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Abstract

Procedural modeling is a promising approach to create complex and detailed 3D objects and scenes. Based on the
concept of split grammars, e.g., construction rules can be defined textually in order to describe a hierarchical build-
up of a scene. Unfortunately, creating or even just reading such grammars can become very challenging for non-
programmers. Recent approaches have demonstrated ideas to interactively control basic split operations for boxes,
however, designers need to have a deep understanding of how to express a certain object by just using box splitting.
Moreover, the degrees of freedom of a certain model are typically very high and thus the adjustment of parameters
remains more or less a trial-and-error process. In our paper, we therefore present novel concepts for the intuitive
and interactive handling of complex procedural grammars allowing even amateurs and non-programmers to easily
modify and combine existing procedural models that are not limited to the subdivision of boxes. In our grammar
3D manipulators can be defined in order to spawn a visual representation of adjustable parameters directly in model
space to reveal the influence of a parameter. Additionally, modules of the procedural grammar can be associated with
a set of camera views which draw the user’s attention to a specific subset of relevant parameters and manipulators. All
these concepts are encapsulated into procedural high-level primitives that effectively support the efficient creation of
complex procedural 3D scenes. Since our target group are mainly users without any experience in 3D modeling, we
prove the usability of our system by letting some untrained students perform a modeling task from scratch.
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ifications for these models, like changing the number of
floors in a facade, may become quite complicated. In
contrast, procedural modeling describes a scene by a set
of rules that recursively converts an input symbol (non-
terminal) into a sequence of output symbols (terminal
or non-terminal) [2, 3]. Changing parameters in such
a grammar may trigger modifications on a coarse scale,
like varying the number of windows on each floor of a
building, as well as changing tiny features, such as set-
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Figure 1: By creating complex manipulator objects like a stick fig-
ure and mapping it to another procedural object like a chair, we can

achieve an abstract control of the chair in an ergonomic fashion. All
important parameters can be directly adjusted in the 3D view for an
intuitive and fast modeling process.

1. Introduction

High quality content creation gains increasing impor-
tance in computer graphics applications as hardware is
getting more powerful in rendering highly realistic 3D
scenes [1]. Using conventional modeling applications
like blender or Autodesk 3ds Max is a time consuming
task when massive and at the same time highly detailed
scenes have to be produced. Moreover, large scale mod-
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ting the size of the window frames.

Since grammars describe a scene by a set of textual
rules with a specific syntax, the procedural modeling
workflow better compares to a programmer writing a
script rather than an artist creating a 3D scene. Hence,
interactive controls have to be included to make pro-
cedural modeling more intuitive and accessible to non-
programmers. Unfortunately, many features of a proce-
dural modeling language, like case switches and com-
plex mathematical functions, cannot easily be mapped
to interactive handles such that the full descriptive
power of procedural models cannot be utilized anymore.
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In order to find practically useful compromises be-
tween purely textual and purely interactive modeling
approaches, we introduce two modes in our interactive
procedural modeling framework. In the professional
mode (P-Mode) the text-based authoring of procedu-
ral models is supported by interactive elements without
restricting the descriptive power. The P-Mode is used
to implement high-level primitives (HL-Primitives), i.e.,
encapsulated modules which take a well-defined set of
parameters as input in order to create a specific class of
geometric objects. In the high-level mode (HL-Mode),
the user can change and combine these HL-Primitives
in order to compose complex models. The HL-Mode
is based on interactively adjusting geometric shape han-
dles and the user is never exposed to the underlying tex-
tual grammar definition. However, the simplicity of the
interface comes at the price of reduced flexibility since
only those parameters provided by the HL-Primitives
can be modified.

Both modes together combine the advantages of pro-
cedural and interactive modeling in the sense that ex-
perienced designers can develop a toolbox of HL-
Primitives encapsulating expert knowledge of a certain
object domain (e.g. architectural styles, manufacturable
furniture). These HL-Primitives are then adjusted and
combined in a fully interactive modeling session.

We introduce fundamental concepts for the creation
of an interactive procedural modeling framework. The
main challenges discussed in this paper are:

Parameter Manipulators — Any parameter of a pro-
cedural model can be mapped to a meaningful 3D ma-
nipulator that is interactively controlable in a 3D viewer.
This includes manipulators for measure of length and
angle measures, as they typically occur in most object
domains, as well as of abstract manipulators such as a
slider. By this visual interpretation of the parameters,
the user gets a direct intuition of how a certain parame-
ter will affect the procedural model thereby avoiding the
need for testing random values by hand in a separate 2D
interface.

Camera Views — A high number of parameter manip-
ulators might result in a confusing visual representation.
Parameter manipulators for small scale features as well
as for large scale features are visible at the same time
which makes an interactive control of any tiny param-
eter handles very hard. To overcome this drawback, a
set of meaningful camera positions can be defined for a
procedural model. Furthermore, a list of visible param-
eters can be attached to each camera to concentrate the
view on only a few parameter manipulators.

High-Level Primitives — We present a novel modeling
concept that makes the procedural modeling approach
accessible for a wide range of users without program-
ming experience. HL-Primitives that define parame-
ter manipulators as well as camera views can be easily
combined and locally modified without being exposed
to the textual grammar or to atomic split operators at any
time. This concept of simplicity brings procedural mod-
eling to a whole new level, since non-programmers ben-
efit from the interactive controls of the HL-Primitives
which encapsulate a certain domain specific knowledge
(like buildings, furniture, or plants).

Compound Primitives — HL-Primitives can be com-
posed to create more complex objects. We demonstrate
this mechanism by showing an extreme case, in which
we create a complex manipulator object from the atomic
parameter manipulators that is then associated with an
existing HL-Primitive by defining parameter mappings.
This is a powerful concept to produce intuitive control
mechanisms such as the one depicted in Figure 1.

1.1. Related Work

The concept of rule based modeling was first pio-
neered by Lindenmayer and Prusinkiewicz who spend
a lot of effort on L-Systems and their connection to the
modeling of plants [3]. Based on a text replacement
strategy, a LOGO-style turtle is controlled by visually
interpreting all terminal symbols after a certain evalua-
tion step. Textual grammars were extended by param-
eters, context-sensitivity and the stochastic application
of rules in order to enhance the descriptive power of L-
Systems [4]. The modeling of plants became even more
realistic by using environmental information that influ-
ences the growth process thereby reducing the number
of parameters that normally have to be tuned for a plau-
sible plant growth [5, 6, 7]. Furthermore, interactive de-
sign metaphors were added to control any L-System pa-
rameters, i.e., spline curves and 2D function plots could
be edited to give artists a more intuitive control over the
structure of a plant [8].

The idea of L-Systems was also applied to the gener-
ation of street networks [9], but it turned out that the
formalism of a growth process is not well suited for
the creation of precise structures such as buildings. In-
stead, the decomposition of simple shapes has become a
common concept for the modeling of architecture [10].
The basic idea of replacing shapes, rather than replac-
ing text strings, was first pioneered by Stiny et al. [11].
Miiller et. al. presented CGA Shape as a modeling
grammar where a mass model (i.e. the coarse struc-
ture of a building) is created in a first step followed



by the application of splitting rules for the generation
of small scale features [2]. While CGA Shape relies
on the manipulation of boxes, Krecklau et al. extended
this concept to multiple non-terminal classes within the
unified grammar system G* [12]. Basically, each non-
terminal class could be understood as a conventional
modeling methodology like the manipulation of a box
or of more complex entities like trilinear freeform de-
formation cages. Moreover, G* introduced the concept
of abstract structure templates which is a technique to
prevent rule explosion by combining existing grammars
in just one line of code. We utilize their method in an
interactive way to allow for an intuitive composition of
a procedural 3D scene.

Lipp et al. built an interactive framework to control
the parameters of the production rules in a CGA shape
grammar [13]. They describe the application of persis-
tent local changes in order to break repetitive structures
and to give artists more intuitive control over the result-
ing geometry. However, the interactive features in this
framework are linked to atomic operations in a one-to-
one fashion potentially providing an individual manip-
ulator for each textual parameter in the shape grammar.
Basically, our professional mode behaves quite similar
to their work, except that we are not restricted to the
subdivision of boxes due to the possiblity of using sev-
eral non-terminal classes. Our small user study shows,
that this freedom comes naturally at the cost of simplic-
ity, which is a necessary key factor to make procedu-
ral modeling accessible for unexperienced users. We
effectively hide the grammatical structure and any pa-
rameter dependencies from the amateur user and non-
programmer. The author of a procedural model can
define a set of valid modifications and represent them
by a set of manipulators like seen in one of the first
constraint-based graphics systems [14].

Our high-level mode was also inspired by the user in-
terface of Bokeloh et al. [15], who disassemble a given
geometry into symmetric parts which can be reassem-
bled to new objects. However, their method can be bet-
ter compared to the idea of modeling by example [16]
as they rely on a fixed set of static geometries which
are not parameterized at all. Recently, Lau et al. pre-
sented an automatic approach to disassemble furniture
into manufacturable parts [17] and therefore it could be
understood as an inverse problem to our method for a
specific object domain (i.e. furniture). Note, that the
creation of manufacturable furniture has also been used
in one of our examples as realistic modeling scenario,
however, our method is definitely not limited to this ob-
ject domain which can be seen in our other examples
and in the accompanying video.

Figure 2: Procedural modules can be parameterized objects which
are an encapsulated unit in the scene (a) or they can just describe an
abstract structure where the details have to be generated by rules that
are passed to the module (b).

2. Procedural Modeling

A formal grammar is a 4-tuple (N, T, P,S), where N
is a set of non-terminal symbols, 7 is a set of terminal
symbols, P are production rules of the foom N — (N U
T)" and S € N is the start symbol. Whenever there is a
non-terminal symbol that has a matching left-hand side
in one of the production rules, that rule can be applied
and the symbol will be replaced by the right-hand side
of the rule.

Our work is based on the procedural modeling lan-
guage proposed by Krecklau et al. [12]. In their work,
non-terminal objects are instances of a specific non-
terminal class in a generated scenegraph which are as-
sociated with a certain rule of a grammar. In contrast to
formal grammars, the rules contain a sequence of oper-
ators that are applied to their associated non-terminal
object. On the one hand operators might change the
current state of the non-terminal object like resizing a
box (box class) or moving control points of a trilinear
freeform deformation (ffd class)[18]. On the other hand
operators can create new non-terminal objects or ter-
minal objects in the scenegraph thereby creating an in-
stance hierarchy. Most important for our system are sev-
eral high level grammar concepts which were recently
presented, i.e., modules, abstract structure templates
and locators.

Modules — Often, several rules are needed to describe
a certain procedural object. Those rules can be encapsu-
lated into modules [12] to keep the grammar clear and
unambiguous. A module can be used without under-
standing its underlying sub rules. The visual appear-
ance of the resulting object can be influenced by setting
meaningful parameters that are defined for a module.
Figure 2.a shows an example of a window module.



Abstract Structure Templates — In principle, ab-
stract structure templates are special modules which use
non-terminal symbols as rule parameters [12]. This al-
lows for the definition of rules that describe a coarse
layout of a model such as an abstract facade style with-
out specifying the generation of details (cf. Figure 2.b).
The concept allows, e.g., to insert different versions of
windows and doors in an abstract facade structure to get
various facade styles with only one line of code.

Locators — Whenever an operator produces a sequence
NT = (Ny,---,N,) of successive non-terminal objects
Niei,- ny» @ meaningful tag such as “floor” can be spec-
ified to clearly distinguish each of the resulting non-
terminal objects and thereby also each corresponding
subtree in the scenegraph hierarchy. Formally, a tag
can be understood as a 2-tuple TagName = (Index =
i, Count = n) that is associated with every non-terminal
object N; € NT. A locator [13] is a construct which is
separated from the grammar and which specifies a cer-
tain set of non-terminal objects like “the second column
in the third floor”. Thus, the user can apply persistent
local modifications by changing the rule that is asso-
ciated to the non-terminal objects that match a certain
locator. In contrast to the detached locators, we express
local changes directly in the grammar by accessing the
tags within any conditional block of a rule. Formally,
one can use the term TagName to check, if the tag is de-
fined. In order to access the index or count of a tag one
can use the terms TagName.Index or TagName.Count,
respectively (cf. Figure 3).

3. Interactive Grammar Creation

The descriptive power of procedural modeling is not
only based on the idea that a certain rule set is applied
several times. If we could guarantee that exactly the
same 3D object would be generated by a specific rule
set, we could generate it once instead and just add an ar-
bitrary number of references to that object into a scene-
graph. Hence, the definition of public parameters and
the use of conditions is a substantial feature for the cre-
ation of dynamic procedural objects. Each time we ap-
ply a certain rule set, the resulting 3D object can have a
different shape based on the choice of parameter values
or on geometric queries within any condition [2]. Un-
fortunately, the definition of public parameters and the
use of arbitrary conditions are very abstract processes
which can be hardly mapped to intuitive interactive in-
terface metaphors in general. Therefore, we distinguish
two points of view on our system. On the one hand,
the professional mode (P-Mode) of the application is
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Figure 3: The bottom grammar generates the scenegraph at the top
of the image. When an operator extends the scenegraph (e.g. repeatY
of rule A), tags can be stored for the whole subtree (e.g. TagName).
The indices (top) and element counts (bottom) for a specific tag are
shown beside each node of the scenegraph whenever a tag has been
defined in the grammar. The middle image shows the selection of
different subtrees by using the conditions of rule C.

needed with the full descriptive power of the grammar
in order to create arbitrary complex procedural models
encapsulating a certain expert knowledge. On the other
hand, the high-level mode (HL-Mode) of the system is
essential to provide an easily operated program for a
wide range of users that are then able to combine any
of the existing modules.

3.1. Professional Mode

The P-Mode enables all grammar features by provid-
ing a text editor. Implementing a rule set by writing
text is primarily suitable for programmers, but since we
are in the domain of procedural modeling, where oper-
ators are applied to geometrical objects in the scene, we
can simply map all these built-in atomic operators to 3D
manipulators that are interactively controlable within
the 3D viewer. In principle, this includes any model-
ing metaphors for the different non-terminal classes as
presented by Krecklau et al. [12] such as scaling a box
or moving the control points of an ffd. Since the oper-
ators might be applied to different non-terminal objects
in the scene in parallel, the corresponding 3D manipu-
lator might be visible several times (cf. Figure 4.b). An
interaction with one of the 3D manipulators results in
a change of the corresponding parameter in the textual
grammar. A 3D manipulator becomes active, whenever
the text cursor is above the corresponding operator in
the grammar (cf. Figure 4). The fluid integration of a
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Figure 4: Operators are mapped to 3D manipulators which become
active, whenever the text cursor is above a certain operator. In some
cases a manipulator contains multiple interactive elements that are
mapped to the same parameter of the corresponding operator (a).
Some operators have several handles for different parameters (b). If
operators are applied to several non-terminal objects, multiple manip-
ulators become visible. Note, that all manipulators change the same
parameter of the corresponding operator (b).

textual editor and 3D interaction metaphors as seen in
conventional modeling applications, such as 3ds Max
from Autodesk, does not only result in a faster scene as-
sembling but also in a learning effect for users that are
about to begin their work in the P-Mode.

For more complex grammars, the user can select any
object in the 3D scene and trace back the whole oper-
ator history, i.e., the user can iterate over the sequence
of all operators that were called during the generation
of the selected object. Once a certain operator is found
and highlighted, the textual grammar can be edited or
the corresponding 3D manipulator can be used (cf. Fig-
ure 4). For example, if a user clicks on a window area
within a facade structure (cf. Figure 5), the last used op-
erator to generate the selected instance becomes active
(i.e. 1). By using the mouse wheel any involved previ-
ous opeator can be selected and edited (i.e. 2 — 6). This
method speeds up the basic modeling process a lot, be-
cause manual text searches in the grammar are mostly
avoided.

In the P-Mode, however, the author of a procedural
model still has to care about the grammar itself, if pa-
rameters and conditions are involved. Due to the con-
ditions, there might exist rules which are not executed
at all and thus we are not able to select any object in
the scene that made use of that rule. Let us assume, e.g.,
that rule C in Figure 5 has defined another first condition
that identifies the fourth column on the bottom floor. In
that case, we could not select the door area anymore,
although the grammar still provides operators for this
part of the facade. Hence it is not possible to get rid of
the textual grammar or some other abstract view on the
grammar in general.

The main goal of the P-Mode is to provide HL-
Primitives that can easily be reused without understand-
ing the insights (the expert knowledge) of the grammar.
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SA:Box-> repeatY (3.0, $B[Floor]);@
$B:Box-> repeatX (2.0, $C[Column]);(5)
$C:Box
[Column.Index == 0 && Floor.Index == 0] -> --- create door
[1-> splitX([(1.0, 1, $F), (10.0, 1, $D), (1.0, 1, SF)]);@
$D:Box-> splity([(1.0, 1, $F), ( 1.5, 0, $E), (1.0, 1, $F)]);®

$E:Box-> extrude(-0.5, $F);
$F:Box-> renderBox (0.9, 0.6, 0.2); (1

Figure 5: An operator history is created whenever the user selects an
instance in the scene. All applied operators that were used to generate
the selected object can be traced back in order to avoid tedious manual
searches of operators in the textual grammar. In the example above
the user clicked on one of the window areas, thereby generating the
operator hierarchy (1-6). For simplicity, the images (a), (b) and (c)
correspond to the operators 1, 4 and 6 respectively.

Therefore, meaningful parameter manipulators have to
be visible when a certain procedural model is selected
in the scene. In some situations, a module might be-
come so complex that even the set of parameter manip-
ulators is too confusing for any casual user. We provide
the concept of camera views to overcome this problem
by clustering some subsets of available parameter ma-
nipulators. When a procedural model is fully declared,
its parameter manipulators are well-defined and several
camera views have been set, the professional user has
to provide some prototypes for its grammar as initial
examples. This information will then be exported to a
database which is later utilized in the HL-Mode.

3.1.1. Parameter Manipulators

A module typically defines parameters to influence
the outcome of its evaluation. For non-trivial modules it
might be not obvious what exactly happens if a param-
eter value is changed. In most of the cases, the parame-
ters reflect either a measure of length or an angle mea-
sure. Hence the optimal choice is to display manipula-
tors for meaningful length and angle parameters when-
ever a procedural model is selected. We also provide
parameter manipulators for abstract parameters such as
color values (cf. Figure 6). Within the grammar, the
parameter manipulators are simply represented as op-
erators of the following form:

manipulator(variable, ...);

The first parameter is a variable that is defined by a
parent module M. Whenever an operator referes to M
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Figure 6: This image shows some parameter manipulators that are
provided by our system like length measures (yellow) or angle mea-
sures (pink). Some parameters can only be controlled by abstract ma-
nipulators such as sliders to adjust the color values of the window.
Whenever the text cursor is above a reference to a target rule, all pa-
rameter manipulators that correspond to the target rule become vis-
ible. An interaction with the manipulator changes the value of the
refered parameter in the rule reference.

and the text cursor is above that reference, all involved
parameter manipulators are displayed for an interactive
editing process of all parameters that are defined by M.
In contrast to the former defined 3D manipulators, any
parameter manipulator changes the text (the numerical
value) at the position where the module M is called and
not at the position where the manipulator is defined (cf.
Figure 6). This is the major key to the abstraction of
interactive procedural models, because the formal defi-
nition of the module remains untouched.

3.1.2. Camera Views

A module might define a large set of parameters. This
leads to usability problems, if length or angle measures
are defined for small as well as for large scale features.
Consequently, in the visualization we will observe ei-
ther small parameter manipulators that are too tiny for
any precise interaction or we have have to zoom onto
a small feature such that any large scale parameters are
not visible at all. Another problematic case are overlap-
ping parameter manipulators if they measure two fea-
tures which are very close to each other.

We overcome these conflicts by creating a set of
meaningful camera views for a procedural model.
Those are then stored in special variables that are de-
fined in a parent module. Therefore, we extend the for-
mal definition of rules in the following way:

$Rule:Type(py, =+, pu)(c1y ++y Cm)

The declaration of the camera views c; is optional.
Setting a ¢; variable does not differ from setting any
other variable. They only need a separate definition, be-
cause they reflect a concept that is utilized by the user
interface and not by the procedural generation of the 3D
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Figure 7: If a procedural model is very complex, it might define a high
number of parameters. Camera views help the user to concentrate on a
small subset of parameter manipulators which cover either large scale
features (a) or small scale features (b). Furthermore, possible overlaps
of parameter manipulators are avoided by this method.

$Prototype:Box-> spawnBox ($Embed (
0.75,0.75, ’
:$Inner, :$Wall));

{
$Inner:Box->colorBox(1,0.5,0.5);
$Wall:Box->colorBox(0.5,0.5,1);

}

$Embed:Box (
w:Float, h:Float, ,
$Inner:Box, $Wall:Box)

075

Figure 8: A protoype for the module Embed is created which has five
parameters two of which are non-terminal symbols that refer to some
subrules. When a HL-Primitive is imported in the HL-Mode, one of
the prototypes is included into the grammar under a certain name.

scene. The following method makes the definition of
a camera view quite simple by taking the position of
the camera target and calculating the camera position by
adding a specified vector to the position of the target:

ci = CameraView(Target, Vector, ParamList);

The last parameter specifies a list of all variables for
which the 3D parameter manipulators have to become
visible if the camera view is selected. This resolves
the problem of overlapping manipulators. Close-up and
distant camera views can now be defined for small and
large scale features, respectively (cf. Figure 7).

3.1.3. Prototypes

All the procedural models that are designed by a pro-
fessional user have to be made available for other users.
Different prototypes (i.e. example rules) have to be pro-
vided for a certain module in order to clarify how the pa-
rameters can be initially set. If an abstract structure tem-
plate has been designed, the prototypes have to include
some target rules for further evaluation. Typically, non-
terminal objects that are associated with the same rule
are colored in the same way to visualize their shared
identity (cf. Figure 8). Finally, a HL-Primitive will
be saved in a database consisting of the module (the
actual rules), the prototypes (template rules for the in-
stantiation), a textual description, some keywords, and
a screenshot for each prototype.
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$StickFigure:Box (torso:Float,upperArm:Float,armAngle:Float, ") —>
$Chair:Box (armrestHeight:Float,armrestWidth:Float, -) ->
SErgoChair:Box(torso:Float,upperArm:Float,armAngle:Float,

armrestWidth:Float,)->
spawnBox ($StickFigure (@torso, QupperArm, GarmAngle, ")) ;
spawnBox ($Chair (torso-sin(90-armAngle) *upperArm, @armrestWidth,-));

Figure 9: (a,orange) Stick figure manipulator object composed of sev-
eral parameter manipulators. (b,blue) Procedural chair providing sev-
eral parameters. After the parameter mapping, some of the chair pa-
rameters are controlled by the stick figure (c,green) while others are
still handled by the chair (d,purple). Note, that (a) and (b) only show
one camera view, so that not all parameter manipulators are visible.

3.1.4. Compound Primitives

Modules can be composed of other modules to share
as many rules as possible. Since a module is a textual
description of a geometric object it can be understood
analogously to the concept of classes in object-oriented
programming languages. An external module X can
simply be imported by using the following command:

#import ("X");

The above command requires the existence of a file X
that contains the respective definition of the module X:

$X:Type(py, ==, pp)(cyy ooy Cp)=> 3

For the interactive control of X, some of the parame-
ters p; are mapped to 3D manipulators. If X is imported
by another module Y, the author of Y can decide which
of these manipulators should still be available for inter-
active control and which are statically defined by Y. For
example, if X defines 3 parameters (with corresponding
3D manipulators) and Y defines 2 parameters, we can
use the @ sign to pass on a parameter that should still
be interactively adjustable by Y (pf « @ p{), specify
any mathematical expression for a pre-defined parame-
ter dependency (p} « p) * py), or simply set a constant
value (p3 < 1.0):

#import ("X"); //Defines $X:Box(p{, p}, p});
$Y:Box(p’[, pg)->spawnBox(,$X(@p"]', P"]'*Pg, 1.0));

The parameter p; can be mapped to a new 3D manip-
ulator in Y that also implies new semantics to control
X, e.g., an angle in Y can be mapped to a certain length
in X. Note, that the definition of camera views for Y is
handled in a similar same way to the parameters, i.e., by
passing a camera view from Y to X, the author of Y can
decide which of the camera views should be reused.

As an extreme case, one could create a complex ma-
nipulator object, like a stick figure, and attach it to some
other module, like a chair, by just defining the parameter
dependencies between these objects resulting in an er-
gonomic chair that is mainly controlled by the attached
stick figure (cf. Figure 9). If we want to control the pa-
rameters of the chair C (cf. Figure 9.b) by the stick fig-
ure F (cf. Figure 9.a), we just create a new module for
an ergonomic chair E (cf. Figure 9.c-9.d) that makes use
of the modules C and F in the following way. Whenever
a parameter of C is dependent on F', a mapping function
has to be evolved, e.g.:

armrestHeight¢ :=torsor-sin(90-armAngler) *upperArmp

The ergonomic chair E provides a subset of parame-
ter manipulators by passing on some of the parameters
to the stick figure F or the chair C such as the height of
the torso, the angle of the arm, the length of the upper
arm or the width of the armrest. Furthermore, the au-
thor of E can decide to define new camera views or to
reuse any existing one from C or F by passing on the
corresponding camera view variables.

Note, that a compound primitive does not need to be
necessarily that complex. As a light weight example,
the embed and window modules of Figure 11 could be
composed to exchange the continous sizing policy for
a window element of a certain brand by a set of pre-
defined sizes that are manufacturable.

1. Window

¥ column

vode: | symmetric v | Range|

Index: 10
Floor

v Tp

vode: select v

change color

2. Embed

Column

Mode: | Select v

$Embed(1.14,1.54,0.3,

[ ->
$MyWindow
[(Column.Index == 1 || Column.Count-Column.Index == 2) && Top]
-> spawnBox (_$Window (- green color ) ) ;
[1-> spawnBox (_S$Window (--- blue color ) ) ;

_SEmbed (1.14

Figure 10: Local modifications are handled by a 2D user interface.
When an instance in the scene has been selected, all available tags
that are valid for that instance are displayed to the user. Whenever
interactive modifications are applied to a HL-Primitive, the user can
choose, if the changes should only be applied to a subset of instances
by picking a certain selection pattern for each available tag (e.g. sym-
metric, i-th from left/right, every i-th element). In the upper example,
the sizes of all windows in the topmost floor are changed as well as
the colors of the second window from the left and from the right (sym-
metric). The grammar of Figure 12 is automatically changed as seen
in the bottom grammar snippet.
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Figure 11: Illustration of the workflow in the HL-Mode. While professional designers provide a toolbox of complex procedural models equipped
with interactive parameter manipulators, a casual user can easily combine and modify these HL-Primitives in an intuitive way. In the example
above, the high-level user selects a certain facade style at the beginning. Each manipulator in the scene directly visualizes the effect of a certain
parameter. Then, all red non-terminal objects are replaced by a HL-Primitive to bring more details into the facade. Finally, a window is chosen for

the remaining red non-terminal objects.

3.2. High-Level Mode

In contrast to the P-Mode, the high-level mode (HL-
Mode) has to provide a very simple interface to reach a
lot of users that are not familiar with procedural mod-
eling. This mode is primarily suitable for beginners
or artists, because the workflow is optimized for easily
combining and manipulating existing procedural mod-
els without regarding the textual grammar at any time.
It is a purely interactive process, which consists of the
following three interaction concepts:

Replacement — Starting from an empty scene, the user
has to import some HL-Primitive from the database.
The entries of the database provide a textual descrip-
tion and a sequence of keywords in order to search for a
specific class of elements, e.g. “facade styles” or “win-
dows”. Screenshots of the prototypes are displayed for
each entry to give the user an impression of the procedu-
ral object. Importing a HL-Primitive will put the import
statement and a renamed copy of one prototype into the
grammar (cf. Figure 12). Whenever new non-terminal
objects are created by a HL-Primitive (i.e. it is an ab-
stract structure template), they can be further replaced
by importing other HL-Primitives. All non-terminal ob-
jects that share their color (shared identity) belong to the
same non-terminal group, i.e. all non-terminal objects
in a non-terminal group are associated with the same
rule. The non-terminal object itself might define some
filter tags to pre-select a small number of items from the
database in order to guide the modeling process so that
the user can only apply senseful replacements. For ex-
ample, the database of the second replacement in Fig-
ure 11 will be reduced to only display window items.
This results in an iterative replacement process that does
not require to understand which atomic operations were
used (cf. Figure 11).

#import ("Facade", "Embed", "Window") ;
$S:Box-> size(ll, 12, 0); spawnBox ($MyFacade);
SMyFacade :Box->spawnBox (_$Facade (2, 3, , :$WindowTile, : $Wall, ) ;@
{
$WindowTile:Box-> spawnBox ($MyEmbed) ;
$Wall:Box-> colorBox(1.0,1.0,0.5);
SMyEmbed:Box->spawnBox (_SEmbed (1.14,1.54,0.3, :$Inner, :$Wall)) i@
$Inner:Box-> spawnBox ($MyWindow) ;
$Wall:Box-> colorBox(1.0,1.0,0.5);
$MyWindow-> spawnBox (_$Window (-)); (1)

}

Figure 12: This grammar corresponds to Figure 11. First, the facade
module is imported (red). Then, we use the embed module to generate
details in each of the tiles (green). Finally, the inner part of the embed
module is replaced by a certain window. Analogously to the operator
hierarchy, any applied modules can be traced back in the HL-Mode (1-
3). This makes subsequent changes of any parameters quite easy for
the user. For simplicity, we left away some parameters and subrules.

Parameter Adjustment — Similar to the P-Mode, the
user can click on any object (terminal or non-terminal)
and trace back all HL-Primitives that are involved to
generate the selected object by simply scrolling the
mouse wheel. Whenever a HL-Primitives is activated,
the user can toggle between the different camera views
and interactively control any visible parameter manipu-
lators (cf. Figure 7).

Local Modifications — Some of the abstract structure
templates generate non-terminal objects that are associ-
ated with the same rule. In order to apply a modification
to a subset of these non-terminal objects, we utilize the
tags which are reflected by a 2D user interface. Any
existing tags for a selected instance in the scene can be
easily combined and different selection patterns can be
chosen for each tag (cf. Figure 10). The user can ei-
ther change any parameter values for the specified HL-
Primitive or load a completely different one. The ex-
ample of Figure 10 shows some local modifications that
are applied to the procedural object of Figure 12.
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Description: The plan is the basic
construct to place shelf containers. It
can be extended to the right.
Parameters: width of the shelf column
NT: ShelfContainer, ShelfBasePlan

Description: A shelf container creates several non-terminal objects and defines the basic shape of the shelf. This high-level primitive has a several options to
change the overall appearance. Beside a parameter to change the height of the container, the user may also specify if another shelf can be placed on top of it
or if the shelf is closed so that the user can add some doors. The inner and outer planks can be replaced by a wooden material.

Parameters: height of the shelf container, dockable (allow to place another shelf container on top), closed (allow to put some doors in front of the shelf)

NT: MaterialWood, MaterialWood, Shel

IfContainer, ShelfDoorLayout

ShelfDoorLayout

ShelfDoorDesign

ShelfHandle

MaterialWood

w

NT: ShelfDoorDesign, ShelfHandle

Description: Three door layouts are available, which can be placed in front of
the shelf if it has been defined as a closed one. The door layout can be either
left or right handed or both. The user can also specify the opening angle(s).
Parameters: angle(s) to open the door(s)

Description: Two different door
designs are available to raise the
complexity of the model.
Parameters: none

NT: MaterialWood, MaterialWood

Description: Two different handles
are available that can be attached to
the shelf doors.

Parameters: none

NT: none

Description: A collection of wooden
materials is provided by this module.

Parameters: type of the wood
NT: none

Figure 13: This image depicts the available HL-Primitives in our shelf assembly scenario (cf. Figure 15 for an assembled shelf). Each HL-Primitive
has a short description for its typical usage and a list of adjustable parameters. Furthermore, the filter tags of the newly generated non-terminal
objects are listed (NT). Their color corresponds to their shared identity which can be seen directly in the 3D model. As an example, the orange
non-terminal object of the ShelfContainer should be replaced by one of the available ShelfDoorLayouts and therefore, the database will only show
these three options when the orange non-terminal object is selected.
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Description: The forrest generates a
number of seeds for trees within a
specified area.

Parameters: trees, seed, size

NT: Tree

Description: Define the basic shape of
the tree. Attachment points for limbs
will be placed along the structure.
Parameters: seed, limbs, tropism, age
NT: FruitLimb, Stem

Description: The fruit limb creates leaf
seeds and places fruits with a specified
probability.

Parameters: lenght, fruitProbability
NT: Fruit, Leaf, Stem

defined in a free-form deformation cage
Parameters: none
NT: none

Description: In this scenario the stem, leaf and the fruits act as the terminal
symbols which are placed during the modeling process. Note, that the stem is

and will be deformed accordingly.

Figure 14: In this scenario, we provide a number of HL-Primitives for the creation of fruit trees. The Forrest automatically generates seeds in a
certain area to place some Trees. By adjusting the Tree parameters, the user can define the limb density or influence the growth process (tropism).
Special limbs with additional parameters can be attached to the tree structure, e.g. FruitLimbs for the creation of fruit trees. Finally, the user can
choose among several terminal HL-Primitives like the type of wood, leafs and fruits that define the overall appearance of the tree.

Figure 15: This example shelf has been assembled by the HL-
Primitives depicted in Figure 13. Note, that any parameters of the
object are still adjustable, so that we are able, e.g., to open the doors,
change the type of wood or adjust any of the container dimensions.

Figure 16: These example trees have been genereated with the HL-
Primitives depicted in Figure 14. Adjusting the parameters and re-
placing non-terminal objects in different ways rapidly results in a col-
lection of unique tree models.



3.2.1. Examples

In this chapter we demonstrate the flexibility of our
system by showing several examples of different object
domains, namely buildings, furniture, and plants. Please
also watch our accompanying video containing all pre-
sented examples.

Buildings — Most explanatory figures throughout this
paper demonstrate the use of HL-Primitives for the cre-
ation of buildings (cf. Figure 11, 10). In this case, the
user first chooses the basic style of the facade that de-
fines the coarse structure. Afterwards a database of win-
dows, doors, ornaments, and cornices allows for the cre-
ation of a wide variety of different buildings [12]. Un-
fortunately, the geometric complexity for a single build-
ing can already become very high such that one can only
display and edit a small number of buildings at interac-
tive frame rates. Consequently, further research needs
to be done to automatically derive a continuous level-of-
detail (LoD) of the HL-Primitives to enable cooperative
modeling sessions of whole cities.

Furniture — Section 3.1.4 already illustrated an exam-
ple of an ergonomic chair that was composed of two
existing modules. In this case, we are able to interac-
tively adjust the skeletal features with respect to a target
person and the parameterized chair will automatically
adapt these changes.

In an alternative scenario for the creation of manufac-
turable furniture, we assume to have a database of HL-
Primitives containing shelf parts of a certain brand (cf.
Figure 13). For simplicity, the company is specialized
in the assembly of wooden shelfs like the one of Figure
15. Due to the filter tags, the modeling process becomes
much simpler since the number of replacement options
is reduced significantly. From the database of Figure
13, e.g., the user will only see the two ShelfDoorDe-
sign entries when one of the red non-terminal objects
of the ShelfDoorLayout is selected. As another exam-
ple, the inner and outer planks of the ShelfContainer
have the filter tag MaterialWood assigned. Therefore,
all planks have to get a wooden material, however, the
type of wood which is chosen for the inner and outer
planks is allowed to differ because they are defined in
different non-terminal groups shown in blue and red, re-
spectively (cf. Figure 15). This modeling scenario has
also been used for our small user study which can be
found in the appendix of this paper.

Plants — For this scenario, we provide a small database
of HL-Primitives that contain organic parts for the com-
position of tree models (cf. Figure 14). For simplicity,
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we only provide a small set of HL-Primitive for the cre-
ation of fruit trees like the ones in Figure 16. Basically,
the user starts with a HL-Primitive (Forrest) that ran-
domly places a number of seed points within a rectan-
gular area. At any time, the random seed can be altered
to change the final outcome of the forrest. Afterwards,
the HL-Primitive Tree can easily generate a high num-
ber of different branching structures. One useful param-
eter for this HL-Primitive is the tropism, i.e., the limbs
of the tree will favor to grow towards the sky (positive
value) or towards the ground (negative value). Beside
these parameters, the basic tree structure will place fur-
ther seed points to place limbs with a special behavior.
In our case, we provide a special FruitLimb that places
leafs and fruits during the growth process. The number
of fruits that are attached to the limb can be controlled
by a special parameter. Finally, our database contains
a small number of terminal HL-Primitives to define the
type of wood of the limbs and to specify the leafs and
fruits that are attached to the tree.

4. Discussion

Usability — Although the P-Mode provides interactive
handles for basic operations like transformations and
splits, we cannot get rid of the P-Mode with direct ac-
cess to the grammar (cf. Section 3). Especially, if arbi-
trary conditions or complex mathematical functions are
involved, the procedural modeling process is more like
scripting instead of designing. However, with a slightly
higher workload, an expert can define parameter manip-
ulators such that the procedural model becomes an easy
operated HL-Primitive for a large community.

With the implemented concepts of the HL-Mode,
the whole modeling process can be rather compared to
choosing and combining your favorite elements from a
catalogue and does not behave like a traditional model-
ing software. This is our main goal in order to make pro-
cedural modeling accessible to everyone. In our small
user study (given in the appendix of this paper), the test
subjects had to solve several tasks like assembling the
shelf of Figure 15 from scratch given the database of
Figure 13. In summary, all participants were very sat-
isfied with their result (all outcomes were barely distin-
guishable from the requested shelf) and — maybe even
more important — they had a lot of fun using the appli-
cation which was partially caused by the direct integra-
tion of the parameter manipulators in the 3D viewer (cf.
Appendix). Please also watch our accompanying video
in which we demonstrate the usability of our system.



Size Tri. Inst. | Eval. | Upl. | Ren
20x 10 | 65972 | 4351 9 20 1
20x20 | 142676 | 10047 | 24 46 2
20 x40 | 258932 | 18841 | 46 78 3
20x 80 | 528596 | 39027 | 113 | 118 4

Table 1: This table shows some performance statistics of our applica-
tion related to the facade of Figure 11 right. We measured the number
of triangles and instances in the scenegraph as well as the timings for
the grammar evaluation, the upload of the generated geometry to the
graphics card and the rendering of the triangles in milliseconds.

Implementation — Our application is written in C++
utilizing meta programming concepts. Although all
fixed types of the grammar are compiled to native data
structures, the system remains flexible in terms of new
non-terminal classes or built-in operators for the P-
Mode. To enhance the visual appearance of the real
time viewer, we use screen space ambient occlusion for
the generated objects and glow effects for the manip-
ulators. We run our application on a Intel Core i7 at
2.67GHz with 6 GB ram and a GeForce GTX 285 with
1 GB ram. Since our application is not parallelized, we
only utilize one of the cores. We have taken some per-
formance statistics (cf. Table 1) of the facade scene of
Figure 11 right. It is extremely important to notice, that
the number of instances is the crucial factor for measur-
ing the evaluation performance and not the number of
triangles, because the number of triangles can already
be very large for a single loaded terminal shape.

Limitations — Camera views have turned out to be a
necessary concept if a lot of parameters are defined by
a module. Unfortunately, defining appropriate camera
views can become challenging, because of the dynamic
behavior of a procedural model. Even for static geome-
try, a good viewpoint estimation is not trivial and often
relies on a set of heuristics to determine meaningful vis-
ibility criteria [19, 20]. In future work, semantics could
be attached to object parts and integrated into these al-
gorithms in order to derive better visibility criteria.

Furthermore, the set of camera views can change on
different parameter values due to certain conditions (cf.
Section 3). The presented prototypes are a convenient
solution to this problem, because the author of a gram-
mar can already define some meaningful start configura-
tions. A minor problematic situation occurs if small pa-
rameter manipulators are defined. In that case, the user
does not get a direct feedback how an edited parameter
changes the global shape of the object. This problem
could be solved by providing two viewers, i.e. one for
editing with respect to the current camera view and one
user defined camera location to see any global changes.
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Figure 17: In a repetitive pattern, a single parameter manipulator def-
inition can result in multiple interactive 3D handles. (a) In this ex-
ample, one parameter is used to define the approximate width of each
window tile, however, in the visualization, several parameter manipu-
lators are displayed labeled with the actual width instead of the param-
eter value itself. (b) For irregular patterns, showing several instances
of one parameter manipulator definition might become confusing.

If a single parameter manipulator definition is eval-
uated multiple times (e.g. due to the repeat operator),
several 3D manipulator objects are generated. In this
case, our definition of camera views will not be able
to reduce the number of visible handles since they all
map to the same parameter value. Unfortunately, there
is no general answer to solve this problem. In some sit-
uations, especially for regularly repeated elements (cf.
Figure 17.a), it is reasonable to display all manipulators
as indication for actual lenghts and angles that occur in
the model. On the contrary, for irregular structures, like
randomly placed trees (cf. Figure 17.b), multiple visu-
alizations of the same parameter manipulator might be-
come confusing. For this configuration, only the manip-
ulator instances of the selected item could be displayed.
Other entities that are dependent on the manipulated pa-
rameter could be highlighted with a colored silhouette
to reveal the global influence of that parameter.

5. Future Work

We want to provide several other non-terminal classes
in our application, such as NURBS, to bring the P-Mode
of our application one step closer to conventional mod-
eling software like Maya or 3ds Max from Autodesk.
For this purpose, we simply need to map the basic oper-
ators of a new class to common 3D user interfaces.

Once our system provides a higher number of classes
and operators, we make the application available to a
large community. Professional users create their own
HL-Primitives which are then stored in a globally ac-
cessible database. If the HL-Primitives are approved
by moderators, the database will provide a well-defined
set of HL-Primitives which are then downloaded by any
other user for compositing. When several people work
within the same procedural envirionment, a huge and
likewise detailed scene could be generated.



Although our application can already handle single
complex procedural models, it is not possible to gen-
erate a large scenes with millions of objects with in-
teractive frame rates. In future work, we will develop
and evaluate different methods on how those scenarios
can still be rendered and edited in real time such as au-
tomatic level of detail creation for procedural models.
This is one of the most essential points for the former
explained community based system.

6. Conclusion

This paper has covered fundamental concepts for the
interactive creation, modification and composition of
complex grammars for procedural models. A profes-
sional mode provides all features of the procedural sys-
tem by allowing direct access to the underlying textual
grammar. Geometrically meaningful parameters that
describe a certain procedural model are mapped to in-
teractive manipulators. Camera views are defined to re-
duce the number of parallel visible parameter manipu-
lators. Finally, the author provides prototypes for his
grammar to make it available as high-level primitive for
a wide range of people. The fully interactive high-level
mode serves for the composition of existing procedu-
ral models in an easy way. With a small community of
professional users and a large community of high-level
users, procedural modeling becomes the key solution to
the creation of huge and likewise detailed scenes.
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Appendix

This appendix contains a user study to compare the
concepts of the professional mode (P-Mode) and the
high-level mode (HL-Mode). We show, that an intuitive
and simplistic user interface is the key factor to make
procedural modeling available to a wide range of casual
users with no 3D modeling experience. Most impor-
tant for the motivation of the participants is to avoid an
emotional link of the modeling process with some kind
of stressful work, but instead it should feel like playing
a game which is emotionally linked with fun.

Introduction — We performed the study with 10
mainly undergraduate students. With respect to the
modes, our user study is split in two phases. In the
first phase, we explained the principal concepts of pro-
cedural modeling to the participants and we created
a small shelf layout from scratch by using very ba-
sic split operators to demonstrate the P-Modeling mode
in action (similar to the ShelfContainer of Figure 13).



Note, that the interaction metaphors in this mode be-
have quite similar to the ones presented by Lipp et al.
[13] such that we also compare our HL-Mode against
their method in a certain manner. After the introduc-
tion, we handed over a sheet explaining all important
operators (i.e. transformations, repeat, split) to the par-
ticipant, who had to repeat the modeling process of the
shelf layout within a limited time period of roughly 10
minutes. In the second phase, we shortly introduced the
interaction methods of the HL-Mode and handed an im-
age of a shelf over to the participant, who had to com-
pose the illustrated shelf within 10 minutes (cf. Figure
15). We did not discuss the available HL-Primitives in
detail, because in a real world scenario the user would
also be faced with unknown HL-Primitives of different
modeling domains (see Figure 13 for a subset of the
provided HL-Primitives). Notice, that the two tasks are
quite similar in the number of interactions that have to
be performed.

The NASA-TLX — The main goal of our user study
is to compare the workload between the P-Mode and
the HL-Mode based on the NASA Task Load Index
(NASA-TLX) [21]. The results of our study can be seen
in Figure 18. The diagram clearly shows, that the cogni-
tive workload for the HL-Mode is much below the cog-
nitive workload of the P-Mode. Note, that the number
of participants is already sufficient for a reliable state-
ment on the workload which can be seen from the cal-
culated confidence intervals, that do not overlap. All
participants were able to model exactly the shelf from
the image in the HL-Mode within the given time (av-
erage 7:44) whereas only three participants produced a
more or less pleasing result in the P-Mode within the
10 minutes (average /1:27). During the test, the partic-
ipants did not notice that they were already exceeding
the given time interval and they stayed motivated to pro-
duce the requested structure, however, most of the test
subjects had problems to apply the split operations in
a strict coarse-to-fine manner which led to suboptimal
workarounds in rules that were applied later on. Fur-
thermore, only one participant used the repeat operator
properly, whereas all others created the inner planks by
a fixed number of splits resulting in a redundant usage
of certain parameters.

The Questionnaire — Beside the NASA-TLX, all par-
ticipants had to give a rating (from 1 (little/rarely) to 5
(much/often)) on the following 8 questions (Q1—-Q8).
The result of this survey is presented as a box plot in
Figure 18. Additionally, they were asked to give some
comments on the different questions.
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Figure 18: The left diagram compares the cognitive workloads of the
HL-Mode (17.81) and the P-Mode (42.95) based on the NASA-TLX.
We illustrate 95% confidence intervals for the bar charts to prove the
high reliability of our result. The right diagram shows a box plot of
the answers related to the questionnaire (red plus = outlier, red line =
median).

1. How much do you like the professional mode?

2. How much do you like the high-level mode?

3. How much do you think you would have to learn
to model the shelf from Figure 15 with the profes-
sional mode?

4. Are you satisfied with your results from the second
task?

5. How much do you like the integration of the ma-
nipulators directly in the 3D modeling interface?

6. Your knowledge about procedural modeling tech-
niques?

7. Your experience with 3D modeling software?

8. Your experience with scripting languages?

First of all, we see from the box plot, that both modes
were liked in general (Q7,02). A common sense among
the participants why they liked a certain mode was the
flexibility in the P-Mode and the simplicity as well as
the interaction techniques in the HL-Mode. For ques-
tion Q3 we can see that the answers are distributed over
the full range which most probably correlates with the
experience of the test subjects, which is also scattered
along the whole range (Q6-08) with a tendency to know
less about procedural modeling techniques and more
about scripting languages. The results of Q4 and Q5 are
one possible answer to the question, why both modes
were favored so much. Especially the direct integration
of the manipulators in the 3D scene was explicitly men-
tioned several times to be a convenient method to adjust
parameters since one can fully focus on the 3D viewer.



