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Abstract

Chernyaev’s Marching Cubes 33 is one of the first algorithms intended to preserve the topology of the trilinear interpolant. In
this work, we address three issues with the Marching Cubes 33 algorithm, two of which are related to its original description and
one that is related to its variant. In particular, we solve a problem with the core disambiguation procedure of Marching Cubes 33
that prevents the extraction of topologically correct isosurfaces for the ambiguous configuration 13.5. This work closes an existing
gap in the topological correctness of Marching Cubes 33. Furthermore, we make our results reproducible, meaning that examples
provided in this work can be easily explored and studied. Finally, as part of the philosophy of reproducibility, we provide a corrected
version of the Marching Cubes 33 open-source implementation and access to datasets that can be used to verify the correctness of
any available topologically correct isosurface extraction implementation that preserves the topology of the trilinear interpolant.
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1. Introduction

The Marching Cubes (MC) algorithm [17] is arguably the
most popular isosurface extraction algorithm available and is
an important component of the toolkits of many visualization
experts and researchers. The popularity of the MC algorithm
springs from its many advantages, which include simplicity,
robustness, and speed. The widespread adoption of MC has
resulted in a vast number of improvements in areas ranging
from performance to triangle quality and topological correct-
ness. The latter topic is of special interest in this work. We
focus on the problem of MC interior ambiguity and, in partic-
ular, on the topological correctness of Chernyaev’s Marching
Cubes 33 (MC33) [2, 15].

Isosurface extraction techniques can be divided into two
classes according to their topological guarantees, namely, con-
sistency or correctness. Topologically consistent techniques
produce surfaces that are piecewise-linear (PL) manifolds (i.e.,
crack-free surfaces), except at the boundary of the domain. To-
pologically correct techniques produce a PL-manifold homeo-
morphic to the surface induced by a given interpolant, such as
the trilinear interpolant. Although there are many topologically
consistent MC-based techniques, only a handful are topologi-
cally correct. Marching Cubes 33 is one of the first MC-based
algorithms that aim to preserve the topology of the trilinear in-
terpolant.

Topological correctness increases the complexity of isosur-
face extraction algorithms. The many isosurface configurations
possible for a given interpolant in a cubic grid makes both the
algorithm and its implementation a challenging task. As algo-
rithms and implementations become more complex, issues may

be overlooked and remain hidden in the multitude of (pseudo-)
lines of code. Throughout years of research, it has been shown
that some supposedly topologically correct techniques, includ-
ing MC33, have issues that prevent correctness [7, 16, 21]. In
particular, the work of Etiene et al. [7] shows that the MC33 im-
plementation by Lewiner et al. [14, 15], fails to produce topo-
logically correct isosurfaces. Alas, the authors do not provide
an explanation for the problem source, let alone fix the prob-
lem. They only provide cases that are mishandled by MC33
and a conjecture regarding the root of one of the observed flaws.
As we studied the MC33 implementation, we realized that the
source of the problem was not merely implementation bugs but
the core ideas behind the implemented algorithm. In this work,
we address issues with Chernyaev’s original algorithm, its ex-
tension, and its implementation. Our work closes an existing
gap in the topological correctness of Marching Cubes 33.

The subtleties involved in the correctness of isosurface ex-
traction techniques are sometimes di�cult to grasp in the or-
dinary paper medium. Both the geometry and topology inside
grid voxels are often complex and challenging to understand,
study and replicate (e.g., see Figures 9 and 10 in [22]). As an
attempt to bridge this gap, we build on recent e↵orts towards
executable papers [13, 31]. Executable papers extend the tra-
ditional paper/digital counterpart by including tools that allow
readers to interact, explore and verify experiments more easily.
In this work, we use executable papers to increase the repro-
ducibility of our results.

Our contributions, which have a practical nature, are the
following:

• We explain and address three algorithmic issues and one
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non-trivial implementation issue with Marching Cubes
33. In particular, we solve an issue with the core MC33
disambiguation procedure that, as far as we know, has not
been addressed elsewhere. Hence, we close an existing
gap in the MC33 literature.

• We make our results reproducible. CrowdLabs [31] and
Vistrails [8] are used to create an executable paper that
can reproduce the results shown in the following sections.

• We provide datasets that can be used to verify the cor-
rectness of any topologically correct isosurface extrac-
tion technique.

A by-product of this work is a thorough analysis of both the
MC33 algorithm and its implementation that can be used by
anyone interested in the use or development of correct isosur-
face extraction algorithms based on MC33. The results of our
e↵orts are materialized into an extended version of the MC33
implementation [14], henceforth called Corrected-MC33 (C-
MC33).

This work is organized as follows. Section 3 reviews key
aspects related to the Marching Cubes 33 algorithm. Section
4 explains how experiments that uncovered problems in both
MC33 algorithm and implementation were conducted. The de-
tails of the problems found are shown in Section 5 and the so-
lutions are presented in Section 6. Section 7 shows the results
of applying algorithm with di↵erent topological guarantees to
real-world datasets.

2. Related Work

Soon after the publication of the MC algorithm, the quest
for a topologically correct isosurface extraction technique be-
gan. A number of approaches were proposed for dealing with
cracks, face ambiguity, and, lastly, interior ambiguity. Dürst [6]
was the first to point out that some MC cases allow multiple tri-
angulations. A consequence of this is that MC does not always
generate topologically consistent surfaces. This problem arises
due to the ambiguity problem; and the Asymptotic Decider [23]
provides a simple and elegant solution to face ambiguity.

The ambiguity problem also occurs in the interior of a voxel.
Natarajan [20] was the first to address this problem by adding
four new cases to the standard MC triangulation table (subcases
of cases 3, 4, 6, and 7). To find the correct subcases, the au-
thor proposed a disambiguation procedure based on both face
and interior critical points. Nevertheless, the method misses the
possibility of two interior critical points in case 7, consequently
the proposed algorithm may generate a surface with the incor-
rect topology [1, 21].

Using a di↵erent approach, Chernyaev [2] extended the orig-
inal MC table to 33 cases – hence MC33; this extension in-
cluded all the subcases for each ambiguous case. He used the
Asymptotic Decider and a new interior ambiguity test to dis-
criminate among subcases. Lewiner et al. [15] provided a
practical open-source implementation of the Chernyaev algo-
rithm. It is worth noting that some of the configurations shown
in Chernyaev’s work [2] may have been inspired by personal

communication with Nielson [22]. Matveyev [18] introduced
an isosurface technique that is also based on an extended table
and used the intersections of isosurfaces with cube diagonals to
determine the correct case.

Lopes and Brodlie [16] extended the tests proposed by Na-
tarajan. The goals of the work are threefold: i) extract topo-
logically correct isosurfaces; ii) produce geometrically accu-
rate isosurface; iii) allow continuity with respect to changes in
threshold and data. Nevertheless, as in Natarajan’s work, the
method missed the possibility of two interior critical points in
case 7 [16]. Cignoni et al. [3] also used the test proposed by
Natarajan to reconstruct topologically correct isosurfaces. The
work of Theisel [30] uses Bézier patches to build G1 continuous
isosurfaces that are topologically correct. Nielson [22] lists all
possible cases of a trilinear interpolant inside a cubic grid and
builds a topologically correct MC using a three stage algorithm
for surface polygonization.

The past two decades have also produced a number of iso-
surface techniques that are not MC-based. Dual Contouring [12]
(DC) is a robust, crack-free, isosurface extraction technique
that works on the dual grid. Several improvements over Dual
Contouring have been proposed: Schaefer et al. [24] address
the issue of non-manifold surfaces generated by DC; Varadhan
et al. [32] combine a signed distance field with DC to recon-
struct details such as thin features; and Zhang et al. [33] use
DC for topology-preserving simplification of isosurfaces. Note
that none of these techniques are intended to preserve the topol-
ogy of the trilinear interpolant. Dey and Levine [5] presented
an algorithm that computes a Delaunay triangulation based on
the intersection between the isosurface and the 3D Voronoi di-
agram. Another paradigm for isosurface extraction is the ad-
vancing front method. Advancing front algorithms build a trian-
gulated surface by progressively adding triangles to an implicit
surface [10], possibly creating several fronts that are simultane-
ously advanced one triangle at a time. A number of extensions
have been proposed for advancing front techniques [25, 26, 29].

In the following sections, we focus on MC33. Note that,
although many of the algorithms presented previously are topo-
logically consistent, only a handful of them are topologically
correct [2, 5]. Also, the implementation of a topologically cor-
rect isosurface extraction algorithm is non-trivial. Hence, once
the algorithm is implemented, topological guarantees, both con-
sistency and correctness, may be lost because of algorithm or
implementation issues, as shown in the work of Etiene et al. [7].
Although it has been ten years since the publication of MC33,
we believe it is important to correct a mistake in the algorithm
that has gone unnoticed since Chernyaev published it almost 20
years ago. In this work we aim to close an existing gap in the
MC33 literature. Furthermore, we aim not only to provide a
correct algorithm but verify that our modified implementation
is faithful to the correct algorithm. We explain the issues and
propose solutions for both algorithm and implementation. We
note that “MC33” may refer to either the Marching Cubes 33
algorithm presented in Chernyaev’s work [2] or its implemen-
tation, as in Lewiner et al. [15] depending on the context.
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Figure 1: Left: case 4 ambiguity. The interior ambiguity test proposed by
Chernyaev is used choose the correct configuration.Right: face ambiguity. The
Asymptotic Decider is used to resolve the ambiguity.

Figure 2: Asymptotic Decider (left) and MC33 interior ambiguity test for MC
case 4 (right). The gray areas represent regions with positive scalar values, and
the capital letters represent the scalar value at each vertex. In the left image,
we observe that f (xc) < 0, where xc is the saddle point position. Positive areas
will be connected if f (xc) > 0. The orange squared plane shown in the right
image represents the cutting-plane. The goal of the MC33 algorithm is to find
a cutting-plane such that the gray areas in the top and bottom planes are joined
in the interior.

3. Preliminaries

In this section we present the notation that will be used
throughout the paper. We also briefly review the main con-
cepts behind Chernyaev’s algorithm and Lewiner et al.’s im-
provements to it. Let G be a rectilinear grid with scalar values
associated with each vertex x j 2 G. Let g : R3 ! R be a
piecewise-trilinear interpolation function defined on G. Given
an isovalue �, the isosurface S � is defined as the set of points for
which g(x) = �. For each voxel vi ⇢ G, and x 2 vi, g(x) = gi(x)
where gi is the trilinear interpolant inside the cubic cell vi.

The output of MC-based algorithms is a piecewise-linear
mesh M�, and we say that an algorithm and its implementation
are topologically correct if M� is homeomorphic to S �. Without
loss of generality, we assume that � = 0, and thus S � = S 0 = S .
We say that a point x is positive (negative) if g(x) > 0 (g(x) <
0).

Given a voxel vi, and a cutting-plane P parallel to one of
vi’s faces, define fi : R2 ! R as the bilinear interpolant along
P. Note that fi(x) = gi(x) for x 2 P. Throughout the text, we
deal with a single voxel v; thus, we omit the subscript i. We
also assume that v and P are defined in the domains [0, 1]3 and
[0, 1]2, respectively.

3.1. Chernyaev’s MC33
The two pillars of Marching Cubes 33’s topological cor-

rectness are Nielson and Hamann’s Asymptotic Decider and
Chernyaev’s interior ambiguities test; together these solve the

face ambiguity and interior ambiguity problems in the March-
ing Cubes 33 algorithm. A face ambiguity occurs when face
vertices have alternating signs. That is, one face diagonal is
positive (both vertices are positive) and the other is negative
(both vertices are negative). In this case, the signs of the face
vertices are insu�cient to determine the correct way to trian-
gulate the isosurface. Similarly, an interior ambiguity occurs
when the signs of the cube vertices are insu�cient to determine
the correct surface triangulation, i.e., when multiple triangula-
tions are possible for the same cube configuration (see Figure
1).

The idea behind the Asymptotic Decider is to verify the face
saddle sign and compare it to the sign on the face vertices. A
positive saddle means that the positive face vertices are con-
nected; consequently, the positive face vertices are separated if
the face saddle point is negative (see Figure 2). To compute
the face saddle sign, the saddle point position xc must be com-
puted [2]:

xc =
✓ A � D

A +C � B � D
,

A � B
A +C � B � D

◆
, (1)

where A, B, C and D are the scalar values at the face vertices
(see Figure 2). The sign of xc can easily be checked by replac-
ing Equation (1) into the bilinear interpolant:

f (xc) =
AC � BD

A +C � B � D
. (2)

For an ambiguous face, assuming A, C positive and B and D
negative, the denominator of the Equation (2) is always positive
(see Figure 2). Then, the face ambiguity is solved by evaluating
the sign of the numerator of f (xc).

Due to the interior ambiguity, the Asymptotic Decider alone
cannot solve the topological correctness problem. Chernyaev
uses the idea behind the Asymptotic Decider to solve the in-
terior ambiguity problem. The proposed test uses a sweeping
cutting-plane to evaluate the behavior of the trilinear interpolant
inside the cube.

Given a cube with an ambiguous configuration, define the
scalar values at the base and top planes as A0, B0, C0, D0 and
A1, B1, C1, D1, respectively (see Figure 2). Let A0 and C1,
the vertices to be tested, be positive. Observe that, although A0
and C1 belong to opposite cube faces, they can be connected
through the cube interior. In other words, there may exist a path
from A0 to C1 passing through the voxel interior for which all
points belonging to that path are positive. To determine whether
A0 and C1 are connected, Chernyaev begins by observing that
the saddle points at the top and base cube faces are negative,
i.e., Equation (2) is negative at the bottom and top faces. Since
the denominator is positive, it follows that:

A0C0 � B0D0 < 0 (3)
A1C1 � B1D1 < 0. (4)

Then, if there is a plane cutting the cube such that its saddle
point is positive, it means that there is a positive area crossing
the cube, i.e. the positive vertices are connected inside the cube.
In other words, the Chernyaev interior test searches for a t for
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which:

F(t) = AtCt � BtDt > 0. (5)

This can be achieved by solving a second order equation in t.
Replacing Xt = X0 + (X1 � X0)t, X 2 {A, B,C,D} and t 2 [0, 1]
in Equation (5) one obtains a second order equation in t:

F(t) = AtCt � BtDt (6)
= at2 + bt + c, (7)

where a, b, and c are functions of A, B,C, and D (see Appendix
A). Chernyaev concludes that positive vertices A0 and C1 are
connected through the cube interior if:

i a < 0;
ii tmax = �b/2a 2 (0, 1);

iii F(tmax) > 0.

If one of the above conditions fails, the positive vertices are
separated.

3.2. Lewiner et al.’s MC33
Lewiner et al. [15] proposed a modification of Chernyaev’s

interior test. In this modification, they use an alternative method
for computing the height plane t for most ambiguous cases. For
cases 6, 7, 12, and 13, the authors compute the height t based on
the barycenter of the end vertices of an edge e (a cube edge in-
tersected by the isosurface) weighted by the values of the scalar
field on these vertices (see [15] for details). In practice, the
implementation uses:

talt =
V0

V0 � V1
, (8)

where V0 and V1 are the scalar values at the vertices of e. Note
that this is equivalent to finding the intersection point between
the isosurface S and e. The authors keep the structure of the
test proposed by Chernyaev, but condition (i) is not used, and
condition (ii) is always true because e is an edge intersected by
the isosurface; consequently, talt 2 (0, 1).

Section 5 explains why the algorithm proposed by Cherny-
aev and its modified version proposed by Lewiner et al. may
fail to extract surfaces that are topologically correct. In the fol-
lowing section, we present the tools we use to detect, debug,
and reproduce the issues found in the MC33 algorithm and its
implementation.

The full Marching Cubes table can be found in the works of
Chernyaev [2] and Lewiner et al. [15].

4. Experiments setup

We begin by investigating the source of topological prob-
lems in the MC33 implementation [7]. The topological issues
described were obtained by systematically stress-testing the im-
plementation over many topological configurations using the
verification framework proposed in Etiene et al. [7]. These au-
thors’ algorithm can be summarized as follows. (I) A random
scalar field G is built by uniformly sampling scalar values in

Figure 3: The executable paper pipeline. An image is made executable (left),
meaning that the reader can launch a request to execute a pipeline in a remote
server (middle) and interact with the result in a web browser (right) [4].

the range [�1, 1] for each x j 2 G. (II) The expected topological
invariants are obtained directly from S , i.e., without extracting
the isosurface of interest. The topological invariants used are
the Euler characteristic �(S ) and the Betti numbers �k(S ). (III)
The MC33 implementation is used to extract a piecewise lin-
ear mesh M, and its invariants �(M) and �k(M) are computed.
(IV) Lastly, the pairs of topological invariants {�(S ), �(M)} and
{�k(S ), �k(M)} are compared. A mismatch indicates that a prob-
lem has occurred. Nevertheless, as the authors note, a match
between invariants does not imply a bug-free code [7]. The ver-
ification process does not prove the absence of bugs but only
increases one’s confidence in its correctness. In this paper, we
exploit the fact that when the expected and obtained surfaces
are not homeomorphic, a counterexample is given in the form
of a scalar field G and a mesh M. We use this information to
find and correct errors in MC33.

4.1. Reproducibility
As investigators in a mature field within the scientific vi-

sualization community, isosurface extraction researchers have
developed ways to help other researchers and practitioners re-
produce their results. Published journal articles o↵er a first
approximation of reproducibility. Nevertheless, many details
regarding implementation, source code, input data, and other
types of information are often omitted. Many, but not all, pub-
lished techniques make source code and input data freely avail-
able, and some are part of widely used visualization packages
such as VTK [27]. This practice greatly increases the degree of
reproducibility of the work. In this paper, we strive to increase
the degree of reproducibility of the work presented by making
the results shown in Figures 8 and 9 and in Algorithm 2 fully
reproducible. We use CrowdLabs [31] and Vistrails [8, 28] as
a platform to achieve this goal. To explore some of the results
shown in this paper, the reader may click on individual figure
captions and interact with the results via web browser. Figure
3 shows the pipeline of an executable paper. We have selected
cases in which MC33 fails and have provided the respective
correct results. In addition, to allow the reader to explore and
study the results presented here, he or she can also download
the scalar fields and respective topological invariants � and �
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Figure 4: Sign changes of the cutting-plane saddle point as a function of the height t. The gray area depicts f (x) > 0. The black (resp. white) dots are face saddles
with f (xc) > 0 (resp. f (xc) < 0). From left to right, the four leftmost images show the sign of the face saddle points changing from negative to positive to negative
and to positive again, respectively. The rightmost image shows the hyperbolic trajectory of the face saddle position xc(t). The MC33 algorithm fails to track the
saddle point sign because it ignores the influence of the hyperbolic trajectory shown here.

Figure 5: Challenging cases for Chernyave’s interior test: voxel diagonal has
vertices with opposite signs. Case 13.5.2 needs to be oriented correctly. One
of the diagonal vertices is isolated from all other vertices in the cube, while the
other is faced by the tunnel. In order to determine which vertex is isolated, we
apply the same tool used for disambiguation of case 13.5. For case 13.5.1, the
orientation of the isosurface have no influence on the topology.

used for stress testing MC33. We also provide 10000 March-
ing Cubes cases grids and randomly generated 5x5x5 grids [4].
This dataset can be used to test any topologically correct iso-
surface extraction technique.

5. Issues with the MC33 algorithm and its implementation

In this section, we discuss specific issues regarding both
Chernyaev [2] and Lewiner et al.’s [15] work. Because Lewiner
et al. extends Chernyaev’s work, the issues presented in the lat-
ter are also part of the former. Specifically, we detail three algo-
rithmic issues – two in Chernyaev’s MC33 and one in Lewiner
et al. – and one implementation issue. The solutions for the
issues raised here will be presented in the next section.

This section is organized as follows. First, we explain an al-
gorithmic problem with the MC33 core disambiguation proce-
dure. This issue has not been discussed in the literature to date.
We then discuss a second algorithmic problem related to the
triangulation table and the extraction of non-manifold meshes.
Although this problem has been discussed in the literature, we
discuss it here for completeness and because we provide an al-
ternative solution to the problem (see Section 6). Next, we show
a third algorithmic problem related to the alternative approach
proposed by Lewiner et al. for computing the height plane t.
Lastly, we show a non-trivial problem with the open-source im-
plementation of the MC33.

Figure 6: Counterexample to Chernyaev’s core disambiguation algorithm. The
MC33 algorithm incorrectly interprets case 13.5.2 as 13.5.1. The left image
shows the zero-level set for case 13.5.2 and cutting-planes at heights t1, t2,
and ta, which correspond to both roots of F(t) and the asymptote of f (xc(t)),
respectively. The blue ribbon shows the path of the face saddle xc(t). The right
image shows the changes in f (xc(t)) and F(t). According to the three criteria
of the MC33 algorithm described in Section 3, the upward-facing red parabola
defines the absence of a tunnel (condition (i)), which is incorrect. The blue
curve, on the other hand, shows the correct sign change.

5.1. Issue I – Case 13.5
Here, we show a problem with the core disambiguation pro-

cedure described in Chernyaev’s work. To our knowledge, this
problem has not been exposed or addressed in the literature.

Case 13 is certainly the most complex table case; all faces
are ambiguous, and six subcases are possible. Four of the sub-
cases can be discriminated by using Asymptotic Decider. The
remaining cases 13.5.1 and 13.5.2 require Chernyaev’s MC33
interior ambiguity resolution method. Recall that the MC33
approach discriminates between tunnels and isolated sheets by
finding a cutting-plane for which positive nodes in the cube di-
agonal are joined by points in the interior of the cubic cell (see
Figure 2). Cases 13.5.1 and 13.5.2 di↵er precisely because the
positive nodes in case 13.5.2 are connected to one another by
interior points, which is not true for 13.5.1 (see Figure 5).

Although it seems that the MC33 methodology described
in Section 3 fits naturally in this scenario, as it turns out this
disambiguation procedure cannot be applied for 13.5. Let us
illustrate this point with an example. Figure 4 shows the ex-
pected changes in the sign of the saddle point xc as a function
of the height t. Mathematically

xc(t) =

 
At � Dt

At +Ct � Bt � Dt
,

At � Bt

At +Ct � Bt � Dt

!
. (9)

5

http://liscustodio.github.io/C_MC33/MarchingCubes_cases.zip
http://liscustodio.github.io/C_MC33/MarchingCubes_cases.zip
http://liscustodio.github.io/C_MC33/Closed_Surfaces.zip


It follows that the face saddle value (and thus sign) is also de-
fined as a function of t:

f (xc(t)) =
AtCt � BtDt

At +Ct � Bt � Dt
(10)

=
at2 + bt + c

At +Ct � Bt � Dt
. (11)

As can be seen in Figure 4, from left to right, as the plane height
t changes, the value of the face saddle f (xc(t)) changes from
negative to positive to negative and to positive again. These
changes occur at the roots t1 and t2 of f (xc(t)) and the asymptote
of f (xc(t)), i.e., the root ta of the denominator of f (see left
image in Figure 6). Thus, in total, three sign changes will occur.
The rightmost image in Figure 4 shows the path traced by the
face saddles xc(t); as t grows, there is a “jump” not only in
the sign of f (xc(t)) but also in the position of xc(t) . The change
occurs precisely when the height t passes through the asymptote
of f (xc(t)).

Nevertheless, contrary to what is expected, the polynomial
F(t) (Equation (7)), used by Chernyaev’s MC33 algorithm for
tracking the sign of the saddle point, is a second order equation
in t and thus can only allow for two sign changes. Therefore,
the sign tracked by the MC33 algorithm will not match the ex-
pected one at some point. Because the sign of the saddle points
is embedded in all three conditions for verifying the presence
or absence of tunnels, MC33 will eventually provide a wrong
result.

The source of the problem can be tracked to Equations 3
and 4 and the assumption that the denominator of f (xc) (Equa-
tion (2)) is positive. These assumptions can easily be verified
to be true for case 4, shown in Figure 2. However, for case 13,
the saddle points at the top and bottom planes have opposite
signs, which contradicts Equations (3) and (4). In addition, the
denominator A + C � B � D of f (xc) changes its sign at the
asymptote of f (xc), contrary to the assumption that it is always
positive. The consequence of incorrectly tracking sign changes
is that the three rules used for resolving internal ambiguity will
fail for some scalar fields. As an example, Figure 6 shows a
case 13.5.2 that will mistakenly be taken as case 13.5.1 because
a > 0 characterizes multiples surface sheets instead of a tun-
nel (see also Appendix A). The problem is not only related
to the misclassification of case 13.5.2 as 13.5.1. We have also
devised examples in which case 13.5.1 is mistakenly taken as
case 13.5.2 because the three criteria shown in Section 3 hold.
Thus, Chernyaev’s interior ambiguity test does not always yield
topologically correct isosurfaces.

5.1.1. Tunnel orientation
A second minor issue regarding case 13.5.2 is the tunnel

orientation of configuration 13.5.2. Once case 13.5.2 is deter-
mined, one needs to properly orient the tunnel inside the voxel.
The inline figures show the two possibilities. Both vertices at
the voxel diagonal are separated from all other voxel vertices
at the voxel faces (note that this is not the case for other ver-
tices). Nevertheless, either the positive or the negative vertex of
the cube diagonal will connect with vertices with the same sign
through the voxel’s interior. This will determine which vertex

Figure 7: Two possible tunnel orientations for case 13.5.2. The di↵erence be-
tween them is the location of the positive vertex.

is isolated and which is facing the tunnel. This problem with
the tunnel orientation is not dealt with or mentioned in either
Chernyaev or Lewiner et al.’s work. Nevertheless, it was briefly
mentioned in Etiene et al. [7], but no solution to the problem
was provided. As the authors observed, the isosurface topology
changes if the tunnel orientation is incorrect; thus, it must be
oriented correctly. The section 6.1.1 provides a solution for this
issue.

5.2. Issue II – Non-manifold surfaces
The second algorithmic issue is related to the triangulation

table used to build triangulated surfaces. The choice of the cor-
rect MC configuration is only part of the process of building an
algorithm that preserves the topology of the piecewise-trilinear
field. The voxel triangulation table is, in fact, the determinant
of the final mesh topology. Chernyaev’s original triangulation
table contains cases that lead to topologically inconsistent non-
manifold meshes in scenarios such as the one shown in Fig-
ure 8. This problem occurs because the MC33 triangulation
table allows faces that are coplanar with the grid voxel faces.
Hence, when neighbor voxels have “tunnels” in their interiors,
and share an ambiguous, coplanar face, the end result will be
non-manifold edges, as shown in Figure 8. Because this is an
issue with the triangulation table, any topologically correct al-
gorithm whose table is based on Chernyaev’s triangulation table
will build non-manifold surfaces whether or not the algorithm
can correctly distinguish the voxel cases.

This problem with Chernyaev’s work was pointed out by
Lopes and Brodlie [16] (following earlier work by Van Gelder
and Wilhelms [9]) and is one of the motivations of Lopes and
Brodlie’s work on topologically correct and geometrically ac-
curate isosurface extraction algorithm [16]. Lopes and Brodlie
aimed at improving the geometry quality of the trilinear sur-
face patches and consequently solving the topology problem.
They achieve this goal by adding points to the voxel faces as
well as to the voxel interior. These extra points are placed on
the trilinear patch which increases geometry accuracy. They are
classified into three di↵erent classes and used for extending the
contour of the trilinear patch with the voxel faces. The imple-
mentation of this technique becomes intricate and error-prone
due to the additional steps required for voxel triangulation.

5.3. Issue III – Cutting-plane computation
The third algorithmic issue is related to an MC33 improve-

ment proposed by Lewiner et al. [15] for computing the plane
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Figure 8: Top: Problem with Chernyaev’s triangulation table. The figure shows the zero level-set of a 5⇥ 5⇥ 5 randomly generated piecewise-trilinear scalar field G
(left) and two meshes extracted using the MC33 (center) and C-MC33 (right) algorithms. The isolated voxel patches, shown in green and yellow, represent the two
voxels at the center of G. The face shared by two consecutive tunnels, shown in purple, generates non-manifold edges. After one subdivision at the critical point of
this case, the problem no longer occurs, and a valid manifold surface is obtained (right). Bottom: Triangulation for tunnels used by Lewiner et al. [15]. Each has a
face that is coplanar to the voxel faces, which may lead to non-manifold surfaces. [4]

Figure 9: Case 6 configuration. Left: the cut plane height t = talt > 0 used in
the MC33 implementation. Middle: the test proposed in the MC33 algorithm
provides a di↵erent t = tmax > 0, which reaches the tunnel. Right: the for-
mer test decides that the isosurface is homeomorphic to two discs whereas the
correct answer is a tunnel. [4]

height. The problem is that Equation (8) may fail to find an ap-
propriate height that can correctly distinguish between tunnels
and surface sheets. Let us illustrate this point with an exam-
ple. For the cases previously cited, two of the conditions in the
Chernyaev interior test described in Section 3 are not used. The
MC33 implementation does not use condition (i), and (ii) is al-
ways true because the edge e will always have a positive and a
negative vertex, implying that talt 2 (0, 1). Thus, only condition
(iii) is used in retrieving the correct voxel topology. Suppose
that the scalar field in a given voxel defines a tunnel, as shown
in the left image in Figure 9. In this case, to retrieve the cor-
rect topology, F(t) should be a downward-facing parabola with
both roots t1, t2 2 (0, 1), t1 < t2, and tmax 2 (t1, t2). In this case,
F(t) > 0 only for t 2 (t1, t2); hence, F(tmax) > 0, and a tun-
nel is retrieved according to condition (iii). The problem with
the alternative approach is that, as shown in Figure 9, the solu-
tion to Equation (8) is not guaranteed to fall within the (t1, t2)
interval, which implies that the scalar field may be incorrectly
interpreted as containing two sheets of surface (shown on the
right). In other words, because talt 2 (0, t1) and F(talt) < 0,
condition (iii) verifies the absence of a tunnel.

5.4. Issue IV – Case 10
The last issue described in this work is related to the imple-

mentation of MC33. Developers know all too well that code
mistakes are inherent to software and the MC33 implementa-
tion is not an exception.

Due to a missing step in the implementation of the disam-
biguation algorithm, MC33 fails to correctly resolve the am-
biguity in cases 10 and 12. Note that both cases have exactly
two ambiguous faces and the nodes in ambiguous faces can be
either separated or joined. In the discussion that follows, we
restrict ourselves to case 10; case 12 is similar.

Let us assume that the ambiguous faces are located at the
top and bottom of the voxel. Then, following the algorithm
proposed by Chernyaev [2], depending on the sign of the face
saddles and the interior ambiguity test, one can identify the cor-
rect case (see also Algorithm 2):

• Case 10.1.1: the positive nodes on both faces are sepa-
rated, and the positive nodes at cube diagonals are also
separated;

• Case 10.1.2: the positive nodes on both faces are sep-
arated, and the positive nodes at the cube diagonals are
not;

• Case 10.2: the positive nodes are separated on the top and
connected on the bottom face.

The cases shown above assume that the positives nodes at
the top face are separated. But a similar reasoning must be
applied to cases in which the positives nodes at the top faces are
joined. In the Lewiner et al.’s implementation the possibility
that the positive nodes at the top faces are joined is missing.

6. Solutions

We present solutions for the four issues raised in the previ-
ous section.
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6.1. Issue I – Case 13.5
The disambiguation of case 13.5 has been approached in

di↵erent ways for di↵erent frameworks for isosurface extrac-
tion. For example, Nielson [22] presents an algorithm that is
concerned with connectivity along edges, faces and the voxel
interior. The author presents a detailed description of the be-
havior of the trilinear interpolant inside the cubic grid and uses
these descriptions to solve the ambiguity problem in the inte-
rior. Lopes and Brodlie [16], on the other hand, use critical
points in order to resolve some ambiguities. In this case, the
sign of the critical point determines the correct configuration.
Unfortunately, the above solutions do not seamlessly integrate
with the MC33 algorithm. The core idea for solving interior
ambiguity, namely, that tunnels can be detected by a sweeping
plane through the voxel, is absent in both approaches. This mo-
tivated us to devise an alternative solution that we feel follows
the idea presented in the original algorithm.

We solve this problem by proposing a new interior test that
uses the fact that case 13.5.2 requires both roots t1 and t2 of
f (xc(t)) and the associated saddle points to be inside the voxel.
First, recall that xc(t) tracks the path of the face saddle inside
the voxel as a function of height plane at height t, and f (xc(t))
tracks the value (and thus the sign) of that saddle. Both func-
tions are illustrated in the rightmost image in Figure 4, in which
the black hyperbolic curves represent the path of xc(t) and the
color of the circles represents the sign of the face saddle at a
given point (white and black circles are points with negative and
positive values, respectively). For case 13.5.2, the path traced
by the curve xc(t) must intersect the isosurface tunnel twice,
once at each of the roots t1 and t2 of f (xc(t)). This implies that
both saddle points xc(t1) and xc(t2) must lie inside the voxel.
This is not the case for 13.5.1 because the face saddle can cross
the middle sheet at most once. Therefore, it su�ces to verify
that both roots of f (xc(t)) and its saddle points are inside the
voxel. Algorithm 1 illustrates our solution. Our algorithm is
very simple, and does not require the computation of the crit-
ical points of the trilinear interpolant, or a detailed description
of its behavior inside a voxel. Our algorithm uses the ideas pro-
posed by Chernyaev in order to fix an algorithmic problem in
his work. We have implemented and tested this solution on C-
MC33 using over 10000 randomly generated instances of case
13.5.

Algorithm 1 A simple disambiguation procedure for Case 13.5

Case 13.5(a, b, c)
⇤ Let t1 and t2 be the roots of at2 + bt + c (Equation (7))

1 if t1, t2 2 (0, 1) and xc(t1), xc(t2) 2 (0, 1)2

2 then return Case 13.5.2
3 else return Case 13.5.1

6.1.1. Issue II – Tunnel orientation
To find the correct tunnel orientation one can use the sign

of any point between the roots t1 and t2. This is because any

Figure 10: Solution to the orientation problem. The black dots represent regions
with positive scalar values.The cutting-plane location is at (t1 + t2)/2. The sign
of f ((t1 + t2)/2) determines the tunnel orientation.

point in this range must have the same sign as the critical points
of the trilinear interpolant for case 13.5.2. This can be seen in
the black path shown in the rightmost image in Figure 4 and
from the graph in Figure 6. All points between roots t1 and t2
will have the same sign, which is the sign of the “interior” of
the tunnel. Thus, we compare the sign of f ((t1 + t2)/2) with the
sign of both vertices of the voxel diagonal which is inside the
tunnel. The tunnel will face the vertex with the same sign as
f ((t1 + t2)/2), whereas the other vertex must be isolated from
all cube vertices. Figure 10 illustrates this scenario. Note that
Lopes and Brodlie [16] used the sign of the critical points of
the trilinear interpolant to retrieve the correct tunnel orientation.
We provide a di↵erent solution that fits nicely with Chernyaev’s
framework.

6.2. Issue II – Non-manifold surfaces
A possible solution to this problem involves post-processing

the mesh to remove non-manifold features. Although many
works in the literature proposed methods for fixing meshes (see
[11] for an excellent survey), these are mainly focused on re-
trieving a valid manifold mesh. Topologically correct algo-
rithms, on the other hand, require that the topology of the trilin-
ear interpolant be preserved. In addition, mesh repairing tech-
niques may mask implementation issues by fixing them, which
complicates the verification process.

We use an alternative approach that does not require any
changes in the MC33 triangulation table. An interesting fact
is that this problem has a low probability of being generated
at random and an even lower probability of occurring in real-
world datasets. For example, as shown in Figure 14 for the
Skull dataset this problem appeared six times in total for 50
distinct isosurfaces. In our tests, it occurred only once in 10000
randomly generated 5 ⇥ 5 ⇥ 5 scalar fields. Thus, instead of
implementing the approach of Lopes and Brodlie’s, we adopt a
di↵erent solution that takes advantage of the fact that this is a
rare event.

Non-manifold surfaces are created when two adjacent vox-
els that share an ambiguous face have tunnels in the voxel in-
terior. By splitting both voxels at the critical point of that face,
the face ambiguity is eliminated [1]. To simplify the algorithm,
we split not only the voxels sharing the ambiguous face but
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Figure 11: Grid refinement. The slice of voxels containing the o↵ending con-
figuration is splitted into two slices.

all faces in the volume slice that contains that face (see Figure
11). Assuming an input of size n ⇥ n ⇥ n, each subdivision will
add n2 voxels to the grid. Assuming that k subdivisions are re-
quired, kn2 voxels will be added. In practice k = O(1), and thus
kn2 = O(1)O(n2) = O(n2). This implies that the asymptotic size
of the dataset does not change. This subdivision adds the degree
of freedom necessary to eliminate the problem, making this im-
plementation of the Marching Cubes 33 topologically correct
(see Figure 8).

6.3. Issue III – Cutting-plane computation
Because this is a problem with the alternative method used

in Lewiner et al., the issue can be avoided by replacing the use
of talt with use of the originally proposed tmax.

6.4. Issue IV – Case 10
Algorithm 2 illustrates the required steps for disambigua-

tion on case 10. We fixed the MC33 implementation by adding
the lines 16-20, which in the original implementation were re-
placed by the result case 10.1.1.

Algorithm 2 Algorithm for case 10 [4]
1: Positive nodes are denoted as n�
2: �� n� are separated at top face then
3: if n� are separated at bottom face then
4: if n� at voxel diagonals are separated then
5: Case 10.1.1
6: else
7: Case 10.1.2
8: end if
9: else
10: Case 10.2
11: end if
12: else
13: if n� are separated at bottom face then
14: Case 10.2
15: else
16: if n� at voxel diagonals joined then
17: Case 10.1.1
18: else
19: Case 10.1.2
20: end if
21: end if
22: end if

7. Experiments with real-world datasets

We now turn our attention to the practical impact of the
topological correctness of the trilinear interpolant. For real-
world datasets, the vast majority of Marching Cubes cases match
the non-ambiguous configurations, namely, 1, 2, 5, 8, and 9.
This means that the standard Marching Cubes will match the
topology generated by both MC33 and C-MC33. Nevertheless,
for some voxels, there will be topological di↵erences in the ap-
proaches, which may result in quite di↵erent meshes.

For the sake of completeness, in this section we provide a
qualitative analysis of these di↵erences. The aneurysm dataset
shown in Figure 12 provides an example of the di↵erences.
From left to right, Figure 12 shows meshes extracted with VTK
Marching Cubes, MC33, and C-MC33. The VTK implemen-
tation is based on the work of Montani et al. [19] and does
not have topological guarantees aside from consistency. These
three implementations can be viewed as three distinct ways of
extracting the mesh topology. Although only a handful of vox-
els di↵er among the implementations, for the aneurysm dataset
the consequence is that the (largest) main brain artery appears
quite di↵erent in each interpretation. Because the dataset con-
tains several thin features, subvoxel accuracy is required to con-
nect the pieces of the blood vessels. As shown in the inset im-
ages in Figure 12, one voxel is su�cient to separate fairly large
vessels.

VTK and MC33 generate more extra connected components
(shown in purple) than does C-MC33. Figure 13 shows the dif-
ference in the number of connected components generated by
VTK and C-MC33 (left) and by MC33 and C-MC33 (right) as
a function of the isovalue for the aneurysm dataset. Clearly,
VTK produces substantially more connected components than
C-MC33 (up to 2400 more components). The di↵erences be-
tween MC33 and C-MC33 are not as large, although they are
su�cient to disconnect important artery segments. In this ex-
ample, MC33 generates more connected components than C-
MC33 for most isovalues. The aneurysm dataset shows that
changes in the topology of some voxels can impact the final sur-
face. In this particular example, it is reasonable to assume that
the blood vessels form a single connected component and thus
that the dataset contains as few connected components as possi-
ble. Using this criterion, C-MC33 shows the best performance
for most isovalues. We emphasize that the “importance” of the
di↵erences in the number of connected components ought to be
measured. For instance, although in general C-MC33 produced
fewer connected components, for some isovalues the number of
components extracted with C-MC33 was greater than the num-
ber extracted using MC33. As it turns out, this is due to the
presence of pieces of small components disconnected from the
main artery. However, because small isolated components do
not disconnect large portions of the datasets, contrary to what
is shown in Figure 12, MC33 and C-MC33 could be considered
only “slightly” di↵erent. A thorough study of impact of the dif-
ferent approaches for extracting mesh topology is desirable but
is beyond the scope of this work.

The second problem is due to the extraction of non-manifold
features. The issue explained in Section 5.2 also pertains to
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Figure 12: Aneurysm dataset. From left to right, the displayed isosurfaces were extracted using VTK, MC33, and C-MC33, respectively. We show the main brain
artery component in yellow and the extra connected components in purple. From the images shown, it is clear that the purple components should be part of the
main branch. Nevertheless, due to the implicit disambiguation in VTK and the issues in MC33, the final isosurface contains multiple components (left and middle
figures). The isosurface generated using C-MC33 is shown on the right. [4]
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Figure 13: The left plot shows the di↵erence between the number of con-
nected components extracted by VTK implementation of Marching Cubes and
the number of connected components extracted by our C-MC33 implementa-
tion. The right plot shows the di↵erence in the number of connected compo-
nents but between the MC33 and C-MC33 implementations. Negative values
indicate that the C-MC33 implementation generated more connected compo-
nents. Clearly, VTK generates more components that C-MC33. MC33 gener-
ates more components for most of the isovalues.

real-world datasets. Figure 14 shows an example of a med-
ical dataset in which the output of MC33 implementation is
a non-manifold surface. We have observed the same problem
for certain isovalues of other commonly used datasets, such as
the backpack and bonsai datasets. Nevertheless, in our exper-
iments, this problem occurred rarely in the datasets tested: on
average, one case of non-manifold edges was found per 107

evaluated voxels.

8. Conclusion

In this paper, we discuss in detail three issues with the March-
ing Cubes 33 algorithm and one non-trivial issue with its im-
plementation. We present solutions for the issues raised and

implement them into C-MC33, a topologically correct version
of MC33. In addition, we make the results of our paper repro-
ducible so that the reader can easily study, explore, and use the
results presented here for his or her own purpose.
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Appendix A. The counterexample in numbers

In this section we provide the data necessary for reproduc-
ing the counterexample shown in Figure 6. The isosurface of in-
terest is homeomorphic to configuration 13.5.2 of the extended
Marching Cubes table. This example can be used to show that
both the original and modified versions of the MC33 algorithm
will fail to retrieve the correct case. Following the interior test
proposed by Chernyaev, let

A0 = +0.2864 A1 = �0.2384
B0 = �0.0639 B1 = +0.9486
C0 = +0.6568 C1 = �0.5049
D0 = �0.1692 D1 = +0.1075.

The coe�cient a, b, and c in F(t) are given by

a = + (A1 � A0)(C1 �C0)
� (B1 � B0)(D1 � D0) = 0.3296

b = +C0(A1 � A0)
+ A0(C1 �C0)
� D0(B1 � B0

� B0(D1 � D0) = �0.4886
c = A0C0 � B0D0 = 0.1701.

Condition (i) does not hold because a > 0, which means that a
tunnel is absent. Therefore, under Chernyaev’s conditions, case
13.5.2 is incorrectly interpreted as 13.5.1.

Now, following the Lewiner’s implementation, for the same
scalar field, let

A0 = +0.1075 A1 = �0.5049
B0 = �0.1692 B1 = +0.6568
C0 = +0.2864 C1 = �0.0639
D0 = �0.2384 D1 = +0.9486.

The proposed alternative t is given by

talt =
A0

A0 � A1
= 0.1756,

and:

F(talt) = �0.0007 < 0.

Thus condition (iii) fails, which means that case 13.5.2 is again
incorrectly interpreted as 13.5.1.
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