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a b s t r a c t

Commercial buildings are significant consumers of electrical power. Also, energy expenses are an

increasing cost factor. Many companies therefore want to save money and reduce their power usage.

Building administrators have to first understand the power consumption behavior, before they can devise

strategies to save energy. Second, sudden unexpected changes in power consumption may hint at device

failures of critical technical infrastructure. The goal of our research is to enable the analyst to understand

the power consumption behavior and to be aware of unexpected power consumption values. In this

paper, we introduce a novel unsupervised anomaly detection algorithm and visualize the resulting

anomaly scores to guide the analyst to important time points. Different possibilities for visualizing the

power usage time series are presented, combined with a discussion of the design choices to encode the

anomaly values. Our methods are applied to real world time series of power consumption, logged in a

hierarchical sensor network.

1. Introduction

Commercial buildings consume a significant amount of elec

tricity. According to the Energy Information Administration's 2010

statistics [1], the United States alone consumed an estimated

1.3 trillion kW. It is about 37% of the total electricity generated.

How power is used in a commercial building has a large effect on

energy efficiency strategies. The most important energy usage is

lighting. Then heating and cooling are next in importance [2]. Cur

rent approaches for reducing the power consumption for example

integrate motion detection sensors for each lamp switching them

on and off.

There is a growing interest in understanding how energy is

spent in the commercial buildings. Furthermore, building admin

istrators want to know how to reduce the failure rate and detect

anomalies. In addition, they want to know how to visualize large

volumes of energy consumption data collected by power meters

(sensors) in a building to find patterns, trends, and anomalies.

In the end, our goal is to find how to automatically discover the

anomaly, like unusual power consumption measurements highly

differing from old observed patterns, and to reduce the energy cost

of a building. For this task, anomalies are of special interest,

because they can be caused either by faulty equipment or

potentially misconfigured devices consuming significantly more

or less energy than required for proper operation.

In this paper, we present an analytical and visual approach to

support the building administrators in detecting anomalies and

examining energy consumption data as shown in Fig. 1. Our input

data consists of a tree of time series reflecting the hierarchical

nature of the power meters, e.g., 1 m for the whole building and

one for each power outlet. The analytical part is the automatic

anomaly detection and is based on a time dependent energy

consumption model. We have explored two different anomaly

discovery methods. In the beginning, we estimate the error rate

using prediction. Then, we use clustering based anomaly detec

tion. Both methods have benefits and drawbacks and are com

plementing each other.

The last step in our pipeline is the visualization being capable

of effectively displaying large amounts of data and, at the same

time, allowing quick recognition of anomalous regions in the data.

We integrated the three most common time series visualization

techniques (line charts, spiral visualizations, and Recursive Pat

terns) presented in Aigner et al.'s book about time series [3].

Besides giving an appropriate overview of the data, the visualiza

tion is also able to support the administrator in a more detailed

examination of the data, for example areas with unusual power

consumptions by interaction facilities. In addition, the visualiza

tion is capable of showing the hierarchical nature of the data set.

This is necessary, because commonly the energy consumption of

different floors or buildings is independently monitored resulting

in an inherent hierarchy in the recorded data.

Our methods rely purely on the recorded power consumption

data, which we were not cleaning in any way as the data was in

very good shape. There are many external influences to the power

consumption, like the environmental conditions or the number of
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usages in the time series visualizations. Our contributions in the

visual analysis process of power consumption data are as follows:

1. In the anomaly detection process, we

" detect power consumption anomalies based on either a

clustering based approach or a time weighted prediction.

" compare the prediction based method with a similarity

based anomaly computation.

2. In the time series and anomaly visualization process, we

" map the hierarchical time series onto a Treemap.

" embed in each Treemap cell the corresponding meter's time

series visualization.

" provide different time series visualization techniques

dependent on the analysis purpose.

" visualize the anomaly score by visual boosting of the raw

time series representation.

Furthermore, we have provided an advanced visual interface

enabling the user to visually analyze the power usage. Histograms

for viewing the frequency and power usages of important meters;

visual queries for analyzing correlation and similarity; and various

options on visualization types, Treemap layout, colormappings,

and anomaly score computations enable the analysts to tailor the

visualization to their needs.

3. Anomalies detection

Detecting and exploring of anomalies in time series is a very

important aspect, especially when dealing with power consump

tion data of physical infrastructure. Saving cost and energy as well

are one of the main motivations for observing and analyzing

consumption data. But when dealing with infrastructure that

may be even system critical the number of failures must be

reduced to an absolute minimum. Early signs of failure should be

visible in abnormal power usage patterns. In our main usage

scenario abnormal behavior is defined as a difference from the

expected daily pattern. Both methods described below assume a

daily power usage pattern which, of course, can be different for

each day of the week. Both techniques are not limited to daily

patterns, but can be easily adapted to the periodicity of the

underlying data set. The first described method is based on a

weighted prediction, where recent measurements have a higher

impact than older measurements. The latter approach is trans

forming the observed daily pattern in the frequency domain and

looking for dissimilarity in a transformed space.

3.1. Prediction based anomaly detection

The basis for prediction is an observed pattern and the

assumption that it is reoccurring (with slight modifications) in

the future. If this assumption does not hold true, the predicted

values may be far off the measured values. Considering this fact

the other way round, observed values far distant from the

expected ones tell us that the model used does not explain the

observed values. There might be two reasons, the first one is that

the model quality is not good enough and the second one is that

the values are really differing from the expected and explainable

behavior. We assume that our data follows a regular underlying

pattern and therefore also assume that the model describes the

usual behavior well. Detecting anomalies using prediction follows

this idea and is related to the statistical measure of residuals.

The prediction method used is crucial for the reliability and

expressiveness of the computed anomaly scores. As already stated

above we assumed daily patterns and include developments over

time into the prediction process. We decided to use a prediction

method developed and introduced in our earlier works [11].

Basically, this method predicts a value for each minute of the

day by taking all previous measurement at the same time of the

day. As an example, assume that we predict the value for a

Tuesday at 11:05 am. We would now average all previous observed

values of a Tuesday at 11:05 am. Taking just an average would have

the disadvantage of neglecting recent developments in the time

series. We therefore used a weighted averaging scheme with

higher factors for recent values and linearly decreasing influence

weights for older values. Further detailed explanations can be

found in [11]. This prediction method works very well for weekly

patterns and will neglect holidays or other external events. The

prediction model will adjust to seasonal changes, but alternating

behaviors cannot be modeled by this approach. Furthermore,

power usage patterns randomly distributed over a day will

negatively influence the prediction quality.

After predicting for each point in a time series the expected

values based on all values occurring before this point in the time

series, we can compute the difference between predicted and

observed values. The difference is an indicator for the abnormality

of the point in a time series but needs for higher expressiveness of

some kind of normalization. From the choice and the design of the

prediction method we are assuming a model which may not being

applicable to all observed time series. We counterbalance for this

fact by calculating the average fitting of our model. More in detail,

we compute the average deviation from the predicted values for

the whole time series. If a whole time series is highly unpredict

able, the differences between predicted and actual values are less

meaningful compared to a case when a time series follows perfect

daily patterns with small deviations. Computation of the anomaly

score is summarized by the following equation:

anomaly½time$ ¼
jpredVal½time$ obsVal½time$j

avgtATimeðjpredVal½t$ obsVal½t$jÞ

The variable time is the point in a time series for which the

anomaly score is calculated. At this position the difference

between the predicted and observed value is computed and

afterwards normalized by the average deviation from the model.

3.2. Clustering based anomaly detection

The second approach for detecting anomalies in time series data is

similarity based. We assume often observed patterns to be the usual

behavior and rarely occurring patterns to be abnormal. Following this

idea, we first have to define and compute the similarity of patterns in

order to detect whether a pattern occurs more than once. The

approach described in this section is proposed and presented by

Bellala et al. in [21,22]. The time series is first partitioned into days and

afterwards transformed by a Fourier transformation into the frequency

domain. Each day of the time series is resulting in a k dimensional

vector in the frequency domain with k being a parameter of the

transformation process. The next step described by Bellala et al. is a

dimension reduction by multi dimensional scaling into a two

dimensional space. The density distribution in the reduced MDS space

is now interpreted as an anomaly score. Points (time series of a single

day) being in a high density area with many (similar) neighbors are

assumed to reflect the usual behavior. Outliers in the 2D space can be

seen as days with unusual values and are assigned a high anomaly

score. This technique only takes the frequency domain into account

and does not integrate external effects like weather data or week of

the day.

3.3. Comparison of anomaly detection methods

We previously described two methods for computing and

detecting anomalies and both come with their advantages and
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that only varies over hues without variation in intensity. Since the

change in intensity does only minimally shift the hue, the original

color tone can be reconstructed mentally.

It is known that RGB and HSV are not perceptually uniform and

that linear interpolations within these models do not produce

color scales with equal or monotonically changing lightness [27].

CIE LUV and CIE LAB have already been proven useful in former

visual analytics research [28,29]. By varying over the color oppo

nents (a and b) but maintaining the same lightness value L, a

perceptually uniform colormap can be created in the CIE LAB color

space. However, interpolations in CIE LAB can lead to undefined

RGB signals and thus, this color space cannot be used in the final

application. Therefore, we use the HSI color space [30] for

intensity manipulation.

This color space is an extension to the HSV color space that

allows monotonical changes in lightness.

The two proposed color encodings for the anomaly values can

be seen in Fig. 3. The first row depicts the original time series

without any anomaly scores. We use different intensity levels to

encode the anomaly scores and highlight important areas. The

effect of the intensity boosting can be seen in the second row of

Fig. 3. For further visual boosting we combined blurring and

intensity highlighting shown in the last row of Fig. 3.

We added another highlighting technique, in order to direct the

analyst to the anomalous regions of the time series. This high

lighting imitates the human perception regarding a focus and the

context area, where usually the focus area is sharp and the context

area is blurry. We used a similar approach to Kosara et al. and

Giusti et al. in [31,32]. Since we have the anomaly score for every

element of the visualization, we are capable to determine the

important areas of the time series analytically corresponding to

the focus area of the analyst. The implementation adapts locally

the blurring according to the anomaly value of each element in the

Recursive Pattern. Low anomaly values are more blurry than areas

with a high anomaly score. This adaptive blurring technique

utilizes the human depth intuition guiding the analyst to the

interesting areas first in a pre attentive way, depicted in the

bottom row of Fig. 3. The blurring will affect the visibility of pixel

borders, and it influences the comparability between highlighted

and non highlighted areas. We though believe that the preatten

tive focusing on anomalies helps the analyst in assessing interest

ing points in time at a glance.

4.2. Spiral visualization

The spiral visualization is a technique to display recurring time

series data with a fixed periodicity. Our implementation is based

on an Archimedean spiral, where the radius grows proportionally

to the spiral angle, which leads to a uniform expansion of the

spiral over time. In our implementation, each round of the spiral is

used to display 1 day of data. The proportional growth of radius

and spiral angle, combined with the absence of any border

between each circle makes it possible to build a space efficient

visualization. Comparing the value of the same time span on

different days is possible, because these values are on a straight

line going from the center of the spiral to the outermost part of the

spiral. Each polygon along this line displays the same time span of

different days.

To show the anomaly score of each of the displayed time spans,

we apply the same color manipulations as described for the

Recursive Pattern above. The right spiral in Fig. 4 shows the

described color saturation and brightness adjustment to highlight

the anomalous values of the time series. By comparing the left

with the right spiral the highlight of the outer ring of the right

spiral is clearly visible. There is a time range with unusual

numerical values beginning after one fourth of the day and lasting

for one quarter of a day. Besides that, some little colorful spots are

visible in the right visualization, which were not that visible when

applying only the brightness or saturation modification technique.

4.3. Line chart

The most common visualization of time series data is undoubt

edly the line chart. The main difference to the Recursive Pattern or

spiral based visualization can be found in the encoding of the

actual time series value. In the latter two, the series value is shown

by colored polygons, which have a spatial extent. In contrast,

encoding the value in a line chart is done by the position on the y

axis. The brightness and saturation based techniques to add the

anomaly value into the visualization make no sense in such a

positional encoding, having only a very small area available for the

coloring. Coloring segments of the line and applying the same

techniques to enrich the line with anomaly score information as

before is not helpful as line segments are very hard to see. To use

coloring a larger line stroke would be necessary, which would

introduce high amount of over plotting and visual clutter. It may

be fine for line chart displayed on a large screen, but as soon as

several line charts are displayed the technique does not work

anymore.

To show the anomaly value simultaneously with the time series

values, we used the empty space in the background of the line

chart as shown in Fig. 5. For each data point, we plot a red stripe in

the background. The anomaly value is mapped to the opacity of

the stripe in a way that for the lowest anomaly value it is

completely transparent and therefore not visible. In contrast, the

Fig. 3. Different methods to display the anomaly value. Top row: the time series values without anomaly values. Second row: the intensity of the color is adapted to the

anomaly value. Third row: color intensity representing the anomaly score combined with adaptive Gaussian blurring. (For interpretation of the references to color in this

figure caption, the reader is referred to the web version of this paper.)
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highest anomaly score causes the stripe to have the highest

opacity resulting in a clearly visible, red stripe.

To reduce the visual clutter introduced by coloring the back

ground, we also support a minimized view. In this view, the

anomaly stripes are only plotted above and below the line chart,

which keeps the visualization distraction free, but still shows the

anomaly values. A comparison of both anomaly visualization

techniques for line charts can be seen in Fig. 6.

4.4. Treemap Integration

We integrated all visualizations in a Treemap display [33 36]

(see Figs. 5 and 7). In that way, the hierarchical nature of our time

series data set is reflected in the visualization. Treemaps are

showing the leaves of each selected branch and the nesting depth

by borders. The selection of visualized nodes can be achieved

twofold, either by interactive roll up or drill down operations in

the Treemap visualization or by an additional vertical tree repre

sentation. Our design choice using Treemaps, though they visua

lize only the leaves of each branch, was implied by the application

needs. The analysts are mainly interested in finding the root

causes of anomalies first and later on in analyzing the impacts by

traversing the hierarchy to the root node. Further details concern

ing the used time series can be seen in the application (Section 5).

Each cell of the Treemap contains the visualizations of the time

series building one branch of the hierarchy. The border of each of

the cells is furthermore drawn in white to allow a clear distinction

in terms of the hierarchy. The caption of each Treemap cell is used

to display the numerical value used for layout and the cell label.

The numerical value is used by the layout manager to compute

the final Treemap layout and directly influences the size of a single

Treemap cell. The computation of the numerical values is critical

for the expressiveness of the visualization since the size of a cell

has a large influence on the perception. The size of a Treemap cell

can be computed by different measures. Given the interest of an

analyst to quickly recognize unusual or highly anomalous time

series, the Treemap layout can be adjusted to support these tasks

by computing the layout score in different ways. For example, the

analyst can choose between the statistical variance, sum, or the

arithmetic mean of the anomaly score. To incorporate the level of

the anomaly, there is also the possibility to compute the layout

based on the product of the anomaly score and the time series

value. In addition to anomaly score based layouts, the sum and the

statistical variance of the time series values can be used to

compute the layout. Having those choices, the visualization can

be adapted to the priorities of the analyst independent of the

visualization technique. We also added the possibility to assign the

same importance value to each node resulting in a regular layout

enabling easy comparisons. Besides the general layout the actual

width and height (the aspect ratio) of a single cell is an important

factor when using different time series visualization techniques.

For that reason, we implemented different layout algorithms for

the previously described visualization methods.

A Recursive Pattern has a rectangular shape and, therefore, a

squarified layout [37] is applied to the Treemap. This layout

algorithm results in a square like cell, which obviously leads to

an efficient space usage of the overall display. In addition, we

framed the Treemap cells to improve the overall structure percep

tion of the Treemap and the hierarchical representation.

The circular shape of the spiral graphs combined with the

squarified Treemap layout leads to the best readability and space

efficiency. We hereby maximize the size of visualization and at

the same time use as much space of the Treemap cell as possible.

Fig. 5. The line chart visualization in a Tree Map with a horizontal strip layout

using the value weighted anomaly to determine the cell size. The effect of the

layout score is clearly visible enlarging the time series not with the highest

anomaly score, but with the highest anomaly level regarding the time series

values. (For interpretation of the references to color in this figure caption, the

reader is referred to the web version of this paper.)

Fig. 4. Spiral visualization of time series. The left spiral shows the actual time series data, the right spiral shows the time series data with brightness and saturation value

adapted to the anomaly score of the corresponding polygon.
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Creating the layout for Treemaps containing line charts comes

with a fundamental difference to the Recursive Pattern and the

spirals: the width of a line chart is much larger than its height as

our observed time span is quite long. Consequently, this leads to

the conclusion that a squarified layout is not the best choice.

Instead, we implemented a so called strip layout [38], which

makes sure that the line charts are getting more space on the

horizontal axis than on the vertical (see Fig. 5). Otherwise, the line

charts would be very hard to interpret and this would be an unfair

comparison to the pixel based techniques. Note that the size of

each Treemap cell still reflects the numerical value used for layout.

4.5. Comparison of anomaly visualizations

We have presented three different state of the art visualization

approaches for time series and visual extensions to show time

series and anomaly score simultaneously. All techniques have their

own advantages and disadvantages. The Recursive Patterns pre

sented first have the ability to visualize large amounts of data in a

very compact and space efficient way. Regardless of the shown

time range, lasting from weeks and months to years, the Recursive

Patterns are always capable of showing the data in a readable

fashion revealing patterns. The visualization is designed in such a

way that the value representation by color enables the analyst to

easily spot interesting areas or regular patterns, nearly indepen

dent of the actual size of the visualization. In Fig. 7, patterns and

outstanding time spans are visible, even in the compact Treemap

representation of 19 different time series. Having spotted regular

patterns Recursive Patterns enable also the cross comparison in

different time series, since the relative position of one point in

time is well aligned. Using Recursive Pattern in Treemap is more

difficult to compare the same hour of a day, for example, as the

position of the same hour varies through the visualization.

Comparing the same hour is an advantage of the spiral

visualization as the periodicity was set to daily patterns. The

angular encoding of the time of a day enables these comparisons

as a straight line from the spiral center to the outer spiral connects

these data values. With such visualizations, it is easy to explore the

value of the time series over time. In addition, comparing time

ranges and/or spot longer lasting trends is a simple task, since the

analyst has to only follow the continuous spiral over time. This is

an advantage compared to the non continuous time display of the

Recursive Patterns, where layout breaks are needed, as with any

space filling curve. Line charts are great for detailed visual

explorations of continuous data for single time series. For the

usage scenario of anomaly visualization, there exist only a small

number of application possibilities, since condensed visualizations

are needed as limited screen space is an issue. The low space

Fig. 6. Comparison of the anomaly visualization technique for line charts. On the left, the whole background is used to show the anomaly scores, whereas on the right, only a

small stripe on the top and bottom of the chart background is used to display the anomaly score, which reduces the clutter from the background coloring. (For interpretation

of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 7. Treemap visualization of 19 time series, each time series has 4 weeks of data. Interesting spots or patterns in the data are highlighted and can be therefore easily

detected.
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efficiency of line charts leads to our proposed solution to re use

the empty space in the background to visually encode the anomaly

value. We avoid the arising visual clutter by applying the stripe

based anomaly visualization, which keeps the anomaly informa

tion but reduces the colored area distracting the analyst.

5. Applications

The prototype integrating all the presented analytic and visual

techniques focuses especially on the detection of anomalies and

their temporal occurrence. With this task in mind, two general use

cases can be identified. First, general browsing and exploration of

the data is important to get an overall impression of the power

usage. All different visualization techniques presented above can

be applied to gain from their individual strengths. The second task

is the examination of a specific issue, like unusually high or low

power consumption. Our system can provide the analytical and

visual insights necessary to find the source of the unusual energy

consumption. All visualizations are integrated in the same analy

tical framework, but use different methods of displaying the

power consumption and the anomaly values.

5.1. Analytical framework

Our prototype consists basically out of three parts reflecting the

different dimensions in the data set and can be seen in Fig. 8. The

left panel allows the navigation through the hierarchy of the

sensor graph by selecting the nodes being visualized. The visua

lization panel in the center consists of the Treemap visualization

together with a colormap legend. The panel at the bottom of the

window allows to navigate in time and select the time range that

should be visualized. This timeline visualization shows the total

amount of power usage over time in order to give the analysts

additional hints.

We implemented besides animation also interaction techni

ques like dragging the selected time range (blue rectangle in the

timeline visualization) left and right causing immediate updates to

the visualization. The visualization allows basically three interac

tion possibilities. The first is a tooltip allowing to inspect the

underlying data values invoked by mouse hovering. We further

more directly support drill down and roll up operations in the

Treemap visualization, allowing the analyst to keep his focus on

the visualization during traversing the sensor graph. Finally, the

analyst is able to select a region in the visualization and query the

system for similar time series sharing the selected behavior by

means of distance or correlation calculations. Switching the

visualization technique, colormap, value normalization, anomaly

calculation, or the weights for the Treemap layout is possible by

selecting the respective option.

5.2. Visual inspection of anomalies

In this use case, the building administrator gets the informa

tion, that in February 2012 the overall power consumption and

energy costs of a building were higher than expected. The

investigation starts by getting an overview and some contextual

information about the general energy consumption of the build

ing. Undoubtedly, the most suitable visualization for this task is

the Recursive Pattern visualization, which can be seen in Fig. 9.

The blurring approach at the right side highlights the anomalies

further compared to the left figure, where we visualized anomalies

only by color intensity. The resulting visualization points directly

to one time series, which can be seen in Fig. 10 on the right. Both,

the left and the right visualizations show the power consumption

data beginning on 6 February 2012. Each of the bigger rectangles

contains the data from 1 day, starting with Monday on the left. In

total, there are 4 weeks of data visible, starting on 6th February

and ending on 4th March.

In the visualization, there are some single, outstanding spots.

Those look relatively random and last only 1 pixel, which stands

for a time span of 5 min. Although the color is quite intense and

reddish, they are far too few and do not last long enough to have a

large influence on the power consumption. Besides these spots, an

area in the fifth column of the third row stands out. The intensity

seems to increase from pixel to pixel over a long time. Having in

Fig. 8. Screenshot of our prototype showing the hierarchical and temporal selection possibilities together with the visualization panel.
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mind that one small black framed rectangle of the Recursive

Pattern stands for 1 h the anomaly score seems to increase over

10 h, until suddenly the anomaly score drops again. Due to the

long duration of the anomaly and the intense red color, the actual

energy consumption in this time frame is very high. This makes

this anomaly a candidate for the cause of the higher energy costs

in February.

The building administrator found an anomaly in the given time

frame with the Recursive Pattern visualization. To identify potentially

correlated time series, our prototype implements a top n time series

similarity search. The query can be created by clicking on a part of the

visualization and selecting the query area with the mouse. After

wards, the desired similarity measure can be selected. The system

supports the standard Euclidean distance and positive, negative, and

unsigned Pearson Correlation for different analysis tasks. In this case,

selecting the positive Pearson Correlation and the Euclidean Distance

is appropriate. The result of the query can be seen in Fig. 11.

The query results show three very similar series: AE4, AE5, and

AE6. All three sensors are part of the same subtree of the sensor

hierarchy. This means they are located in the same building as

sensor AE3, which logged the time series identified as anomalous

by the Recursive Pattern visualization before. With this additional

knowledge, the building administrator can conclude that the

anomaly affected not only one, but at least four parts of the

building, where the sensors have been installed.

The quality of the conclusions drawn from the visualizations

and analytical methods depends heavily on the sensor deploy

ment. If each of the sensors monitors a single machine or office,

the building administrator has a concrete subject of further

examination. When they are deployed in a more general way, for

example per building floor or even per building, the shown

analysis allows narrowing down the investigation of power con

sumption to the affected units.

6. Evaluation

We showed the applicability of our proposed technique in the

previous application section, but it is very important that real

expert users rate our approach to be effective and helpful. We

therefore presented our approach to the target user group in a big

company. We had contact to two analysts and interviewed them

first about their state of the art technology. The company develops

sensor networks measuring the power consumption for large

buildings and is experienced with power management. The

current state of the art technology they are using is a line chart

based visualization. They are able to select arbitrary time frames

and inspect the temporal power distribution. Further analysis

steps are yet impossible to perform. In later meetings we

explained our approach to the experts and afterwards let them

interact with our system and investigate the time series data. We

asked them to describe their typical way of analyzing data and

furthermore to comment on our proposed technique by thinking

aloud using our prototype. We got very valuable and interesting

feedback from the experts regarding the benefits and room for

improvement.

First of all, they validated the temporal patterns shown in the

pixel oriented visualization techniques with their knowledge of

typical power consumption patterns. Their proof of concept was

that the daily periodic patterns were visible at a glance, at the

same time reflecting their expectations for the time series. After

they found the patterns like low power consumption at nighttime

and weekends they started to look for anomalies using our visual

boosting techniques. At first, obvious patterns like holidays or the

Christmas vacation have been found. Afterwards, less obvious

patterns have been investigated. During their analysis, we asked

the experts to comment on our techniques and give feedback

related to visualization and analysis methods.

Fig. 9. Overview of the power consumption data from 28 sensors during 48 weeks. Despite the huge amount of data, patterns are still clearly visible. On the right, the same

visualization with adaptive blurring highlighting unusual power consumptions can be seen.

Fig. 10. Sensor readings of sensor AE3 from 6th February to 4th March 2012. On the left, the power consumption is visualized. On the right, the intensity of the colors reflects

the anomaly score. Due to the high intensity, an area in the fifth column of the third row stands out. (For interpretation of the references to color in this figure caption, the

reader is referred to the web version of this paper.)
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The first point they commented on was the helpfulness of the

overview visualization in the form of the Recursive Patterns.

Compared to line chart based visualizations they are very familiar

with, the calendar like representation of the power consumption

was highly appreciated. Furthermore, the possibility to interac

tively change the visualization type helped them a lot to get

familiar with the pixel oriented techniques. The coloring of pixels

was intuitive to them and they could interpret the visualization

easily.

From an analysis point of view, a very interesting point was

their comment on our prediction based anomaly computation.

They agreed with our definition of anomaly: ”The anomalous day

is likely to deviate from the daily pattern in some way.“ As shown

above, our anomaly method is very fine grained, but to the experts

a single time spot with a high anomaly score is not important.

They were more interested in longer periods of unusual behavior,

starting at approximately 1 h duration. On the other hand the

related anomaly computation method based on days was too

coarse grained for them for this kind of analyses. An aggregation

of the anomaly values might help to let the analyst focus on the

severe anomalies. The visualization of the anomaly scores together

with the time series was mentioned very positive, especially with

respect to the Recursive Pattern. The overview calendar like

visualization with intensity highlighting and adaptive blurring

let them focus on the interesting spots. They had the impression

that their attention was guided to the anomalies, while the

unimportant, common daily patterns were pushed in the back

ground. As soon as they found some unexpected anomalies they

applied further analysis techniques.

The experts very much appreciated the possibility to select a

region in the time series and query for other similar time series.

When they selected a leaf in the hierarchy of time series they

would look for the impacts of the anomaly on the parent nodes.

The other way around, querying for anomalies on higher levels

would show the root causes for the unusual power consumption.

A possibility for improvement mentioned by them is the

integration of external events into the application. Sometimes

managers know in advance of extraordinary events that will cause

unusual power consumptions. It should be possible to include this

information whenever available and to reflect the additional

events in the visualization. Overall they found the integration of

different time series visualization techniques combined with an

anomaly representation very helpful and wanted to integrate our

techniques in their management tools.

7. Conclusion

Analyzing and interpreting unusual patterns in time series data

is a very important task. In this paper, we applied novel analysis

and proven visualization techniques to a system, which supports

analysts finding those patterns in a visual way. We supported the

analysis process by computing anomaly scores of the given time

series data with an anomaly detection algorithm which produces

very fine grained results. This also allows the creation of detailed

visualizations resulting in a fine grained pixel based date repre

sentation. Furthermore, the algorithm is very efficient in terms of

required computing power, because neither does it require expen

sive transformations nor does it rely on elaborate analysis of the

time series data.

Having the anomaly scores, different visualizations can be used

to get deep insight into the time series and the anomaly scores,

depending on the task to fulfill. Recursive Patterns generate

overviews of large time spans and large amounts of data. Spiral

views provide the possibility to quickly detect and analyze

periodic patterns. If the actual data values are of interest, the

classical line charts are also available for further investigations of

the data set.

The double encoding of time series values and anomaly scores

is solved in different ways. The novel adaptive blurring, which

generates a focus and a context area by blurring the visualization

according to the anomaly scores, guides the analyst directly

to interesting spots of the visualization. This makes the technique

a particular advantage in overview of visualizations, where

Fig. 11. The time series query result window. On the top left, the query time series is displayed, on the right the top-n query results are shown. The query range is

highlighted.
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irrelevant areas of the time series are losing their level of detail by

a strong blur, whereas interesting, high anomalous areas are

clearly visible and attract the focus of the human eye. To support

the display of multiple visualizations, the well known Treemap

approach is extended by layouts based on space efficiency and

specific visual properties of the visualization. Since the anomaly

scores determining the layout can be selected depending on the

analysis task, the resulting Treemap layout also supports further

analyses.

The use case of power consumption data shows the applic

ability of the methods shown in this paper. The general nature of

the analysis and visualization methods makes it possible to apply

these techniques to time series not only from the application

domain of power consumption data. In the future, we want to

integrate external knowledge like known events influencing the

time series like weather information. It would be also interesting

to automatically determine the visualization method, colormap,

and possible enhancements like the adaptive blurring based on

the displayed data.
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