
Progressive Compression of Manifold Polygon Meshes

Adrien Magloa, Clément Courbeta, Pierre Alliezb, Céline Hudelota

aMAS laboratory, Ecole Centrale Paris, France
bINRIA Sophia Antipolis - Méditerranée, France

Abstract

This paper presents a new algorithm for the progressive compression of manifold polygon meshes. The input sur-
face is decimated by several traversals that generate successive levels of detail through a specific patch decimation
operator which combines vertex removal and local remeshing. The mesh connectivity is encoded by two lists of
Boolean error predictions based on the mesh geometry: one for the inserted edges and the other for the faces with a
removed center vertex. The mesh geometry is encoded with a barycentric error prediction of the removed vertex coor-
dinates and a local curvature prediction. We also include two methods that improve the rate-distortion performance: a
wavelet formulation with a lifting scheme and an adaptive quantization technique. Experimental results demonstrate
the effectiveness of our approach in terms of compression rates and rate-distortion performance.

1. Introduction

Surface meshes are of common use in a range of ap-
plication domains such as computer-aided design, sim-
ulation, medical imaging, digital heritage and entertain-
ment. The increasing needs for high precision models
lead to the generation of complex meshes which must be
stored and transmitted over heterogeneous networks. As
data storage has a cost and network bandwidths do not
grow as fast as the size of these data, solutions must be
found to reduce the size of these models through mesh
compression.

Among the mesh compression algorithms, the pro-
gressive ones allow during decompression to first ob-
tain a coarse version of the mesh. This first level of
details (LOD) is then progressively refined as more data
is decompressed, until the input mesh is restored. The
general goal is to achieve the best rate-distortion (R-D)
performance in the sense that each LOD decoded must
be as close as possible to the original mesh with the min-
imum amount of transmitted data.

Previous work on progressive mesh compression has
focused on the compression of triangle surface meshes.
However, a significant number of carefully designed
meshes are composed of polygon faces. In addition,
many recent work focused on quad mesh processing.
Moreover, for applications such as remote scientific vi-
sualization, meshes can contain not only triangular faces
and the decompression must restore the initial connec-
tivity. While some approaches have been proposed

Figure 1: Levels of details of the quadrangle elephant model generated
by our compression algorithm.

for single-rate compression [1, 2, 3, 4, 5] or random-
accessible compression [6], to our knowledge no ap-
proaches were proposed for their progressive compres-
sion.
Our main contributions are summarized as follows:

1. We first propose a simple progressive mesh com-
pression algorithm that compresses any 2-manifold
mesh with arbitrary face degrees.

2. From this base algorithm, we describe a curvature
prediction method and a connectivity prediction
scheme to further reduce the size of geometry and
connectivity.

3. We also include two complementary methods that
improve the R-D performance. The first method
consists in a wavelet formulation of the geometry
compression. It contains a lifting step that slightly
improves the R-D performance without increasing
the final compression ratio. The second method
is the adaptive quantization algorithm from [7].

Preprint submitted to Computer & Graphics March 15, 2012

It further improves the R-D performance but in-
creases the final compression rate.

2. Previous work on progressive mesh compression

2.1. Connectivity-based

Hoppe introduced the concept of progressive meshes
(PM) [8]. The idea is to incrementally decimate a mesh
using the edge collapse operator. The compressed rep-
resentation consists of the base mesh followed by all
parameters required for the incremental reverse opera-
tions, called vertex splits. The main advantage of this
scheme is its high multi-resolution granularity, together
with the possibility to perform selective refinement dur-
ing decoding. Such granularity is achieved at the cost
of low compression rates: in the order of 37 bits per
vertex (bpv) with 10 bits quantization. Popović and
Hoppe in [9] generalized the PM representation to arbi-
trary simplicial complexes. They introduced the gener-
alized vertex split and its inverse, the vertex unification
operations. With this representation, a model requires
about 50bpv with 10 bits quantization.

In order to come closer to compression rates of sin-
gle rates methods, some methods were proposed to en-
code the vertex split operations in batches. Taubin et
al. [10] build a progressive mesh compression scheme
inspired by the single-rate topological surgery algo-
rithm. Their progressive forest split representation en-
codes a manifold triangular mesh with a base mesh
and a sequence of forest split operations. The forest
split operation consists in cutting the mesh through sev-
eral sets of connected edges, filling the generated holes
with triangles and relocating the vertices. Pajarola and
Rossignac [11] improved the compression rates by im-
posing some restrictions for choosing the candidates to
the edge collapse operations: the operations are grouped
into batches during the traversal of a spanning tree.
They also improve the geometry coding by using a but-
terfly predictor. Karni et al. [12] designed a progressive
compression scheme which enables the fast rendering
of all the LODs. The first step of their algorithm is to
create an efficient vertex rendering sequence composed
of series of incident vertices. The mesh is then deci-
mated by collapsing edges along this sequence. Better
compression ratios are achieved with these approaches
(about 30bpv [10] and 22bpv [11] for 10 bits quanti-
zation). Nevertheless the multiresolution granularity is
impacted compared to the PM representation.

Other progressive compression schemes use vertex
removals instead of edge collapses. Li and Kuo [13]
pioneered a method based on vertex removal followed

by a local patch retriangulation. The connectivity is
encoded with a local index which specifies the patch
neighborhood pattern and a global index which locates
this pattern in the whole mesh. The geometry data is en-
coded with a barycentric error prediction. The authors
also pioneered the idea of adapting the vertex quanti-
zation along the transmission of the LOD. Cohen-Or et
al. [14] used the same decimation mechanism combined
with patch coloring to encode the face locations with re-
spect to each patch. They achieved compression rates
competitive with single rate techniques (about 23bpv
with 10 bits quantization). Alliez and Desbrun [15] pro-
posed what could be seen as a progressive version of the
Touma-Gotsman single-rate encoder [16]. At each iter-
ation, the mesh is decimated by two deterministic patch
traversals, the connectivity being encoded through the
valence of the removed vertices. The geometry is en-
coded through the patch barycentric error prediction in
a local Frenet frame. The obtained compression rates
are about 13bpv with 10 bits quantization.

Valette et al. build a progressive mesh compression
algorithm through a wavelet framework [17]. The ini-
tial mesh is progressively decimated with a subdivi-
sion scheme tailored to irregular meshes. The connec-
tivity data is composed of all face subdivision opera-
tions. The geometry is encoded through a wavelet lift-
ing scheme. The compression rates are slightly better
than those from [15] (about 19bpv with 12 bits quanti-
zation).

2.2. Geometry-based
Observing that the compressed size of geometry is

generally higher than the one of connectivity, Gandoin
and Devillers [18] designed a mesh compression algo-
rithm driven by the geometry. In their scheme, the ver-
tex positions are stored in a kD-tree and the vertex oc-
currences in each cell are entropy coded. The connectiv-
ity is encoded using vertex splits. Peng and Kuo also de-
veloped a geometry-driven progressive mesh compres-
sion algorithm [19] based on an octree data structure.
This coder predicts the connectivity of the mesh from
the neighbor vertices geometry during the vertex splits
thanks to pivot vertices. This algorithm compresses tri-
angle meshes with about 15bpv with 12 bits quantiza-
tion.

2.3. Improving the Rate-Distortion trade-off

Optimizing the R-D trade-off has been the main focus
of recent research on progressive mesh compression.
Lee et al. [7] showed that the rate-distortion trade-off of
the Alliez-Desbrun (AD) coder [15] is improved by us-
ing an adaptive quantization method. The idea consists

2

in choosing between performing a decimation operation
or a global quantization operation. They obtain both
better R-D performances and compression rates (about
1bpv improvement with 12 bits quantization). Ahn et al.
[20] proposed another improvement for the AD coder
through an optimized mesh traversal to maximize the
number of removed vertices per decimation step. A cur-
vature prediction is also used for encoding the geometry.
The latter shares the general idea of spectral methods
(see. Section 2.4) because a topology-based Karhunen-
Loève transform concentrates the distribution of geom-
etry residuals. The residuals are entropy coded with a
bit plane coder. Decimation conquests are interleaved
with the transmission of bit planes to improve the R-D
performance. They significantly improve the compres-
sion rates of the AD coder (about 4bpv reduction with
12 bits quantization).

Valette et al. cast the progressive mesh compression
problem as a mesh generation problem [21]. The algo-
rithm starts from a coarse version of the initial mesh that
is progressively refined using a Delaunay mesh genera-
tion approach. When all vertices of the original mesh
have been decoded, the initial connectivity is restored
by flipping edges. This algorithm is shown to compress
efficiently (about 15bpv with 12 bits quantization) and
provides good rate-distortion performances. The com-
plete connectivity restoration process is however not
guaranteed to succeed. The idea of computing the best
decimated version of an initial mesh has been recently
further investigated [22]. The algorithm starts from the
initial mesh vertex set and recursively splits it into sev-
eral child subsets. Each time a new vertex subset is gen-
erated, a representative vertex of this set is computed.
In this hierarchy, the number of children of a set is en-
tropy coded. The offsets between a representative and
its parent representative are quantized and entropy en-
coded. The hierarchy is encoded with the connectivity
information in a specific order to achieve the best R-
D trade-off. This algorithm yields compression rates at
about 16bpv with 12 bits quantization.

2.4. Laplacian operator-based
Other schemes propose to compress the vertex posi-

tions using the frequency domain through the use of the
mesh Laplacian operator. Karni and Gotsman [23] com-
press the geometry of a mesh by computing its spectrum
with the eigenvector decomposition of its Laplacian ma-
trix. The spectral coefficients, after being quantized and
entropy coded, are sufficient to decompress a good ap-
proximation of the initial mesh. The compression, albeit
lossy, achieves excellent R-D performance with few co-
efficients. Mamou et al. [24] devised an algorithm that

computes the Laplacian matrix of a mesh. The mesh is
then approximated with a heat equation and a minimal
set of control points. The vertex locations are encoded
as residuals from the approximation. The connectivity
is encoded by the TG single-rate encoder [16]. This
scheme achieves an excellent compression ratio (about
10bpv with 12 bits quantization) despite a high com-
plexity due to the time spent at solving the heat equa-
tion.

2.5. Wavelet-based

When the restoration of the initial mesh connectiv-
ity is not crucial, some authors resort to semi-regular
remeshing. Khodakovsky et al. [25] propose an algo-
rithm that remeshes the initial mesh, then compresses it
using a wavelet transform based on the Loop filter and
a zero-tree coder. This scheme was later improved [26]
through a normal mesh representation. Payan and An-
tonini [27, 28] allocate the bits across the wavelet sub-
bands for the standard and normal mesh representations.
In general, the wavelet-based algorithms incorporating
a remeshing step provide better compression ratio than
pure lossless algorithms.

2.6. Handling polygon meshes

An indirect approach to deal with polygon meshes
consists of first triangulating the polygon mesh before
resorting to an existing method restricted to triangle
meshes. This approach was already proposed by Taubin
et al. [10] to extend the progressive forest split algo-
rithm. While being simple at first glance, this approach
is not when caring about restoring the initial connec-
tivity of the finer level. It requires encoding an extra
information to remove the edges added during trian-
gulation, and conceptually adds more connectivity by
adding more edges than necessary. The theoretical re-
sult of Tutte’s entropy [29] states that the entropy of
a planar graph is expressed in bits per edge. This re-
sult and our experiments (see Section 6.1) confirm the
intuition that adding extra edges increases entropy and
hence that the size of the compressed triangulated mesh
is in general superior to that of the compressed original
mesh. Li et al. state also that their compression scheme
[13] can be used on polygonal meshes. However, they
provide no details about how the algorithm would be
adapted. It can also be noticed that the experimental
results presented in [10] and [13] do not compare favor-
ably with recent state of the art techniques. In recent
work [19], Peng and Kuo discuss the progressive com-
pression of polygon meshes by an octree coder. As their
algorithm can compress arbitrary connectivity between

3

vertices, it is possible to modify the face construction
algorithm to reconstruct polygon faces. The mesh con-
nectivity is encoded through vertex splits and efficient
prediction of pivots vertices. By definition, pivot ver-
tices are connected to the two vertices of the edge gen-
erated by a vertex split, but there is no pivot vertex when
the adjacent faces of this edge are not triangles. This en-
coding scheme is therefore optimized to compress trian-
gle meshes and is not best suited to polygon meshes.

Our algorithm compresses progressively and effec-
tively manifold polygonal meshes with arbitrary face
degrees while still be competitive with previous ap-
proaches specialized to triangle mesh.

3. Base algorithm

3.1. Compression
The proposed algorithm is based on mesh decima-

tion. It is composed of four main procedures that are
successively repeated until the initial mesh Mn cannot
be further simplified.

• The decimation step consists in applying the patch
decimation operator to generate the mesh LOD
Ml−1 from Ml. This operator removes vertices and
adds new edges to the mesh. Ml connectivity is
transformed into face and edge Boolean flags. Face
flags indicate if a face has a removed center ver-
tex. Edge flags indicate if an edge was inserted
by a remeshing operation. The prediction residu-
als of the positions of the removed vertices are also
stored for later encoding.

• The patch encoding step builds the face symbol
list S f and the residual list S r from the face flags
and residuals. It consists of a deterministic face
conquest of the mesh to encode the faces with a
removed center vertex and the position of the re-
moved vertices.

• The edge encoding step builds the edge symbol list
S e from the edge flags. A deterministic edge con-
quest encodes which edges have or have not been
inserted.

• The entropy coding step compresses the S f , S r and
S e symbol lists.

3.1.1. Decimation step
The decimation step tries to simplify as much as pos-

sible a mesh LOD Ml to generate Ml−1 using the patch
decimation operator. A patch is a set of faces with a
common center vertex. The algorithm first attempts to

form a patch on the mesh. The degree of its center ver-
tex v j must greater than two (see Figure 3(a)). If it suc-
ceeds, it then creates a polygon fi around v j. To do so,
it splits every faces around v j that is not a triangle by
adding a new edge between the two vertices of this face
that are connected to v j. We call this remeshing opera-
tion re-edging (see Figure 3(b)). This operation aims at
generating faces with low degree. The inserted edges,
are marked. v j is removed (see Figure 3(c)) and the
residual

r fi = pv j − b fi , (1)

where pv j is the position of v j and b fi is the barycenter
of fi vertices, is stored. The barycenter of the vertices
of a face fi is simply defined as:

b fi =
1
|V fi |

∑
vk∈V fi

pvk ,

where V fi is the set of the fi vertices. r fi represents the
geometry data. fi becomes a face of the mesh. It is
marked as having a removed center vertex and can no
longer be implied in a patch decimation operation in the
current decimation step.

The patch decimation operation by definition always
removes one vertex v j from the mesh. If v j has t inci-
dent triangles, the variation of the number of faces in
the mesh caused by the operation is equal to 1 − t. This
means that, if v j is only incident to non-triangle faces,
t = 0 and the number of faces is incremented by one,
while the degree of the neighbor faces is decremented
by one (see Figure 3). Other patch decimations on
neighbor vertices may make these faces progressively
disappear. If v j is only incident to triangle faces, then
no re-edging is needed and the number of faces in the
mesh decreases (see Figure 4).
If v j is a degree d vertex, fi generation can be seen as the
merging of d triangular faces, as achieved by superface
creation in [30]. But in this previous work the process
is driven by the mesh geometry. In our algorithm, the
merging is driven by the connectivity because it must
ensure for the decompression that all fi vertices were
connected to v j. Besides, re-edging does not triangulate
all mesh faces since it only happens where patch deci-
mations are proceeded.

Patch decimation operations must preserve the mani-
fold property of the mesh, so that if a patch border ver-
tex shares an edge with more than 2 other patch bor-
der vertices, the patch is not decimated. The generated
faces are not necessarily planar. This is not a prob-
lem since non-planar faces can be good local approx-
imations. Concave faces however may be problematic

4

Figure 2: (a) One example decimation step. 1. A seed vertex (in red) is chosen to form the dark gray patch. 2. The non-triangular faces of the patch
are split by inserting edges (in blue) between their two vertices connected to the center vertex. 3, 4, 5. The patch center vertex is removed. The face
generated by the vertex removal is marked as having a center vertex removed (in green). Its vertices are marked as visited (in blue). All its unvisited
adjacent vertices are added to a FIFO queue. A new patch center vertex (red) is popped out of the FIFO. It may not be possible to build a valid
patch around this vertex (green) because, for example, its decimation would not preserve the manifold property. In this case, its unvisited adjacent
vertices are added to the FIFO and an other vertex is popped. 6. No more patches can be decimated. The current decimation step is finished. The
results are: a set of faces with a center vertex removed (green), a set of faces without a removed center vertex (pink), a set of inserted edges (blue)
and a set of original edges (black).

Figure 3: Decimation of a patch with non-triangle faces. (a) The ac-
tive patch is in blue. (b) The faces are split by the re-edging operation
with the inserted blue edges in order to create a new polygon around
v j. (c) v j is removed. fi is marked as having a center vertex removed.

Figure 4: Decimation of a patch with triangle faces. (a) The active
patch is in blue. (b) v j is removed. fi is marked as having a center
vertex removed.

to render and may lead to further deteriorations during
decimation. In our scheme, a face is said concave if its
edges, projected on a plane directed by the face normal,
form a concave polygon. A triangle face is by definition
always convex. The normal of a non-planar face is com-
puted with Newell’s method [31]. If the generation of
concave faces is not allowed, the first decimation steps
generate only convex faces. When it is no longer possi-
ble, the next decimation steps further simplify the mesh
by allowing the generation of concave faces. These last
unconstrained decimations allow reducing the size of
the base mesh that is not compressed in our current im-
plementation. During the decompression, the first LOD
displayed to the user is the first that contains only con-
vex faces. The algorithm can also skip the decimation

of important vertices to minimize the distortion through
a volume-based metric as in [15].

Once the current patch decimation is over, the algo-
rithm attempts to create other patches with unmarked
faces of the mesh. The patch decimation order is not
constrained. In our current implementation, the algo-
rithm starts from a random seed vertex and progres-
sively conquers the whole mesh by trying to generate
new patches with adjacent vertices that do not belong to
already marked faces. An example is depicted in Figure
2.

Figure 5: Decimation of an intermediate level of detail of the bunny
model. Left: the initial level of detail. Right: the new level of detail
after decimation. The inserted edges are depicted in blue. Faces with
a removed vertex are depicted in green.

A new mesh LOD Ml−1 is obtained when no more
patch decimation operations can be performed. The
result of the decimation step is the simplified level
Ml−1 with a set of marked inserted edges and a set of
marked faces with a removed center vertex (see Figure
5). About 30% of the vertices of a LOD are removed
during a decimation step.

The decimation algorithm stops when no more deci-
mation steps can be performed. The lowest LOD M0 is
called the base mesh. Its size depends on the complexity
of the mesh but is generally less than 1% of the total file

5

Figure 6: Examples of two successive decimations of regular connec-
tivities: a regular grid (a), a regular triangle mesh (b) and a regular
hexagonal mesh (c).

size. As shown by Figure 6, the decimation step pre-
serves the regularity of the infinite regular structure it
decimates. In practice however the regularity gets pro-
gressively worse during decimation, as the meshes are
not specifically designed to preserve regularity during
decimation.

3.1.2. Patch encoding step
The patch encoding step produces the list S f of

Boolean face symbols s fi and the list S r of the residuals
r fi . s fi codes if fi has a removed vertex or not. The al-
gorithm uses a gate FIFO queue to perform a determin-
istic conquest of the mesh. A gate is an edge between
a conquered and an unconquered face. The first gate of
the patch encoding step is specified for the whole mesh
compression and hence can not be removed. When a
face fi is conquered, its symbol s fi is added to S f . If
s fi is true, we also add the projection of r fi in the lo-
cal Frenet frame to S r (see Figure 7). To avoid the
post-quantization step mentioned in [15] and slightly re-
duce the entropy, we use the bijection proposed in [32]
to transform the coordinates. The gates of fi are then
added to the queue in the counterclockwise order start-
ing from the current gate. The next conquered face is
the one pointed by the next gate in the queue. The same
conquest order is followed by the decoder during the
decompression. An example of a patch encoding step is
depicted in Figure 8 (a).

3.1.3. Edge encoding step
To build the edge symbols list S e, a deterministic full

conquest of the mesh edges is performed using an edge

Figure 7: Encoding of the geometry residual r fi in the local Frenet
frame (t1, t2, n). t1 takes the direction of the gate edge (in blue). n is
the patch normal. And t2 = −t1 ∧ n.

FIFO queue. When an unconquered edge ek is encoun-
tered, a symbol sek is generated to code if ek was in-
serted. Note that if ek belongs to two faces that do not
have a removed center vertex, it is inevitably original.
Therefore, no symbol is generated in this case. The
neighboring edges of one ek vertex are then added to the
queue. The next edge to conquer is extracted from the
queue. An example of an edge encoding step is given
by Figure 8 (b).

3.1.4. Entropy encoding

Figure 9: Structure of the compressed data generated by our coder.

The previously described face and edge binary sym-
bol lists S f and S e represent the connectivity data. The
simplification process, depending on the LOD, may lead
to biased binary distributions of their symbols (see Fig-
ure 11). Therefore, an entropy coder with one adaptive
context per list is used to encode S f and S e.
The geometry data, the S r list, is also entropy coded
with two adaptive contexts: one for the tangential com-
ponents of r fi and one for its normal component. In
our current implementation, we used the range encoder
from Schindler [33]. Figure 9 depicts the structure of
the compressed data generated by our coder.

3.2. Decompression

The mesh decompression starts by reconstructing
M0. Then, by applying the reverse operations of the

6

Figure 8: (a) Example of a patch encoding conquest. Faces with, resp. without, a removed center vertex are depicted in green, resp. pink.
Conquered faces are depicted in gray. The arrows represent the gates. (b) Example of an edge encoding conquest. The inserted edges are depicted
in blue. The edges in the FIFO queue are depicted in bold. The conquered edges are depicted in gray. During decompression the same conquest
orders are followed to determine the faces with a removed center vertex and the inserted edges.

decimation step, the successive LOD Ml are progres-
sively restored to finally obtain Mn. Thus, for each
LOD Ml, a first full conquest is performed to decode
the faces with a removed center vertex. These vertices
are then inserted at their original positions from the en-
coded geometry data. A second full conquest decodes
and removes the edges that were not present in Ml.

4. Improving connectivity and geometry encoding

The scheme described above allows compressing and
decompressing any 2-manifold polygon mesh. We de-
scribe next improvements to further reduce the size of
the connectivity and geometry. They make our scheme
competitive in term of compression ratio with triangle
specialized approaches. The typical improvement is
0.3bpv for geometry and 0.7bpv for connectivity.

4.1. Predicting connectivity from geometry

As depicted in Figure 10, after one decimation con-
quest, the average area of the faces with a removed cen-
ter vertex is greater than the average area of the other
faces. This observation allows predicting connectivity
from geometry. The prediction algorithm works as fol-
lows. During the patch encoding and decoding con-
quests, the average area of the two types of faces are
progressively updated when new faces are conquered.
The predicted type of a new conquered face is the one
which has the closest average area value to the current
face area. A binary symbol is generated to indicate if
the prediction is verified. This symbol replace s fi and
is also later entropy coded. The binary distribution of
this new symbol is for most cases more biased than the
simple coding distribution.

For some connectivity however, such as the decimation
of a regular hexagonal mesh (see Figure 6(c)), the aver-
age area of the two types of faces can be equal. In this
case, the type of a face can be predicted from the type
of its neighbors. When the difference between the face
type pourcentages is below a threshold (experimentally
set at 10%), our algorithm predicts the type of a face
as the inverse of the type that is the most represented
among the adjacent already conquered faces.

Figure 10: Result of a decimation conquest. The average surface of
the face with a removed center vertex (green) is larger than the average
surface of the other faces (red). The average length of the inserted
edges (blue) is also superior to the average length of the others (black).

A similar algorithm is used for the prediction of the
edge symbols sek . If the polygons are well-shaped, then
the inserted edges are in general longer than the original
edges due to the re-edging process.

To predict the group a face or an edge belongs to, we
use average values of face areas and edge lengths com-
puted on the part of the mesh already conquered. We
make the assumption that the mesh is uniformly sam-
pled. When the current LOD regularity is bad or the
last decimation step removed few vertices, the simple
coding scheme is more effective. Therefore, at the be-

7

ginning of each connectivity entropy encoding step, a
binary symbol is generated to indicate if the connectiv-
ity prediction algorithm is used or not.

Figure 11: Example of connectivity symbol distributions after one
decimation step shown on the right mesh. The first row shows the
distribution of S f and S e. The second row shows the distributions of
the prediction symbols.

4.2. Curvature prediction for geometry encoding

As described in Section 3.1.1 the geometry data is
composed of the removed vertex residuals r fi . To im-
prove the geometry data encoding, we use a curvature
prediction method. Instead of directly encoding the
residual r fi , we encode:

g fi = r fi − αl fi , (2)

where l fi is the average Laplacian of the set V fi of the
vertices of fi. We define the Laplacian of a vertex v j as:

lv j =
1
|Vv j |

∑
vk∈Vv j

pvk − pv j ,

with Vv j the set of neighbor vertices of v j. Therefore we
have:

l fi =
1
|V fi |

∑
vk∈V fi

lvk .

In our experiments, we set α = 0.5. For most meshes,
g fi has a more biased distribution than the one of r fi and
hence can be more effectively entropy coded.

5. Improving the Rate-Distortion

We now describe the inclusion to our codec of two
methods that improve its rate-distortion performance.
The first is based on a wavelet decomposition with a lift-
ing step. It improves the R-D ratios at low rates by about

25% without impacting the final compression rate. The
second is the adaptive global quantization method taken
from [7]. It improves the R-D ratios at low rates by
about 35% but increases the final compression rate by 1
to 2 bpv.

5.1. Wavelet formulation of the geometry compression
We formulate here the mesh geometry compression

as a wavelet decomposition using the lifting scheme
[34]. The idea of using a wavelet decomposition for the
geometry compression of irregular meshes is not new
[17]. However the wavelet decomposition we present is
specific to our method as we use different mesh decima-
tion operators and geometry encoding schemes.

When a new level of details is generated, two types
of geometry data are computed during the wavelet de-
composition:

Cl−1 = Al.Cl, (3)

Dl−1 = Bl.Cl. (4)

Cl−1 is the m×3 global matrix of the coarse coefficients,
the m vertex coordinates of Ml−1. Dl−1 is the p × 3
global matrix of the detail coefficients, the p local r fi
values that are encoded. The analysis filters Al and Bl

are defined by the decimation operations completed to
generate Ml−1. Al is the matrix that extracts the vertex
positions of Ml−1 from the vertex positions of Ml. Bl is
the matrix that computes all the details coefficients, as
locally defined in (1) (see Figure 12 (a)).

Figure 12: Transversal views of a mesh during the compression with
the lifting scheme enabled. (a) The mesh before decimation is de-
picted by gray dotted lines. The mesh after decimation is depicted
by black continuous lines. The detail coefficients r fi are the vectors
between the barycenter of the face vertices (b f1 , b f2 and b f3) and the
removed vertices (v3, v4 and v5). (b) The mesh before the lifting step
is in gray dotted lines. The mesh after is in black continuous lines.
The lifting step moves the position of the remaining vertices v1, v2
and v3 according to the neighbor face r fi values to improve the R-D
distortion performance.

During the decompression, once the connectivity has
been decoded, the coarse coefficients Cl can be obtained

8

from the coarse coefficients Cl−1 because the vertices
of Ml−1 are a subset of the vertices of Ml. The details
coefficients Dl−1 are decoded from the compressed data.
From (1), we have:

pv j = r fi + b fi .

So, thanks to this local formula, it is possible to recover
Cl from Cl−1 and Dl−1. This process can be written un-
der the form of the following equation:

Cl = Pl.Cl−1 + Ql.Dl−1,

where Pl and Ql are the synthesis filters determined by
the previously described process.

This scheme corresponds to the lazy wavelet trans-
form. It just separates the low and high frequency terms
during the compression and reassemble them during the
decompression.

5.1.1. Lifting step
To improve the R-D performance of our coder, after a

decimation conquest the position of the mesh remaining
vertices (Cl−1) are moved in function of the positions of
the removed vertices (see Figure 12 (b)). Each vertex
position pv j is locally modified as follows:

pv j = pv j + γ
1
|Fv j |

∑
fi∈Fv j

r fi ,

where Fv j is the set of the neighbor faces of v j. If a face
fi does not have a removed vertex, then r fi = 0. In our
experiments, we set γ = 0.5 because it provided the best
results with our datasets.

This local process can be formulated as a lifting step
in our global wavelet formulation. So, (3) and (4) be-
come:

Cl−1 = Al.Cl + γLl.Bl.Cl,

Dl−1 = Bl.Cl,

where Ll is the matrix that computes the average resid-
ual of the neighbor faces (second term of the formula
5.1.1). During the decompression it is possible to re-
build the matrix Ll and then to restore the vertex po-
sitions with the decoded residuals using the following
formula:

Cl = Pl.(Cl−1 − γLl.Dl−1) + Ql.Dl−1.

5.1.2. Curvature prediction and residual projection
As explained in Section 4.2, the entropy coder does

not directly encode the residuals r fi but instead encodes
the g fi values projected in the local Frenet frames. Given

(2), the global matrix of the symbols values S l−1 is de-
termined by the following equation:

S l−1 = U l−1.(Dl−1 − αGl−1.Cl−1),

where Gl−1 is the matrix used to compute the l fi values
and U l−1 is the matrix used to perform the local pro-
jections. During the decompression, the wavelet coeffi-
cients matrix can be restored with

Dl−1 = V l−1.(S l−1 + αGl−1.Cl−1),

where V l−1 is the matrix that performs the reverse lo-
cal projections, before applying the rest of the lifting
scheme. The whole process is summarized by Figure
13.

Figure 13: One level wavelet analysis and synthesis lifting scheme.

5.2. Adaptive quantization

To get the best rate-distortion performance when
compressing a mesh, two variables can be played with:
the number of vertices V and the number of geometry
quantization bits B. For the single rate compression
of triangle mesh, King and Rossignac proposed in [35]
methods to optimize the choice of V and B to minimize
either the approximation error or the file size. For the
progressive compression of triangle meshes, Lee et al.
[7] showed that the R-D performance of the original
AD coder [15] can be significantly improved by inter-
leaving decimation conquests with vertex global quan-
tization operations (see Figure 14). The main rationale
is that a precise level of the initial quantization is not
needed for low LODs which have very few vertices. The
decimation contests are encoded with the AD coder and
the quantization contests are encoded with the Peng and
Kuo geometry coder [19].

9

The authors propose two methods to choose at each
iteration whether to decimate the mesh or to quantize its
vertex positions. In the first method, denoted by optimal
the decimated mesh and the quantized mesh are gener-
ated with their compressed data. The two R-D ratio are
then compared. The chosen operation is the one that
yields the lowest ratio. This method provides the best
R-D performance for all levels of details but is compu-
tationally intensive. It requires to generate both meshes,
to determine the size of the encoded data and to mea-
sure the two distortions with the initial mesh. Therefore,
the authors recorded the choices made by their optimal
coder on a mesh corpus to learn the parameters µ and β
of a function qG(KG) that provides the best number of
quantization bits according to the level of decimation:

qG(KG) = round(µ ∗ log(KG) − β)

where round() corresponds to the nearest integer round-
ing function. Kg is defined as:

KG =
volume o f bounding box

area × number o f vertices
.

µ = −1.248 and β = −0.954 are reported as the best pa-
rameter values for the selected triangle mesh corpus. By
this way, a second method, denoted by quasi-optimal,
was proposed to choose at each iteration whether to
decimate or to quantize. If the current qG(KG) value is
lower than the current number of quantization bits, then
the mesh is quantized. Else, it is decimated. The authors
experimentally demonstrated that the quasi-optimal and
optimal methods yield similar results. We implemented
Lee’s quasi-optimal method to improve the R-D perfor-
mances of our coder at low rates.

6. Experimental results

The experimental results shown are obtained with an
implementation based upon the halfedge data structure
of the CGAL library [36]. We observe in our exper-
iments that the computation times are approximately
linear in the number of vertices. A 10M face mesh is
compressed in 1m48s and decompressed in 1m22s on a
desktop computer equipped with an Intel Core i7 CPU
clocked at 2.80GHz and 8GB of RAM. We measure the
distortion through the METRO software tool [37], after
triangulating each polygon through inserting a vertex at
the barycenter of its vertices and connecting it with all
the polygon vertices. All results are obtained with the
predictions described in Section 4.

Figure 14: Progressive mesh traditional simplification vs. Lee’s
method for adaptive quantization [7]. Figure inspired from [7].

6.1. Progressive compression of polygon meshes
This section presents polygon mesh compression re-

sults. Figure 15, shows that the lifting scheme pre-
sented in Section 5.1.1 clearly improves the rate dis-
tortion curve at low rates without increasing the final
compression rate. The R-D optimization algorithm pro-
vides even better distortion at low rates but increases
the overall compression rate. Table 1 lists compression
rates on polygon models depicted in Figure 19. In or-
der to compare the effectiveness of our method against
simple triangulation prior to compression (see Section
2.6), we triangulate polygonal models by choosing for
each polygon an arbitrary vertex as pivot and adding
edges between this vertex and all the others. The tri-
angulated models are then compressed with the state of
the art progressive compression method specialized to
triangle meshes [7]. We add to the obtained compres-
sion rates the cost of the edge flag encoding required
to restore the mesh initial connectivity after decompres-
sion (see Section 2.6). This cost is computed for each
mesh with the Shannon entropy of the Boolean symbol
sequence. The obtained values clearly improve over the
trivial one. For our polygon mesh corpus, the trivial
method costs on average 4 more bpv than our method.
Our codec results are also compared with the results of
the single-rate coder from [38] to evidence the cost of
the progressiveness. This cost is high for the simple
models (Shark, Teapot, Triceratops, Beethoven, Fan-
disk, Elephant) as their regularity gets rapidly worse
during the decimation. Complex, regular models (Nep-
tune, Chinese lion, Gargoyle, Rabbit) are efficiently
compressed. Our algorithm performs well with irregu-
lar models (Horse, Fertility, Ramesses, Dinosaur) com-

10

Figure 15: R-D curves for the compression of the Triceratops model
with 10 bits quantization.

pared to the single-rate approach. It even improves on
very irregular models such as the VSA-remeshed [39]
Lucy or the Hippo models. Figure 16 depicts the de-
compression of the Bimba quadrangle surface mesh.

6.2. Progressive compression of triangle meshes

Figure 17: R-D curves for the compression of the Horse model with
12 bits quantization.

We now compare our coder with state-of-the-art com-
pression methods specialized to triangle meshes. Fig-
ure 17 and 18 depict R-D curves obtained with meth-
ods specialized to triangle meshes, and our algorithm.

Model # poly. Quant. Our scheme [7] [38]C. G. Tot.
Beethoven 2812 10 5.7 16.7 22.4 26.0 16.6

Bunny 8814 10 3.8 11.8 15.6 20.3 12.2
Elephant 10895 12 3.4 12.3 15.8 25.4 11.8

Shark 2562 10 5.1 11.4 16.5 21.0 8.1
Teapot 1290 10 4.7 13.9 18.6 25.5 12.2

Triceratops 2834 10 5.4 12.6 18.0 22.1 11.9
Neptune 112658 12 1.5 6.7 8.1 17.8 5.6

Chinese lion 128339 12 1.4 8.0 9.4 19.6 6.9
Gargoyle 32126 12 2.7 12.5 15.3 23.9 12.1

Lucy VSA 76646 12 5.4 13.8 19.2 21.5 20.3
Hippo 32658 12 4.0 11.8 15.8 21,8 16.0
Horse 39698 12 4.1 15.2 19.3 20.4 19.1

Fandisk 12986 10 3.9 11.9 15.8 15.7 9.8
Dinosaur 28136 12 4.6 16.3 21.0 21.2 20.2

Venusbody 22720 12 3.6 12.6 16.1 16.9 13.4
Rabbit 134074 12 3.2 11.4 14.6 16.2 12.1

Fertility 483226 12 3.6 10.2 13.7 14.7 13.4
Ramesses 1652528 12 4.2 7.7 11.9 12.3 11.9

Table 1: Compression rates in bits per vertex, without any R-D opti-
mizations. The first part of the table contains meshes with arbitrary
face degrees. The second part contains only triangle meshes. C. stands
for connectivity. G. stands for geometry. We first triangulate the poly-
gon meshes before compressing them with [7]. We add to the ob-
tained compression rates the cost of the edge flags required to restore
the original connectivity.

For our algorithm, we provide a curve with the lifting
scheme and a curve with the adaptive quantization algo-
rithm. We notice that several coders achieve better re-
sults in term of compression ratio and R-D curves than
our algorithm. In particular, [24] performs well in terms
of compression ratio and R-D distortion, at the price of
high compression and decompression times (3m for a
mesh with 20,000 vertices). The approach of Valette et
al. [21] also provides very good results: the compres-
sion ratio are high and the R-D curve is excellent with
the rabbit model, at the price of not guaranteeing the
restoration of the initial connectivity. The octree coder
[19] gives good compression rates but the distortion is
high at low rates. The R-D optimized coder from [20]
also performs well in terms of compression ratio but
is weaker than our coder in terms of distortion at low
rates. For triangle meshes, our algorithm provides sim-
ilar distortion at low rates than the approach described
in [7]. It also yields better compression rates as shown
in the second part of Table 1. For the two presented
triangle meshes the lifting scheme yields slightly better
final compression rates than the adaptive quantization
method. For the irregular horse model however, the R-
D performance is worse at some point.

While being more general than progressive coders
specialized to triangle meshes, our coder achieves com-
petitive results for the compression of triangle meshes.
It works with any 2-manifold mesh and exhibits good
R-D performances at low rate and average compression
rates.

11

Figure 16: Decompression of the Bimba model (15770 quads) with the lifting scheme. The final compression rate is 13.8bpv with 12 bits
quantization.

Figure 18: R-D curves for the compression of the Rabbit model with
12 bits quantization.

7. Conclusion

We introduced a new progressive mesh compression
algorithm. One distinctive property of our method is
that it can handle surface meshes with arbitrary face de-
gree unlike previous approaches which only implement
triangle mesh compression. Starting from a simple al-

gorithm based on decimation traversals, we propose so-
lutions to improve the compression of both geometry
and connectivity. We then incorporate two methods de-
signed to optimize the R-D performance: one based on
wavelet lifting scheme, and the other based on adap-
tive global quantization. Experimental results show the
effectiveness of our technical choices. Beside being
more general than previous approaches, our method is
also competitive for the compression of surface triangle
meshes.

As future work, we wish to further improve the com-
pression rates by optimizing the selection of the patch
decimation operations to maximize the number of ver-
tices removed per decimation step. We will also in-
vestigate the best parameters for the adaptive quanti-
zation method specialized to non-triangle meshes, and
will handle polygon meshes with boundaries.

Acknowledgements

The authors would like to thank Ho Lee for providing
some experimental compression results first published
in [7] and Jae-Kyun Ahn for providing the experimental
compression results of its encoder [20]. Some models
are courtesy of the AIM@SHAPE Repository.
This work has been founded by French National Re-
search Agency (ANR) through COSINUS program

12

(project COLLAVIZ n◦ANR-08-COSI-003) and the Eu-
ropean Research Council (ERC Starting Grant “Robust
Geometry Processing”, Grant agreement 257474).

References

[1] D. King, A. Szymczak, J. R. Rossignac, Connectivity compres-
sion for irregular quadrilateral meshes, GVU Tech Report GIT-
GVU-99-36.

[2] M. Isenburg, J. Snoeyink, Face fixer: compressing polygon
meshes with properties, in: Proc. of SIGGRAPH, 2000, pp.
263–270.

[3] B. Kronrod, C. Gotsman, Efficient coding of non-triangular
mesh connectivity, in: Proc. of the 8th Pacific Conference on
Computer Graphics and Applications, 2000, p. 235.

[4] M. Isenburg, Compressing polygon mesh connectivity with de-
gree duality prediction, in: Graphics Interface Conference Proc.,
2002.

[5] A. Khodakovsky, P. Alliez, M. Desbrun, P. Schröder, Near-
optimal connectivity encoding of 2-manifold polygon meshes,
Graphical Models 64 (2002) 147–168.

[6] C. Courbet, C. Hudelot, Random accessible hierarchical mesh
compression for interactive visualization, in: Proc. of the Sym-
posium on Geometry Processing, 2009, pp. 1311–1318.

[7] H. Lee, G. Lavoué, F. Dupont, Rate-distortion optimization for
progressive compression of 3d mesh with color attributes, The
Visual Computer 28 (2012) 137–153.

[8] H. Hoppe, Progressive meshes, in: Proc. of SIGGRAPH, 1996,
pp. 99–108.

[9] J. Popović, H. Hoppe, Progressive simplicial complexes, in:
Proc. of SIGGRAPH, 1997, pp. 217–224.

[10] G. Taubin, A. Guéziec, W. Horn, F. Lazarus, Progressive forest
split compression, in: Proc. of SIGGRAPH, 1998, pp. 123–132.

[11] R. Pajarola, J. Rossignac, Compressed progressive meshes,
IEEE Transactions on Visualization and Computer Graphics 6
(2000) 79–93.

[12] Z. Karni, A. Bogomjakov, C. Gotsman, Efficient compression
and rendering of multi-resolution meshes, in: Proc. of the con-
ference on Visualization, 2002, pp. 347–354.

[13] J. Li, C.-C. J. Kuo, Progressive coding of 3-d graphic models,
in: Proc. of the IEEE, Vol. 86, 1998.

[14] D. Cohen-Or, D. Levin, O. Remez, Progressive compression of
arbitrary triangular meshes, in: Proc. of the IEEE Visualization
Conference, 1999.

[15] P. Alliez, M. Desbrun, Progressive compression for lossless
transmission of triangle meshes, in: Proc. of SIGGRAPH, 2001,
pp. 195–202.

[16] C. Touma, C. Gotsman, Triangle mesh compression, in: Graph-
ics Interface 98 Conference Proc., 1998, pp. 26–34.

[17] S. Valette, R. Prost, Wavelet-based progressive compression
scheme for triangle meshes: Wavemesh, IEEE Transactions on
Visualization and Computer Graphics 10 (2004) 123–129.

[18] P.-M. Gandoin, O. Devillers, Progressive lossless compression
of arbitrary simplicial complexes, in: Proc. of SIGGRAPH,
2002, pp. 372–379.

[19] J. Peng, C.-C. J. Kuo, Geometry-guided progressive lossless 3d
mesh coding with octree (ot) decomposition, in: Proc. of SIG-
GRAPH, 2005, pp. 609–616.

[20] J.-K. Ahn, D.-Y. Lee, M. Ahn, C.-S. Kim, R-d optimized pro-
gressive compression of 3d meshes using prioritized gate selec-
tion and curvature prediction, The Visual Computer 27 (2011)
769–779.

[21] S. Valette, R. Chaine, R. Prost, Progressive lossless mesh com-
pression via incremental parametric refinement, in: Proc. of the
Symposium on Geometry Processing, 2009, pp. 1301–1310.

[22] J. Peng, Y. Huang, C.-C. J. Kuo, I. Eckstein, M. Gopi, Feature
oriented progressive lossless mesh coding, Computer Graphics
Forum 29 (7) (2010) 2029–2038.

[23] Z. Karni, C. Gotsman, Spectral compression of mesh geometry,
in: Proceedings of SIGGRAPH, 2000, pp. 279–286.

[24] K. Mamou, C. Dehais, F. Chaieb, F. Ghorbel, Shape approxima-
tion for efficient progressive mesh compression, in: Proc. of the
IEEE International Conference on Image Processing, 2010.

[25] A. Khodakovsky, P. Schröder, W. Sweldens, Progressive geom-
etry compression, in: Proc. of SIGGRAPH, 2000, pp. 271–278.

[26] A. Khodakovsky, I. Guskov, Compression of normal meshes,
in: Geometric Modeling For Scientific Visualization, 2003, pp.
189–206.

[27] F. Payan, M. Antonini, 3d mesh wavelet coding using efficient
model-based bit allocation, in: Proc. of the First International
Symposium on 3D Data Processing Visualization and Transmis-
sion, 2002, pp. 391–394.

[28] F. Payan, M. Antonini, An efficient bit allocation for compress-
ing normal meshes with an error-driven quantization, Comput.
Aided Geom. Des. 22 (2005) 466–486.

[29] Tutte, A census of planar maps, Canadian Journal of Mathemat-
ics 15 (1963) 249–271.

[30] A. D. Kalvin, R. H. Taylor, Superfaces: Polygonal mesh sim-
plification with bounded error, IEEE Computer Graphics and
Applications 16 (1996) 64–77.

[31] F. Tampieri, Newell’s method for computing the plane equation
of a polygon, 1992, pp. 231–232.

[32] H. Lee, G. Lavoué, F. Dupont, Adaptive coarse-to-fine quantiza-
tion for optimizing rate-distortion of progressive mesh compres-
sion, in: Vision, Modeling, and Visualization Workshop, 2009.

[33] Michael Schindler’s range coder:
http://www.compressconsult.com/rangecoder/.

[34] W. Sweldens, The lifting scheme: A custom-design construction
of biorthogonal wavelets, Applied and Computational Harmonic
Analysis 3 (2) (1996) 186–200.

[35] D. King, J. Rossignac, Optimal bit allocation in compressed 3d
models, Computational Geometry: Theory and Applications 14
(1999) 91–118.

[36] Cgal library: http://www.cgal.org/.
[37] P. Cignoni, C. Rocchini, R. Scopigno, Metro: Measuring error

on simplified surfaces, Computer Graphics Forum 17 (2) (1998)
167–174.

[38] M. Isenburg, P. Alliez, Compressing polygon mesh geometry
with parallelogram prediction, in: Proc. of the conference on
Visualization, 2002, pp. 141–146.

[39] D. Cohen-Steiner, P. Alliez, M. Desbrun, Variational shape ap-
proximation, in: Proc. of SIGGRAPH, 2004, pp. 905–914.

13

Figure 19: Input meshes from Table 1 and their tessellations: (a) Beethoven (b) Bunny (c) Triceratops (d) Teapot (e) Elephant (f) Shark (g) Neptune
(h) Gargoyle (i) Lucy VSA (j) Chinese lion (k) Hippo (l) Fandisk (m) Rabbit (n) Dinosaur (o) Venusbody (p) Fertility (q) Horse (r) Ramesses.

14

