) ,

(
ri+1, . . . r|R|

))
return C

2.4. Discussion
Here, we discuss some subtle points in and modifications of the lower level

primitives which speed up the implementation.
We start with our Minimal Enclosing Sphere algorithm, which uses the

following simple heuristic. As explained before, the concept of support is
crucial. Given a minimal enclosing sphere for a set of points in dimension
d, the support is a set of at most d + 1 points that lie on the sphere. The
algorithm starts with a trivial support of a single point and gradually extends
the radius of the current sphere by performing so-called pivot: pick a point
with the largest distance to the centre of the current sphere, and recursively
create the minimal enclosing sphere for the current support plus that point.
We stop if the current sphere covers all the points. The correctness of this
heuristic algorithm, including its termination, is obvious.
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Algorithm 2 C = RecEnum (P )
Input: P is a sequence of points in Rd.
Output: C is the sequence of all maximal cells of the Čech complex Nε (P ).

Pick a ∈ Rd with ‖a‖ = 1 and b ∈ R.

PL := {x ∈ P | (a, x) ≤ b+ ε}, PR := {x ∈ P | (a, x) > b− ε}, PC := PL ∩
PR.

if P is small or |PC | is big with respect to min {|PL| , |PR|}

C = EnumCells (∅, P )

else

CL := RecEnum (PL), Remove from CL all cells with centres c s.t.
(a, c) > b.

CR := RecEnum (PR), Remove from CR all cells with centres c s.t.
(a, c) ≤ b.

C := CL ∪ CR.

Return C

Moreover, in running IsMaxCell (.) , we need to check many times if the
minimal enclosing sphere radius for a set of points is greater than some given
value. This can easily be incorporated into our algorithm, so that it stops
with a positive answer as soon as the current sphere radius is large enough (as
there is no need to find the final one). We also point out that the recursive
call (in the pivot step) involves at most d+2 points, and can be implemented
by complete enumeration, assuming that the dimension d is very small when
compared to the number of points n.

The other algorithm, which deserves attention, is the recursive enumera-
tion of the maximal cells. We have not specified how we partition the point
set, and it is clear that this could be crucial in achieving fast running time.
We use a very simple heuristic, which is essentially principal components
analysis. We pick the direction a to be the largest component and then ad-
just the threshold b so as to get a “reasonable” split. Moreover, we perform a
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split only if we the ratio of the number of points in the smaller subset (and
recall that the two subsets, in general, overlap and are not necessarily of the
same size) to the total number of points is bigger than a prescribed constant,
in the experiments 0.6. Otherwise, we simply use the complete enumeration
algorithm.

We can make crude estimates of the time complexity of the procedures. It
is well known (see, e.g. [22]) that the MinSphere (.) can be solved by a simple
randomised algorithm with linear expected running time O (d!n) where d is
the dimension (assumed to be a constant) and n is the number of points.
The procedure IsMaxCell (.) can be implemented in quadratic expected time
O (n2) (we have ignored the constant d here). The main call of the complete
enumeration procedure EnumCells (∅, .) goes through no more than

d+1∑
i=1

(
n

i

)
possible bases, which is O

(
nd+1

)
, so the overall expected running time is

O
(
nd+3

)
. The split in the recursive enumeration should in practice improve

this, although it could be as bad in theory.
In a final remark, the basic numerical building block of the algorithm

is calculating a sphere going through d + 1 points, and this creates certain
numerical instability in practice: whenever we need to decide if a point is
inside, outside or on the boundary of such a sphere, we have to do it with
certain precision.

3. Construction of a series of Čech complexes

We will finally discuss Algorithm 3, which produces a number of Čech
complexes Nε (P ) of the point P at all “meaningful” scales ε. It is perhaps
an interesting point that it is easier to work these out backwards. We start
with a single cell that includes all the points, and this is precisely the minimal
enclosing sphere of the points. We then iterate a simple rule: from the current
set of cells, pick the one with maximal radius ε (assuming without loss of
generality that it is unique), and “break” it, i.e. remove each point on the
boundary, calculate the minimal enclosing sphere of the others, and add it
to the set of cells only if it is a maximal cell at scale ε. The correctness of
the iteration is again obvious.
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Algorithm 3 AllComplexes (P )
Input: P is a set of n points in Rd.
Output: Outputs all different Čech complexes Nε (P ) starting from the
biggest one, where εmax is the radius of the minimum enclosing sphere of
P and ending at εmin = 0, where there are |P | single points .

[c, ε] := MinSphere (P ); C := {[c, ε]}

repeat

Output (ε, C)

Q := P ∩ ∂c; R := P ∩ c; C := C \ {[c, ε]}
for every q ∈ Q do

if IsMaxCell (R \ {q} , ε) then C := C ∪ {MinSphere (R \ {q})}

i := argmax[cj ,rj ]∈C {rj}; ε := ri; c := ci

until ε > 0

4. Experiments

We first tested the computational efficiency of the algorithm on synthetic
point sets of various sizes. The test sets were produced through uniform
random sampling of the surface of the unit sphere. All algorithms were
implemented in Matlab and run on a commodity PC with a core i6 processor
and 3Gb RAM. Table 1 (top) shows the timings and Table 1 (bottom) shows
the ratio ρ of the number of simplices in the Čech complexes by the number
of input points.

As expected, the timings depend not only on the number of input points
but also on the value of ε. Indeed, a large values of ε increases the expected
number of points in the basic EnumCells call of the algorithm and thus, the
localization of the computations is largely lost. The timings show that the
algorithm can handle point sets of several thousand points in size, while for
values of ε that keep ρ around 2, the algorithm can possibly handle tens of
thousand of points. As the triangulations of inputs sampled from low genus
surfaces have a value of ρ around 2, complexes with a similar value of ρ are
of high interest. Regarding the relationship between ε and ρ, we notice that
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Scale Number of points
ε 500 1K 2K 5K 10K 50K

0.01 0.6 1.2 2.7 9.6 26 553
0.02 0.7 1.6 4.4 20 84 7941
0.05 1.4 4.9 22 297 2646 -
0.10 5.5 39 307 5920 - -
0.20 79 700 - - - -

Scale Number of points
ε 500 1K 2K 5K 10K 50K

0.01 0.97 0.96 0.93 0.83 0.74 0.90
0.02 0.92 0.86 0.77 0.70 0.82 2.07
0.05 0.74 0.71 0.87 1.41 2.41 -
0.10 0.89 0.21 1.97 4.31 - -
0.20 2.05 3.43 - - - -

Table 1: Top: Timings in seconds. Bottom: The ratio ρ of the number of simplices in
the complex by the number of input points.

for very small values of ε all the input points are non-connected simplices
of dimension 0 of the Čech complex and thus ρ = 1. As ε increases, points
are connected to form non-connected edges of the complex and the value of
ρ decreases and then it increases again together with the complexity of the
connectivity.

In a second experiment, we tested the computational efficiency of Algo-
rithm 3 on input point sets sampled from the interior of a planar square
region. For each input, we report the running time in seconds and the num-
ber of distinct Čech complexes generated by the algorithm. The results are
summarised in Table 2. As expected, the algorithm is practical for small
point sets only, given that the number of distinct Čech complexes increases
rapidly with the number of points in the input.

# input points 10 20 50 100
time 0.35 3.65 120 1493

# complexes 78 453 6169 43292

Table 2: The timings in seconds and the number of distinct complexes generated by
Algorithm 3.
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Figures 3 and 4 visualise the Čech complexes of various point sets for
various values of ε. Each figure shows the minimal enclosing sphere of the
maximal simplices of the Čech complex. Blue, green and red colour corre-
spond to minimal enclosing spheres with support of 2 and 3 and 4 points,
respectively.

Figure 3: Top to bottom: the added noise is equal to 0, 0.05 and 0.1. Left to right:
ε = 0.05, 0.1 and 0.2. Blue, green and red colour correspond to minimal enclosing spheres
with support of 2 and 3 and 4 points, respectively.

In Figure 3, each input set contains 1,000 points sampled from the surface
of the unit sphere. Various amounts of noise were added, in the form of a
uniform random displacement in the direction of the normal. We notice that
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Figure 4: Top: ρ = 1.31, 1.88 and 2.55. Middle: ρ = 1.48, 2.36 and 3.89. Bottom: ρ =
1.20, 1.86 and 2.67. Blue, green and red colour correspond to minimal enclosing spheres
with support of 2 and 3 and 4 points, respectively.
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when no noise is added and all input points lie on the unit sphere, there
is no simplex with minimal enclosing sphere of support 4. Indeed, such a
minimal enclosing sphere would have to be the unit sphere itself. We also
notice that, as expected, increased noise in the input increases the number of
minimal enclosing spheres of support 4. These results illustrate the claim in
[24] that, similarly to the Vietoris-Rips complexes, the Čech complexes are
also sensitive to spatial noise.

Figure 4 visualises in the same way the Čech complexes of the set of ver-
tices of triangle meshes modelling synthetic or natural objects. In particular,
we used the Eight, Fandisk and Igea triangle mesh models with 766, 6475
and 8268 vertices. All cases verify the claim that for values of ρ around 2
the Čech complexes offer good descriptions of the underlying surfaces of the
input points. We also note that near surface features, such as sharp edges or
corners, the size of the support obtains its maximum value 4.

5. Conclusion

We presented an algorithm for the efficient computation of the Čech com-
plex of a point set for a given value of ε and an algorithm for the efficient
computation of all possible Čech complexes on a point set. Experimental
results on synthetic and natural 3D point sets sampled from surfaces show
that the first algorithm can generally handle sets of several thousand points.
The same experiments show that for smaller values of ε, which give Čech
complexes with most of their maximal simplices triangles, the algorithm can
handle inputs with tens of thousands of points. We conclude that in certain
surface modelling applications the computation of the topologically more in-
formative Čech complex can be a viable alternative to the simpler and more
efficient computations of Vietoris-Rips complexes.

In the future, we plan to prove theoretical bounds for the number of max-
imal simplices in the Čech complex of N points sampled from the surface of
a sphere. In particular, we conjecture that the number of maximal simplices
is O(N). As a second direction of future work, we plan to investigate the dif-
ferences in the persistence topology of a point set when it is studied through
the Čech and the Vietoris-Rips complex, respectively.

References

[1] L. Vietoris, Über den höheren zusammenhang kompakter räume und
eine klasse von zusammenhangstreuen abbildungen, Mathematische An-

15



nalen 97 (1927) 454–472.

[2] P. Alexandroff, Simpliziale approximationen in der allgemeinen topolo-
gie, Mathematische Annalen 96 (1927) 489–510.

[3] E. Čech, Théorie générale de l’ homologie dans un espace quelconque,
Fund. Math. 19 (1932) 149–183.

[4] A. Zomorodian, Fast construction of the Vietoris-Rips complex, Com-
puters & Graphics (2010).

[5] H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological persistence
and simplification, in: FOCS ’00, IEEE, 2000, p. 454.

[6] A. Zomorodian, G. Carlsson, Computing persistent homology, Discrete
Comput. Geom. 33 (2005) 249–274.

[7] H. Edelsbrunner, The union of balls and its dual shape, Discrete and
Computational Geometry 13 (1995) 415–440.

[8] F. Aurenhammer, R. Klein, Voronoi Diagrams, Elsevier, pp. 201–290.

[9] D.-S. Kim, J. Seo, D. Kim, J. Ryu, C.-H. Cho, Three-dimensional beta
shapes, Computer-Aided Design 38 (2006) 1179–1191.

[10] D.-S. Kim, Y. Cho, K. Sugihara, J. Ryu, D. Kim, Three-dimensional
beta-shapes and beta-complexes via quasi-triangulation, Computer-
Aided Design 42 (2010) 911–929.

[11] D.-S. Kim, Y. Cho, K. Sugihara, Quasi-worlds and quasi-operators on
quasi-triangulations, Computer-Aided Design 42 (2010) 874–888.

[12] D.-S. Kim, J.-K. Kim, Y. Cho, C.-M. Kim, Querying simplexes in quasi-
triangulation, Computer-Aided Design 44 (2012) 85–98.

[13] V. de Silva, G. Carlsson, Topological estimation using witness com-
plexes, in: M. Alexa, S. Rusinkiewicz (Eds.), Eurographics Symposium
on Point-Based Graphics.

[14] L. J. Guibas, S. Y. Oudot, Reconstruction using witness complexes,
in: Proceedings of the eighteenth annual ACM-SIAM symposium on
Discrete algorithms, SODA ’07, SIAM, Philadelphia, PA, USA, 2007,
pp. 1076–1085.

16



[15] V. de Silva, R. Ghrist, Coverage in sensor networks via persistent ho-
mology, Algebraic and Geometric Topology 7 (2007) 339–358.

[16] A. Tahbaz-Salehi, A. Jadbabaie, Distributed coverage verification in
sensor networks without location information, Automatic Control, IEEE
Transactions on 55 (2010) 1837 –1849.

[17] K. Heath, N. Gelfand, M. Ovsjanikov, M. Aanjaneya, L. J. Guibas, Im-
age webs: Computing and exploiting connectivity in image collections,
IEEE Computer Society, 2010, pp. 3432–3439.

[18] M. Vejdemo-Johansson, Interleaved computation for persistent homol-
ogy, CoRR abs/1105.6305 (2011).

[19] H. Adams, A. Tausz, javaPlex Tutorial, 2011. javaplex.googlecode.
com/files/javaplex_tutorial.pdf.

[20] P. Perry, V. de Silva, PLEX 2.5.1: simplicial complexes in MATLAB,
2006. http://comptop.stanford.edu/u/programs/plex.html.

[21] H. Sexton, M. Vejdemo-Johansson, JPlex, 2009. http://comptop.
stanford.edu/programs/jplex/.

[22] E. Welzl, Smallest enclosing disks (balls and ellipsoids), in: New Results
and New Trends in Computer Science, volume 555 of Lecture Notes in
Computer Science, Springer-Verlag, 1991, pp. 359 – 370.

[23] B. Gärtner, Fast and robust smallest enclosing balls, in: 7th Annual
European Symposium on Algorithms (ESA), volume 1643 of Lecture
Notes in Computer Science, Springer-Verlag, 1999, pp. 325 – 338.

[24] E. Chambers, V. de Silva, J. Erickson, R. Ghrist, Vietoris-rips complexes
of planar point sets, Discrete & Computational Geometry 44 (2010) 75–
90.

17


