
Parallel Centerline Extraction on the GPU

Baoquan Liu1, Alexandru C. Telea2, Jos B.T.M. Roerdink2, Gordon J. Clapworthy1,

David Williams2, Po Yang1, Feng Dong1, Valeriu Codreanu2,3 and Alessandro Chiarini4

1University of Bedfordshire 2University of Groningen 3Eindhoven University of Technology 4SCS srl

Abstract—
Centerline extraction is important in a variety of visualization applications including shape analysis, geometry processing, and virtual
endoscopy. Centerlines allow accurate measurements of length along winding tubular structures, assist automatic virtual navigation,
and provide a path-planning system to control the movement and orientation of a virtual camera.
However, efficiently computing centerlines with the desired accuracy has been a major challenge. Existing centerline methods are
either not fast enough or not accurate enough for interactive application to complex 3D shapes. Some methods based on distance
mapping are accurate, but these are sequential algorithms which have limited performance when running on the CPU. To our knowl-
edge, there is no accurate parallel centerline algorithm that can take advantage of modern many-core parallel computing resources,
such as GPUs, to perform automatic centerline extraction from large data volumes at interactive speed and with high accuracy.
In this paper, we present a new parallel centerline extraction algorithm suitable for implementation on a GPU to produce highly
accurate, 26-connected, one-voxel-thick centerlines at interactive speed. The resulting centerlines are as accurate as those produced
by a state-of-the-art sequential CPU method [40], while being computed hundreds of times faster. Applications to fly-through path
planning and virtual endoscopy are discussed. Experimental results demonstrating centeredness, robustness and efficiency are
presented.

Index Terms—Centerline, parallel algorithm, GPU techniques, virtual endoscopy.

1 INTRODUCTION

Centerlines are powerful descriptors of 3D shapes that exhibit local
circular symmetry [12]. Biomedical shapes that are effectively de-
scribed by centerlines include blood vessels, intestines, and airways.
In this context, centerlines are useful for virtual navigation, such as
virtual endoscopy using the colon centerline to control the movement
and orientation of the virtual camera. Accurate length measurements
and navigation through other tubular organs, such as the aorta or coro-
nary arteries [30], also require centerline computations. The problem
of finding the optimal paths of minimal collision probability for vir-
tual engineering and architectural applications also involves center-
lines [17].

Although the concept of a centerline is quite intuitive, its math-
ematical definition is not unique. The concept of a centerline (also
known as a medial or symmetry axis) was first introduced by Blum
[10]. Based on previous work [3, 7, 8, 12, 39, 40], an adequate center-
line definition should meet at least the following three requirements:
Connectivity, Centeredness and Singularity. Connectivity requires
that the centerline of a compact shape is also a compact object. For
sampled objects, such as voxel models, this implies that centerlines
of compact objects are sets of connected voxels. Centeredness re-
quires that the centerline should be locally centered within the input
shape with respect to the object boundary. Singularity requires that
the centerline should be a single 1D path with no branches or self-
intersections, and as thin as the sampling representation permits. For
volumetric data, centerlines should be one voxel thick. A further re-
quirement that there be no self intersections is desirable for some ap-
plications, such as path planning in virtual endoscopy.

Centerlines are closely related, but not identical to, other shape de-
scriptors such as surface and curve skeletons. Unlike a centerline, the
surface skeleton S of a 3D shape Ω ⊂ R

3 is uniquely defined as the
locus of the centers of maximally-inscribed 3D spheres in Ω [3, 27].
This results in 3D surfaces or 2D manifolds. In contrast to surface

Manuscript received 31 March 2007; accepted 1 August 2007; posted online

27 October 2007.

For information on obtaining reprints of this article, please send e-mail to:

tvcg@computer.org.

skeletons, curve skeletons C are loosely defined as 1D structures with
branches, which are locally centered within, and homotopic with, the
input shape Ω. The lack of a universally accepted formal defini-
tion has led to a situation in which the various methods that compute
curve skeletons use different definitions and thus produce differing re-
sults [3, 4, 27, 30, 37].

Centerlines share features such as centeredness, connectivity and
1D dimensionality with curve skeletons. However, unlike a curve
skeleton, a centerline L is typically defined as a single path with no
branches or self-intersections. An additional requirement is that a cen-
terline passes through two user-selected end points S∈ ∂Ω,E∈ ∂Ω on
the surface ∂Ω of the object Ω [7, 8, 39, 40]. This allows users to con-
fine the extracted centerline to only a desired part of the shape Ω, e.g.,
for a controlled measurement of a branchless 1D fly-through path. An
example centerline is shown in Fig. 1; while the two end points can be
arbitrarily chosen on the object surface by the user (or be detected au-
tomatically, too), the resulting centerline between them quickly tends
towards the local center of the object.

S

E

Fig. 1. An example centerline connecting two user-defined endpoints
(source and end points), which allow a particular segment of the object
to be specified for fly-through path planning.

In summary, the difference between a centerline L and a curve
skeleton C lies in two aspects: (1) a centerline is a single path with
no branches, while a curve skeleton is a 1D topological structure with
branches; (2) a centerline must pass through two arbitrary given end
points on the object surface ∂Ω, so its form is dependent upon the
selection of these points, whereas a curve skeleton is uniquely deter-

mined simply by the object’s shape.

Hence, while a curve skeleton is fully located inside the object (ex-
cept for some special cases, such as 1- or 2-voxel wide parts of objects
which cannot be traversed by a voxel-thick curve without touching
the surface ∂Ω), a centerline must start from, and end on, the surface
∂Ω. As a compact representation of an object’s topological structure,
a curve skeleton is well suited to 3D animation, morphing, match-
ing and registration [13]. In contrast, centerlines are more useful in
visualization applications such as fly-through path planning between
user-specified end points.

Ideally, a centerline extraction algorithm should generate a good
approximation to the central path through a shape Ω, i.e., the center-
line L should be as close as possible to the corresponding parts of the
curve skeleton C of Ω, apart from in the regions close to where L

connects to its endpoints on ∂Ω. Centerlines should be computable
at interactive rates even for large and complex objects sampled at high
resolutions. This last constraint is especially important when consider-
ing the potential deployment of centerlines in a clinical environment,
where interactive performance is highly desirable. For instance, a re-
cent detailed evaluation of the quality of centerlines used for coro-
nary artery exploration considered 14 centerline extraction methods
deemed suitable, from an accuracy perspective, for medical applica-
tions [30]. Typical running times of these methods range between tens
of seconds and hours per dataset, which clearly makes them unsuitable
for interactive exploration.

In virtual colonoscopy, centerline extraction provides a compact
colon shape description and enables accurate colon geometry mea-
surement for both pre-planned and interactive navigation. During
treatment, problems involved in issues such as precise polyp regis-
tration between virtual and “real” fiber-optic colonoscopy or shape
registration between supine and prone CT scans can be overcome by
using centerlines. However, extracting centerlines from large voxel
volumes while satisfying centeredness, singularity, and computational
efficiency remains very challenging.

Many methods have been proposed for the computation of center-
lines, either from 3D (CT or MRI) [30] scans or from 3D polygonal
models [36]. The most efficient and accurate centerline extraction
method is considered to be that based on Euclidean distance map-
ping [7, 8, 39, 40]. Here, centerline points are forced to lie as far
from the object boundary as possible by the use of a distance-from-
boundary (DFB) field. This ensures that the centerline is a subset of
the surface skeleton S , which is located along the DFB maxima [27].
However, this method is a canonical serial algorithm with fundamental
dependency between iterations. It does not readily lend itself to paral-
lelization as it relies on a sorted priority queue and can evaluate only
one voxel (i.e., the head of a queue) for each iteration. As a result,
the algorithm cannot take advantage of the multiple parallel comput-
ing cores now available on the CPU or GPU, as discussed further in
Section 3.

The main contribution of this paper is a new parallel centerline ex-
traction algorithm suited to modern GPU hardware. Our algorithm
adopts the general DFB-based centerline extraction approach [40],
which is regarded as state of the art. However, instead of evaluat-
ing the nodes serially, we propose that multiple node-evaluations are
performed concurrently on parallel computing cores by using a paral-
lel wavefront propagation technique. This allows the new algorithm to
be implemented in a parallel GPGPU environment. Our experiments
have shown that the proposed GPU algorithm produces an accurate
centerline with the same quality as the original algorithm, but it runs
hundreds of times faster, thus allowing centerline extraction to be per-
formed at interactive rates. This level of interactivity makes a funda-
mental difference to the way in which applications such as virtual path
planning can be performed.

2 RELATED WORK

The problem of centerline extraction has received a great deal of at-
tention over many years, and a vast number of centerline calculation
algorithms have been described in the literature.

The early manual marking method [15] requires intensive manual

intervention as the user has to indicate key points at the center of each
object region on each of the several hundred axis-aligned 2D slices of
a volume dataset. The algorithm then computes the centerline curve
by interpolation. This method is simple, but time-consuming and te-
dious in operation, and its results are by no means more accurate than
those produced by automatic methods. Because the colon is usually
visualized on a 2D screen, it is difficult for users to locate points that
are centered inside it, so this method is highly liable to human error.

Topological thinning methods remove voxels on the boundary ∂Ω

while preserving connectivity and topology [6, 24]. Voxel removal in
distance-to-boundary order enforces centeredness [3, 26]. The result-
ing structure, typically either the surface skeleton S or curve skeleton
C of Ω, can next be simplified, or pruned, in order to extract the de-
sired centerline L [28]. Although the thinning procedure is conceptu-
ally simple, its requirement for a distance-driven ordering, topological
checking and postprocessing, can make the entire procedure quite in-
tricate and time-consuming [3]. A 3D thinning implementation for
ITK by Homann [19] is quite popular in the medical imaging commu-
nity.

Voronoi diagram methods [1] find centerlines as the paths in
Voronoi diagrams that minimize the integral of the radii of the maxi-
mal inscribed spheres along the path; this is equivalent to finding the
shortest paths in the radius metric. To perform the calculation, a wave
is propagated from a source point (one centerline end point) using the
inverse of the radius as the wave speed, and the wave arrival time is
recorded at all points of the Voronoi diagram; the line is then back-
traced from a target point (the other end point of the centerline) along
the gradient of the arrival times. The propagation can be described
using the Eikonal equation and is computed using the fast marching
method [32]. This method was implemented in the Vascular Modeling
Toolkit (VMTK) [2], but this has only a CPU version. This method
is accurate but too slow for interactive application. Indeed, computing
an accurate Voronoi diagram of the input shape is equivalent to com-
puting its surface skeleton S , and this computation is not interactive,
even in recent GPU implementations [20, 22].

Distance mapping approaches were first used in robotic path plan-
ning [21]. They are generally considered to provide the fastest solution
among the different categories. Such methods have two phases. The
first phase computes the distance from a user-specified source point
S to each voxel inside the 3D object, called the DFS (distance from
source) map. In the second phase, the shortest path from the other end
point E to the source point is found by descending through the gradi-
ent of the DFS map. The shortest path can be rapidly extracted by a
simple backtracing. Conceptually and algorithmically, this approach
is essentially the same as the method for computing geodesics between
two given points on a surface [25].

Previous centerline algorithms using distance mapping differ in
how they specify the distances between orthogonal, 2D-diagonal, and
3D-diagonal neighboring voxels. The most accurate distance measure
is the Euclidean metric, but most algorithms use approximate distance
transformation metrics such as the Manhattan metric [7, 8, 39, 40] in
order to reduce the computational cost. Distance mapping approaches
often employ Dijkstra’s shortest path algorithm on the voxel connec-
tivity graph to extract the centerline fully automatically.

Although distance mapping can meet the connectivity and singu-
larity criteria well, in many implementations its centeredness is of-
ten less than perfect as the resulting path tends to ‘hug’ the concave
corners of ∂Ω at sharp turns (i.e., the tendency of the centerline L

to deviate from the curve skeleton C and to approach ∂Ω in areas
where C has sharp turns) [40]. This is not surprising when we con-
sider the above-mentioned analogy between centerlines and geodesics
of the DFS field. Efforts have been made to push the shortest path
towards the object center by post-processing [41], but this does not
completely solve the problem. Similar issues arise when computing
curve skeletons using distance-from-boundary (DFB) fields [4]. Bit-
ter et al. [7,8] proposed a penalized-distance algorithm to extract cen-
terlines by adding a penalty value to the distance cost at each node
to keep the centerline away from the boundary. The algorithm pro-
posed by Wang et al. [40] solves the “corner-hugging” problem simply

3

and effectively by employing the DFB field as node-weights and ex-
tracting the centerline from a minimum-cost spanning tree (MST) built
from the DFB field. This efficient and robust algorithm is fully auto-
matic and can generate accurate centerlines, but it has three properties
inhibiting parallelization: a fundamental loop dependency, limited ex-
plicit parallelism, and excessive synchronization. We discuss these
issues further in Section 3.

Level set methods [16,38] have been found to produce accurate cen-
terlines. However, they are not fast enough for interactive applications.

Smistad et al. [35] introduced an efficient GPU-based airway tree
segmentation algorithm that extracts centerlines by performing a ridge
traversal on the result of a tube detection filter. The ridge traversal
approach, first proposed by Aylward et al. [5], is performed on filtered
images, so it can have accuracy problems due to its sensitivity to noise,
local artifacts and its initialization, as mentioned in [33, 35]. Also,
this algorithm remains completely serial in form, so it is difficult to
increase its speed by GPU parallelization.

Recently Smistad et al. [34] introduced a new model-based Tube
Detection Filter (TDF) combined with a new parallel centerline algo-
rithm which can extract centerlines directly from the TDF result. Their
results show that the method is able to extract airways and vessels in 3–
5 seconds on a high-end GPU, and their parallel centerline extraction
algorithm is 1–2 seconds faster than the serial ridge traversal extrac-
tion algorithm.

Several voxel-based methods have been proposed to compute Eu-
clidean surface and/or curve skeletons of 3D data [3, 4, 14, 18, 27].
A recent qualitative comparison of curve skeleton techniques is given
in [36]. However, these methods do not produce single-path center-
lines between user-specified endpoints. It is conceivable that such
methods could be post-processed to extract centerlines, for example
by finding the shortest-path linking the specified endpoints which also
passes through an extracted curve skeleton. However, none of these
methods is fast enough for near-real-time curve skeletonization of
large 3D volumes, and the postprocessing could be tedious and time-
consuming, so they fail our interactive requirement.

Bleiweiss [9] introduced a GPU implementation of parallel
pathfinding for many thousands of agents in crowded game scenes in
which each individual agent runs a separate pathfinding algorithm (to
find its own individual path) in a single GPU thread. Therefore, the
parallelism lies in the multiple agents’ multiple pathfindings, which is
a coarse granularity parallelism. In contrast, our parallel algorithm ex-
hibits fine granularity parallelism, with multiple GPU threads working
together to find a single path for a complex-shape object.

3 REVIEW OF THE SERIAL ALGORITHM

Fig. 2. Examples of DFB shown in 2D slices. Left: explicit DFB values;
right: an aorta DFB field visualized through a color map (image courtesy
of Bitter et al. [7]).

In this section, we first review the serial algorithm introduced by
[40]; this will be referred to hereafter as serial). Our new parallel
algorithm is then introduced incrementally in the following sections.

In the serial algorithm, the centerline is defined as the minimum-
cost path spanning the 3D DFB field inside the input object. An ex-
ample DFB field is shown in Fig 2. This is a concise and concrete
definition, similar to the traditional centerline description given by
Blum [10], but it is more practical for implementation. The serial al-
gorithm can produce very accurate centerlines based on the DFB field,
in which the Euclidean distance between each interior voxel and the
object boundary is recorded.

The serial algorithm consists of two main steps. First, it builds a
minimum-cost spanning tree (MST) in the DFB field, then it finds the
sequence of voxels that lie along the centerline by backtracing from the
end point to the start point through the previously constructed MST.
The first step is by far the costlier in terms of computation. Centered-
ness is assured by the fact that the DFB field uses exact Euclidean
distances, computed by a fast algorithm proposed by Saito et al. [29]
and described also by Meijster et al. in [23].

The serial algorithm solves the centerline problem on graphs with
nonnegative edge weights by looping over the contents of a priority
queue until all nodes have been evaluated. The regular sampling grid
of the DFB field is treated as a 3D directed weighted graph. Each
voxel corresponds to a graph node. Graph edges are given by the
26-neighbor relations between adjacent voxels. Each edge has two
directions pointing towards its two respective end points, and each di-
rection has its own weight, called the DFB-cost, equal to the inverse
of the DFB of the end voxel to which it points.

The MST is defined as a tree that connects all of the interior voxels
(that is, those in Ω\∂Ω) at the minimum DFB-cost. To build this MST
efficiently, a modified Dijkstra technique is used. Given a source point
S and an end point E, both specified interactively by the user on the
object surface ∂Ω, the MST is built by the following four-step process:

1. Mark S as visited and define it as the current node C. Set the
pathlink of S to NULL, where pathlink is used to label a node’s
predecessor in a path.

2. For the current node C, insert the unmarked 26-neighbors B of
C into a priority queue Q sorted on the DFB-cost, and set their
pathlinks to C.

3. Remove the head node from Q (that is, the one with the minimum
DFB-cost), mark it as visited, and define it as the current node C.

4. Repeat from step 2 until Q is empty. After this, all nodes have
been evaluated.

The algorithm constructs, for each interior voxel p∈Ω\∂Ω, a path-
link pointing toward its neighboring voxels, through which p reaches
the source point S with a minimum DFB-cost. At each iteration, the
priority queue must be kept sorted (either by explicit re-sorting or by
ensuring that any insertion retains the overall ordering) in order to find
the node C that has the minimum DFB-cost. This node is used to
launch the next iteration, which will, in turn, insert new nodes (i.e.,
C’s neighbors) into the queue.

The above algorithm is completely serial, and its speed cannot be
increased by the use of parallel hardware due to the fundamental loop
dependency caused by the use of a priority queue. Specifically, to en-
sure a correct MST construction, based on the greedy rule that infor-
mation is propagated only from the node with the minimum DFB-cost
to other nodes at any time, only a single node can be processed at each
iteration to update its 26 neighbors. Furthermore, processing the node
C at the head of the queue causes its neighbors to be inserted into the
queue which, in turn, requires the queue to be re-ordered to ensure that
the minimum DST-cost node is at the front.

This process exhibits excessive synchronization: at every iteration
only the head node can be processed, and each node-evaluation has to
wait for the completion of the sorting operations from the last itera-
tion, so multiple node evaluations cannot be performed concurrently.
Apart from the above, a further bottleneck is presented by the frequent
sorting of the queue. Each sorting operation is performed at best in
O(logM), where M is the average number of elements in the priority

4

queue at each iteration. Moreover, the total number of iterations we
need to loop in this algorithm is equal to K = ‖Ω‖, the number of the
foreground voxels inside or on the 3D shape Ω (rather than N, i.e., the
total number of voxels in the volume), since all K voxels need to be
removed from the queue (one at each iteration) in order to propagate
information throughout the object. So the complexity of the whole
algorithm is O(K × logM).

4 QUEUE-FREE SERIAL ALGORITHM RUNNING ON THE CPU

As a first step towards parallelization, we introduce in this section a
queue-free serial algorithm running on the CPU based on the same
DFB field as the original serial algorithm in Sec. 3. In the following
sections, we show how we parallelize this queue-free algorithm for the
GPU by allowing parallel evaluations of multiple nodes.

As explained in Sec. 3, the original serial algorithm [40] is not
parallelizable due to its fundamental loop dependency, which is caused
by the use of a priority queue. To bypass this problem, here we first
introduce a new brute-force serial algorithm (referred to as b f s) which
does not use a priority queue. This new queue-free algorithm is based
on the same accurate Euclidean DFB field as serial and again assumes
that the object interior is a 26-connected region. The DFB field is
stored as a signed floating-point distance field, that is, it has positive
values for voxels inside ∂Ω, zero values on ∂Ω, and negative values
outside ∂Ω.

The DFB-cost field is stored as a 3D read-only volume DFBcost .
A second 3D floating-point buffer, weight, is used to store, for each
voxel, the accumulated weight value along its path originating from
S. Each element of weight is initialized to a very large constant,
MaxFloat, except the source point S, whose weight[S] is set to 0. As
the algorithm proceeds, we compute the accumulated weight from a
source point S to each of its neighbors B using the formula weight[B] =
weight[S] + DFBcost [B]. The neighbor nodes then propagate their
weight values progressively to their own neighbors until E is reached.

To construct a correct MST, our new algorithm ensures that the
weight values are propagated only from nodes with smaller weights to
nodes with larger weights. Thus, the weight values of individual nodes
can only decrease monotonically as a result of the node evaluations –
during the iterations, all node weights (except S) will be updated from
MaxFloat to smaller values in a monotonically decreasing manner.
In this way, the MST can be constructed in a “downwind” direction
proceeding from the source point S to the end point E.

Algorithm 1 Queue-free serial algorithm (b f s)

1: blue// input: DFBcost , S;

2: blue// output: weight;

3:
4: blue// Initialization:

5: SetMemory(weight,MaxFloat); blue//set all memory to MaxFloat

6: weight[S] = 0;

7: bFinished = 0;

8:
9: blue//iteration loop:

10: while bFinished == 0 do

11: bFinished = 1;

12: for C = 0 to N −1 do // iterating on all N voxels

13: if weight[C]< MaxFloat then

14: for each neighbor B of C do // iterating on all 26 neighbors of C

15: if DFBcost [B]> 0 then

16: newWeight = weight[C] +DFBcost [B]; blue//potential new weight

of B

17: if newWeight < weight[B] then

18: weight[B] = newWeight; blue//updating weight

19: bFinished = 0;

20: end if

21: end if

22: end for

23: end if

24: end for

25: end while

The pseudo-code of b f s is shown in Algorithm 1. In detail, we
proceed as follows:

1. At initialization, the source point S is selected by the user, and
weight[S] is set to zero. A Boolean value (bFinished), used to
indicate termination, is also set to 0.

2. At each iteration, if bFinished == 0, we reset it to 1, and then
launch a for-loop to iterate on all N voxels of the input vol-
ume. Here, we propagate the weight information from each vis-
ited voxel C to its 26-neighbors. Each neighbor B of C has its
weight[B] value updated to weight[C]+DFBcost [B] if this value
is smaller than weight[B], which ensures that weight[B] can only
decrease. If any weight update is successful, we set bFinished to
0, which means we need next to propagate information from B
to its own neighbors at the next iteration.

3. Step 2 is repeated until no further weight updates occur
(bFinished = 1). At this point, the final MST is available in the
weight dataset.

The number of iterations is bounded because, after the propagation
has reached all of the interior nodes and no weights remain to be up-
dated, the iteration procedure will terminate.

At each iteration, this algorithm evaluates N voxels, where N is the
total number of voxels in the input 3D volume, whereas serial eval-
uates only the nodes that were removed from its priority queue. The
number of these nodes K = ‖Ω‖, that is, the voxels on or inside the 3D
shape (i.e., the foreground voxels). As a result, our brute-force algo-
rithm b f s is slower than serial, since K < N, so b f s is uncompetitive
on a serial processor.

However, b f s is queue free and has no loop dependency. As such,
it is completely parallelizable, leading to the possibility of a highly-
efficient GPU-based centerline extraction method, as discussed in the
next section.

We also note that the centerlines produced by the serial and b f s al-
gorithms may be slightly different as the respective MSTs are created
in slightly different ways. In b f s, the weight values are not explic-
itly sorted, but are accumulated (weight[C]+DFBcost [B]) and updated
in a monotonically decreasing manner. The final path connecting the
source to destination nodes is found by tracing paths in the gradient
of the accumulated weight field. In contrast, serial sorts the weights
explicitly (but does not accumulate them), and uses a pathlink to con-
nect the sorted nodes after the weight-ranking to construct the MST.
The differences in the MSTs are very small and lead to insignificant
centerline differences, as we show in Sec. 6.

5 GPU PARALLELIZATION

We next present two parallel implementations of the b f s algorithm
using the GPU. The key idea behind both implementations is to al-
low multiple node evaluations to be performed concurrently using the
many computing cores available on a GPU. Both implementations
store the DFBcost field as a 3D GPU texture. After the MST is con-
structed in parallel on the GPU, we transfer it to the CPU, where we
construct the final centerline by simply backtracking in the MST from
the endpoint E to the starting point S.

The first implementation (b f p, Sec. 5.1) is a brute-force paral-
lelization, which is simple to implement, while the second implemen-
tation (im p, Sec. 5.2) is more involved, but considerably more effi-
cient. Both produce results identical to those of b f s.

5.1 Brute-force parallel algorithm

The brute-force parallelization b f p is a direct mapping of the queue-
free serial algorithm b f s onto the GPU, where we evaluate all N vox-
els of the input volume in parallel at each iteration. The pseudo-code
of b f p is shown in Algorithm 2. In detail, we proceed as follows:

1. The initialization is identical to that of b f s.

5

2. At the beginning of each iteration, if bFinished == 0, we reset it
to 1, and then launch a CUDA kernel in exactly N GPU threads.
The thread associated with node C propagates the weight infor-
mation from C to its 26-neighbors. To ensure that the weight
of any neighbor B can only decrease, we use CUDA’s atomic
function atomicMin(). If an update of B is successful, we set
bFinished to 0. The iterations are repeated until bFinished = 1
at the end of an iteration.

Algorithm 2 Brute force parallel algorithm (br p)

1: blue// input: DFBcost , S;

2: blue// output: weight;

3:
4: blue// Initialization:

5: SetMemory(weight,MaxFloat); blue//set all memory to MaxFloat

6: weight[S] = 0;

7: bFinished = 0;

8:
9: blue//iteration loop:

10: while bFinished == 0 do

11: bFinished = 1;

12: call the CUDA kernel BruteForceParallelIterationKernel(N); blue//this

launches N parallel threads, each running concurrently on a GPU core

13: end while

14:
15: blue//the parallel CUDA kernel:

16: BruteForceParallelIterationKernel(threadID)

17: if threadID < N then

18: C = threadID; blue//C is one of the all N voxels in the dataset

19: if weight[C]< MaxFloat then

20: for each neighbor B of C do // iterating on all 26 neighbors of C

21: if DFBcost [B]> 0 then

22: newWeight = weight[C]+DFBcost [B]; blue//potential new weight

23: oldWeight = atomicMin(weight[B],newWeight); blue//atomic opera-

tion

24: if newWeight < oldWeight then

25: bFinished = 0;

26: end if

27: end if

28: end for

29: end if

30: end if

The CUDA atomic operation atomicMin() is used to update the
weight buffer in a parallel manner (Alg. 2, line 20) so as to avoid a
race condition, which would occur when multiple threads attempt to
update the same buffer at the same time.

The most obvious difference from b f s is that, at each iteration, all
the nodes propagate information simultaneously to their neighbors in
b f p, rather than processing taking place a single node at a time. The
drawback of b f p is that we have to launch many CUDA threads – N
threads to evaluate all N voxels at each iteration.

However, a high proportion of these node evaluations are unnec-
essary because many voxels are either inactive (i.e., weight was not
changed at the last iteration) or are exterior to the object Ω (i.e., their
DFBcost < 0). Processing such voxels will not contribute to the infor-
mation propagation; further, threads will have substantially different
execution times, which is an inefficient use of the resources.

Nevertheless, this scheme does have the virtue of keeping the map-
ping of threads to voxels simple.

5.2 Improved parallel algorithm

In contrast to the brute-force parallel algorithm b f p, which evalu-
ates all N voxels by launching N GPU threads at each iteration, the
improved parallel algorithm im p presented in this section processes
only the active voxels that must be evaluated, that is, only those with
the potential to update their neighbors. Inactive nodes are skipped,
greatly reducing the number of threads that have to be launched.

In im p, we again perform multiple node-evaluations concurrently
for each iteration, but we now use a wavefront propagation scheme,

dow
nw
ind direction

S

E

Fig. 3. Downwind wavefront propagation from source point S to end
point E in parallel mode, so that at each iteration only the currently active
nodes (red) propagate their weights to their neighbors simultaneously.

as shown in Fig 3. The algorithm starts from the source point S, and
at each iteration, a 1D array currentArray records the ID of the active
nodes. These are the nodes whose weights were changed at the last
iteration and which will update their neighbors’ weights at the cur-
rent iteration. Conceptually, this scheme is similar to the narrowband
structure used by the fast marching method [32].

At each iteration, we use a ping-pong technique, with two 1D ar-
rays, currentArray and nextArray, being interleaved for consecutive
iterations. currentArray stores the active nodes generated from the
previous iteration and is used to launch the current iteration. nextArray
stores the new active nodes generated at the current iteration and is
used to launch the next iteration. Hence, whenever a node’s weight is
changed, it will be recorded in nextArray at the current iteration, and
will provoke the launch of a thread at the next iteration. To avoid a
node being added to the same array multiple times during the parallel
processing, a Boolean 3D array (mark) is used to record if a node has
already been added to that array. All elements of mark are set to zero
at the beginning of each iteration.

Active nodes behave like a wavefront, with information being prop-
agated from the source node S to all other nodes in parallel. We clas-
sify the grid points into three groups: discovered points, which were
previously active but are not currently so (shown in black in Fig. 3);
active points, whose weights were updated in the previous iteration
(shown in red); and undiscovered points, which have not yet been vis-
ited. At each iteration, we launch threads only for active points – one
thread for each active point. For a volume of a few million voxels, the
number of active points (and thus also of the threads launched) is typi-
cally in the order of thousands, which is much lower than the millions
of threads required by b f p.

The pseudocode of im p is shown in Algorithm 3. In detail, we
proceed as follows:

1. Given a source point S, we set weight[S] to zero, append S to
currentArray, and set the array’s length currentLength to 1. This
array records all currently active nodes; these are the nodes that
will propagate their weight information to their neighbors at the
current iteration.

2. At each iteration, if currentLength > 0, we launch the paral-
lel CUDA kernel on exactly currentLength GPU threads, one
thread per element C of currentArray. Each thread propagates
the weight information from C to its 26-neighbors, as in the brute
force algorithm b f p. If an update of a neighbor B is successful,
we test if B is already marked. If not, we mark it, append it to
nextArray, and increment its length, nextLength. Using mark
avoids adding B to nextArray more than once.

3. We swap currentArray and nextArray, and clear mark and
nextLength, so that we can perform the next iteration. Steps 2
and 3 are repeated until currentLength = 0, i.e., until all nodes
have been discovered and no node can be further updated.

Our improved im p algorithm performs identically to the b f p al-
gorithm, apart from skipping all of the unnecessary node evaluations,

6

Algorithm 3 Improved parallel algorithm (im p)

1: blue// input: DFBcost ,S,currentArray,currentLength,nextArray,nextLength,mark;

2: blue// output: weight;

3:
4: blue// Initialization:

5: SetMemory(mark,0); blue//clear all memory of array mark to zero

6: SetMemory(weight,MaxFloat); blue//set all memory to MaxFloat

7: weight[S] = 0;

8: currentArray[0] = S;

9: currentLength = 1;

10: nextLength = 0;

11:
12: blue//iteration loop:

13: while currentLength > 0 do

14: call the CUDA kernel ImprovedParallelIterationKernel(currentLength);

blue//which launches currentLength parallel threads, each running concurrently

on a GPU core

15: Swap(currentArray,nextArray); blue//swap the memory address of the two arrays

16: currentLength = nextLength;

17: nextLength = 0;

18: SetMemory(mark,0); blue//clear memory to zero

19: end while

20:
21: blue//the parallel CUDA kernel:

22: ImprovedParallelIterationKernel(threadID)

23: if threadID < currentLength then

24: C = currentArray[threadID]; blue//concurrently retrieve an active node C

25: for each neighbor B of C do // iterating on all 26 neighbors of C

26: if DFBcost [B]> 0 then

27: newWeight = weight[C]+DFBcost [B]; blue//potential new weight

28: oldWeight = atomicMin(weight[B],newWeight); blue//atomic operation

29: if newWeight < oldWeight then

30: if mark[B] == 0 then

31: mark[B] = 1; blue//mark it

32: oldIndex = atomicAdd(nextLength,1); blue//atomically add 1 to

nextLength

33: nextArray[oldIndex] = B; blue//append B to the next iteration array

34: end if

35: end if

36: end if

37: end for

38: end if

so it produces exactly the same results as the b f s and b f p algorithms.
We have confirmed this in practice by computing voxel-wise compar-
isons of the results of the three algorithms.

The added value of im p over the previous algorithms lies in three
factors: (a) we do not need to maintain an expensive sorted queue;
(b) instead of evaluating nodes one at a time, we evaluate multiple
nodes in parallel on the GPU – a deterministic result is ensured by use
of monotonically decreasing information propagation and by CUDA’s
atomic operations; (c) at each iteration, only currently active nodes
are evaluated, as opposed to the entire voxel set as in the brute force
algorithms.

5.3 Centerline extraction by backtracing the MST

After the iterations in Algorithm 2 or 3 have terminated, the MST
is available in the weight buffer. Having performed the compute-
intensive calculations on the GPU, the remainder of the algorithm is
performed on the CPU. We thus transfer weight from the GPU mem-
ory to the CPU memory and extract the centerline on the CPU by a
simple backtracing which traverses the MST from the target end point
E along the gradient direction of the weight field until the source point
S is found.

In detail, at each step i of the traversal, we test the 26-neighbors of
the current node Ci (initialized as C0 = E), and choose the one with the
minimum weight as the next current node Ci+1. We repeat this process
until we find the source point S as the last node Cn−1. The desired cen-
terline is formed by the point sequence [C0,C1,C2,C3, ...,Cn−1]. The
number of steps of this process, equal to the length of the centerline,

is of O(D) where D is the diameter of the object, which is typically

of the same order as the size of the space, i.e.,
3
√

N for a volume of N
voxels [27]. This step is very fast, and can be executed in real-time on
the CPU.

Our approach could also be used to extract general 3D curve skele-
tons including all branches. Since the MST connecting all of the inte-
rior voxels has already been built, it is straightforward to find all other
possible branches from the MST using the branch-finding method in-
troduced in [40], and then merge them all into one topology.

6 RESULTS

The parallel algorithms presented above were implemented using
CUDA 5 and tested on a PC computer with an Intel 3.5 GHz CPU
and an NVIDIA GeForce GTX 690 graphics card. Although the GTX
690 has two GPUs, one is sufficient to handle all of our datasets, re-
sulting in a usage of 2 GB video memory and 1536 CUDA cores. For
examination and comparison, the centerlines extracted were displayed
at a screen resolution of 1024×768 pixels.

As in previous serial approaches [40], our method can extract cen-
terlines from either volume data (CT or MRI) or polygonal mesh mod-
els, as long as a 3D DFB field (as input to our centerline algorithm) is
pre-computed from the original object data, either from the segmented
medical image slices or from the polygonal mesh.

The DFB pre-computation can be performed efficiently by recent
GPU-based Euclidean distance transforms [11, 31] – for example,
within a second for a volume of 5123 voxels on the hardware indi-
cated above. The DFB pre-computation needs to be performed only
once for a given model, after which the user can interactively specify
the desired centerline start and end points and extract the actual cen-
terlines. Since the focus of this paper is on centerline computation, we
exclude the DFB pre-computation time from our runtime performance
comparisons.

In our experiments, the user is presented with the input 3D surface,
rendered semi-transparently. The user can next define the two end
points by interactively clicking any two points in this rendered image.
The selected points are shown as blue squares in all of the resulting
images and videos. For each of the user’s clicks, the program will
pick the 3D point on the frontmost surface layer of the object under
the selected pixel, which is then used as S or E.

After S and E are defined, the centerline extraction algorithm is au-
tomatically applied, and the resulting centerline points are displayed in
real-time. Note that the two points selected must belong to a connected
component of the object, otherwise an MST cannot be built connect-
ing them. The interactive features of the algorithm can be seen in the
accompanying videos. For comparison, the resulting images show the
centerlines produced by serial, b f p, and im p rendered in black, blue
and red, respectively.

No parameters need to be set by the user at run-time, apart from
the specification of the start and end points. For the b f p algorithm,
threads are scheduled as 3D thread blocks on the GPU, with each block
having 4×4×4 threads. For the im p algorithm, threads are scheduled
as 1D thread blocks, with each block having 16 threads. We found that
these are the optimized configurations and subsequently used them as
presets in all our experiments.

6.1 Quality comparison

For all the shapes tested, the new algorithms managed to extract a
visually correct and plausible centerline. In particular, we found that
the centerlines respected the centeredness criterion well – no collision
of the centerline with the input surface ∂Ω was found when directly
examining the centerlines or using them as fly-through paths.

Since there is no such thing as the “best” centerline [18], the ques-
tion of which centerline one prefers depends upon the criteria that are
imposed by the desired application. For some datasets, the results of
the serial and newly proposed methods are completely identical (see
Figures 4 and 5). For other datasets, there are small differences be-
tween the serial and our new queue-free methods, as shown in Fig-
ure 6.

7

The key point is that the three queue-free methods (b f s,b f p, im p)
are guaranteed to produce exactly the same results, and these results
at worst show only very minor differences from those produced by
the original queue-based serial method. This proves that both parallel
algorithms are robust, and their results are steady and deterministic.
Because of this, the results of b f s and b f p are not shown in Figure 6
to avoid redundancy.

Figure 4 shows results for the blood vessel model at three differ-
ent resolutions. It also shows that the higher the data resolution is,
the smoother the centerline will be, though the computation time will
be longer (see Table 1). In Figure 5, the three algorithms were tested
on a cuboid and a doll model. Figures 4 and 5 demonstrate that the
three algorithms produce identical centerlines for these simple-shaped
models. These experiments were run multiple times, and all three al-
gorithms always produced the same centerlines, as tested by a voxel-
by-voxel comparison.

For other complex models, the voxel-by-voxel comparison indi-
cated that there can be some differences between the centerlines pro-
duced by the serial and parallel algorithms. However, these differ-
ences are so small that they are not easy to notice, as can be seen in
the examples in Figure 6.

The reason behind the differences is that the weight values are accu-
mulated in our parallel algorithms, but not in the serial algorithm, as
explained in Section 4. The serial algorithm uses a pathlink for each
voxel to label its predecessor. In contrast, the parallel algorithms use
the gradient direction of the accumulated weight-field to find a voxel’s
predecessor node.

As a desirable by-product of the weight accumulation, we note that
the results produced by the parallel algorithm are smoother for com-
plex models than those produced by the serial algorithm. This is be-
cause accumulating the weights acts as a low-pass filter of the result-
ing centerline. This effect is especially obvious for the dinoSkeleton
model in Figure 6, where the surface of the tail of the dinosaur ex-
hibits high-frequency variations. These cause the serial algorithm to
produce a centerline with high-frequency noise, whereas our parallel
algorithm filters such noise and hence produces a smoother centerline.
This shows that our method is less sensitive to small-scale perturba-
tions of the input surface than the serial algorithm.

6.2 Performance comparison

We have performed extensive experiments on a wide range of datasets.
The performance statistics corresponding to Figures 4, 5 and 6 are
shown in Table 1. All algorithms were tested on the hardware men-
tioned at the beginning of Sec. 6. The serial code was our implemen-
tation based on the flowchart provided in [40].

From Table 1, it is clear that im p is up to 7 times faster than b f p,
which is itself significantly faster than serial. On a broader front, if we
compare our parallel centerline extraction (im p) with recent mesh and
volume-based curve-skeleton algorithms [3,20,27,35,37], we observe
that im p is one to two orders of magnitude faster on similar hardware
and for the same input datasets. As such, our algorithm presents con-
crete added value in an interactive context, as in such situations post-
processing the curve skeleton output of the latter algorithms would not
be able to deliver interactive frame rates. Interestingly, our method is
also faster than mesh-based curve-skeletonization algorithms [37], in-
cluding carefully GPU-parallelized ones [20], which stand out for their
high throughput.

6.2.1 Performance analysis

The improved parallel algorithm im p is much faster than any previ-
ous algorithm but it does not sacrifice accuracy for speed. Its high per-
formance is due to the parallel execution of many concurrent CUDA
threads on many GPU cores.

Our analysis showed that, as in all other MST-based centerline ex-
traction algorithms, the bottleneck of our im p algorithm lies in the
MST computation stage, which accounts for more than 90% of the
total time. The MST backtracking is very light and accounts for less
than 10% of the time.

Table 1. Performance comparison over a range of datasets. The table
shows the data resolution, the length of the extracted centerline (number
of nodes along the centerline), and the extraction time (in milliseconds)
of the algorithms serial, b f p and im p, respectively. The respective
centerlines extracted are shown in Figures 4, 5 and 6.

dataset data centerline serial bf p im p

resolution length (in ms) (in ms) (in ms)

vessel 1283 124 297 47 31

vessel 2563 245 13978 140 63

vessel 5123 489 554506 1513 203

cuboid 1283 125 119808 234 47

doll 1283 116 21107 78 31

aneurism1 2563 326 1410702 1326 390

aneurism2 2563 396 530294 951 297

aneurism3 2563 284 227621 609 187

aorta 5123 526 457707 1311 312

ben 2563 268 241552 764 203

colon 2563 848 1104908 1763 515

dino 2563 277 56769 281 78

dinoSkeleton 2563 252 125207 297 93

hand 2563 209 1142770 561 249

horse 2563 323 809395 952 234

knot 1283 137 387085 359 140

octopus 2563 163 122305 512 141

snake 2563 665 181866 1139 250

toy 2563 221 3477761 1092 343

In terms of complexity, the serial algorithm requires K iterations for
an input shape with K voxels, and at each iteration, it needs to sort M
elements in the priority queue. Hence, its complexity is O(K× logM),
as the sorting complexity is O(logM) at best. Here, M is the number
of active nodes currently in the queue, that is, M is the length of the
priority queue at each iteration. However, M is not a fixed value over
different iterations – it will increase rapidly as the iterations proceed
because, at each iteration, as many as 26 neighbors of an active node
will be inserted into the queue and only one node (the head) will be
removed from it.

Hence M can become very large, which makes sorting the queue
very time-consuming. As the sorting takes place after each of the fre-
quent node insertions, this becomes the bottleneck of the serial algo-
rithm. In our experiments, we found that the value of M depends upon
the shape of the object: the fatter the object is, the more active nodes
will accumulate in the queue from the previous iterations, so the larger
the queue will become. For example, the cuboid model in Figure 5 is
wide and this will cause a large number of voxels to be accumulated
in the queue; as a result, for this model, the serial algorithm is 500
times slower than even the brute-force parallel algorithm, and thou-
sands of times slower than the im p algorithm. This also explains why
the serial algorithm took 13 seconds for the vessel model but an hour
for the toy model, even though both models have the same 2563 reso-
lution. This is because the values of K and M are much larger for the
toy model than for the vessel model, even though the resolution N of
both models is the same.

The computational complexity of the b f p algorithm is O(N × I),
where I is the number of iterations, which is a bounded value because
after information is propagated to reach all interior nodes the iteration
procedure will stop. At each iteration, all N nodes of the dataset need
to be evaluated regardless of whether they are active or not, however
this is performed in a parallel mode by launching N concurrent CUDA
threads. As a result it could still be hundreds of times faster than the
serial algorithm.

The complexity of im p is O(currentLength × I). It again per-
forms in a parallel mode, but instead of evaluating all N nodes at
each iteration, it evaluates only currentLength nodes by launching
currentLength concurrent CUDA threads. Here, currentLength is the
number of the currently active nodes (recorded in currentArray) at
each iteration – this can be thought of as equivalent to the length of the

8

serial bf im

Fig. 4. Results produced by the three algorithms (left to right: serial, b f p and im p) for a blood vessel model (femoral artery) at three different data
resolutions (top to bottom rows: 1283, 2563 and 5123, respectively). In each row, the three algorithms produce identical results; in each column,
the dataset with the higher resolution produces a smoother result. Please zoom in to see the details. The corresponding performance statistics for
these images are shown in Table 1.

priority queue (the active set) in the serial algorithm. But the differ-
ence here is that only the currently new “active” nodes at the current
iteration need to be inserted into nextArray. Previously active nodes
in currentArray will be inserted into nextArray only if they are again
active (that is, their weight is again changed) at the current iteration.
As a result, the active set remains much smaller during the ping-pong
process than in serial.

Intuitively, the size of the active set in im p (i.e., currentLength) at
a certain iteration is the size (or area) of the wavefront patch shown
in Fig. 3, which is a relatively smooth one-voxel-thick surface patch
that propagates from the source point and is ‘cut’ by the object’s sur-
face. At each iteration, one wavefront is replaced by another one-
voxel-thick wavefront in the active set. If I is the number of such
wavefront patches during the propagation, then typically I is roughly

of the same order as the diameter of the object i.e.,
3
√

N for a volume
of N voxels).

In the serial algorithm, the size of the active set, M, is more like
a sub-volume or volumetric fraction of the object – it is much thicker
than our wavefront patch. This is caused by node accumulation – at
each iteration, only one node is removed from the queue but up to 26
nodes are inserted into it. As a result, many historically active nodes
are accumulated in the queue as the iterations progress, and the size
of the active set can become as large as a volumetric fraction of the
object, i.e., of the same order as K. This explains why it performs
much more slowly than im p

In theory, the im p algorithm could also be implemented on a multi-
core CPU, but the latest CPUs still have only very few cores (up to 8
cores, generally). As, typically, thousands of nodes have to be evalu-
ated concurrently at each iteration, 8 cores are far too few to provide a
suitable level of parallelism compared to what is available on a modern
GPU.

6.3 Comparison with latest curve-skeleton algorithms

Curve skeletons are different from centerlines, as we outlined in Sec-
tion 1, and are not as suitable as centerlines for direct use as fly-
through paths due to their branches and their inability to pass through
the predefined end points selected by the users. Nevertheless, for a
greater insight into the performance of our method, we next compare
the speed of our GPU centerline extraction with several state-of-the-art
curve-skeleton algorithms.

Arcelli et al. [3] reported average times of 35 seconds for extracting
the curve skeleton of 1283 resolution volumetric models, including
similar dino and horse models to those in Table 1, on a 3 GHz CPU.
This implies that our method is hundreds of times faster (even more so
since we used a higher resolution of 2563 for these two models).

We have run the binary code provided by the authors of [27] on the
machine used for Table 1, and the curve-skeleton extraction time of
their algorithm for the horse dataset is 19.52 seconds, which is slower

than our im p method by a factor of almost 100.

We also ran the binary code provided by the authors of [4], which
is the most well known geometric approach for extracting curve skele-
tons directly from mesh surfaces. The curve-skeleton extraction time
for the same horse model was 960 seconds, which is much slower
than our methods and the other voxel-based methods. However, this
method has a much lower memory consumption, since it does not need
to store the volumetric datasets.

The method of Jalba et al. [20] uses GPU acceleration and requires,
on a GTX 280 card, between 3 and 9 seconds (with an average of 4
seconds) to extract curve skeletons from models similar to the ones in
Fig. 6, e.g. 5.3 seconds for horse and 3.8 seconds for hand. This com-
pares to our 0.23 and 0.24 seconds, respectively, for the same models.
Allowing for the fact that the GTX 690 GPU is 3 times faster than the
GTX 280 GPU, our method remains 5 to 7 times faster, and it also has
the advantage of a much simpler implementation.

As a final remark, we note that for applications such as fly-through
path planning, which requires a single branchless centerline that passes
through two user-defined end points, our algorithm is much more eco-
nomical than these curve-skeleton methods. Even if such methods
were to process the skeleton as efficiently as im p, time-consuming
postprocessing would still have to be performed to remove undesired
minor branches from the skeleton to produce a major trunk as the final
fly-through path.

6.4 GPU Memory consumption

The main memory consumption of the im p algorithm lies in three 3D
arrays. Besides the 3D texture of DFBcost in float format, we also need
a float 3D array weight and a Boolean 3D array mark in byte format.
So for a 5123 dataset, e.g. the vessel and aorta in Table 1, the GPU
memory consumption is 5123 × (4+ 4+ 1) bytes, i.e.,128× 9 MB =
1152 MB.

For larger datasets, such as 10243, the memory consumption could
become a problem for a single GPU. To alleviate this, one could use
half-precision floating-point format, which occupies 16 bits. This is
commonly employed in GPU computing and has produced acceptable
results for many applications. The various Boolean arrays can be fur-
ther compressed to use one bit per voxel instead of 1 byte per voxel.
Furthermore, recent GPUs, such as the NVIDIA GeForce Titan, have 6
GB GPU memory, which is sufficient to handle a 10243 dataset at half-
precision floating-point format. As such, we consider that our imple-
mentation is suitable for use with normal real-world volume datasets
without further modification. In the future, we will investigate using
multi-GPUs to deal with even larger datasets.

6.5 Applications to virtual endoscopic simulation

Our im p centerline extraction algorithm can be used for compact
shape description, segment-length measurement, automatic naviga-

9

Fig. 5. More identical results produced by the three algorithms (from left to right: serial, b f p and im p) for the cuboid and doll models, respectively.
Please zoom in to see the details. The corresponding performance statistics for these images are shown in Table 1.

tion, etc., in virtual endoscopic simulation applications.
It can provide flexible real-time navigation paths based on user-

specified end points within a 3D virtual model acquired from a con-
tinuous sequence of 2D medical image slices scanned from the human
colon, aiming to detect early-stage colon polyps. It can extract a cen-
terline hundreds of times faster than the previous serial approach, in
fact, so fast that the user will hardly notice any latency – in consid-
erably less than a second in all of our experiments. This can be very
helpful in assisting an interactive virtual endoscopic diagnostic pro-
cess, as we show in the accompanying video, which uses the extracted
centerline directly as the camera path (for the aneurism2 dataset). The
video shows that the camera path is highly centered and smooth, and
never collides with the object wall.

The extracted centerlines can also provide accurate measurements
of the locations of abnormalities. For example, once a polyp is de-
tected during a colon navigation, the physician immediately knows its
location and the distances to the two end points S and E, which is
useful for registration in surgery.

7 CONCLUSION

We have introduced a parallel algorithm, suited to modern GPU hard-
ware, to extract centerlines automatically at interactive speed. Exper-
iments have shown that the proposed algorithm is hundreds of times
faster than the previous serial algorithm.

The proposed new algorithm im p is not only fast, but also has other
desirable features, including precision, connectivity, simplicity, and
computational efficiency.

The algorithm can produce a 26-connected highly centered singular
path which is exactly 1-voxel thick, by construction. The centeredness
of our centerline is derived from the DFB field. No ad hoc adjustments
are needed to push the path back to the center.

Since our centerlines are extracted from the MST in the DFB field,
they inherit the simplicity of the paths in a tree structure. In other
words, the algorithm generates centerlines of 1-voxel width between
the two end points (S and E), with no 2-D manifolds or 3-D self-
intersections. This is important for automatic camera-path planning,
as it avoids folding or self-intersection of the navigation path thus re-
moving the possibility of “Y” junctions that can cause ambiguity and
hesitation in the traversal.

The centerlines produced have the correct tendency to stay close
to the local center of the object, due to the fact that the computation
is based on an accurate DFB field with the exact Euclidean values.
Another advantage is that the centerlines produced can be smoother
than those of the serial algorithm due to the low-pass filtering effect of
the new algorithm.

The algorithm is robust and deterministic, and is easy to understand,
implement and maintain as its main concept is straightforward due to
the precise and concise centerline definition.

REFERENCES

[1] L. Antiga. Patient-Specific Modeling of Geometry and Blood Flow in

Large Arteries. PhD thesis, Politecnico di Milano, Dipartimento di

Bioingegneria, Italy, 2002.

[2] L. Antiga. VMTK - the vascular modeling toolkit.

http://www.vmtk.org/index.html, 2012.

[3] C. Arcelli, G. Sanniti di Baja, and L. Serino. Distance-driven skeletoniza-

tion in voxel images. IEEE TPAMI, 33(4):709–720, 2011.

[4] O. K.-C. Au, C.-L. Tai, H.-K. Chu, D. Cohen-Or, and T.-Y. Lee. Skele-

ton extraction by mesh contraction. ACM TOG, 27(3):44:1–44:10, Aug.

2008.

[5] S. Aylward and E. Bullitt. Initialization, noise, singularities, and scale

in height ridge traversal for tubular object centerline extraction. IEEE

Transactions on Medical Imaging, 21(2):61–75, Feb. 2002.

[6] X. Bai, L. Latecki, and W. yu Liu. Skeleton pruning by contour partition-

ing with discrete curve evolution. IEEE TPAMI, 29(3):449–462, 2007.

[7] I. Bitter, A. Kaufman, and M. Sato. Penalized-distance volumetric skele-

ton algorithm. IEEE TPAMI, 7(3):195–206, 2001.

[8] I. Bitter, M. Sato, M. Bender, K. McDonnell, A. Kaufman, and M. Wan.

CEASAR: a smooth, accurate and robust centerline extraction algorithm.

In Proc. IEEE Visualization, pages 45–52, 2000.

[9] A. Bleiweiss. GPU Accelerated Pathfinding. In Proceedings of the 23rd

ACM SIGGRAPH/EG Symp. on Graphics Hardware, pages 65–74, Sara-

jevo, Bosnia-Herzegovina, 2008.

[10] H. Blum. A transformation for extracting new parameter of shape. In

Models for the Perception of Speech and Visual Form, MA: MIT Press,

1967.

[11] T.-T. Cao, K. Tang, A. Mohamed, and T.-S. Tan. Parallel banding algo-

rithm to compute exact distance transform with the GPU. In Proc. ACM

10

SIGGRAPH Symp. on Interactive 3D Graphics and Games, pages 83–90,

2010.

[12] N. Cornea, D. Silver, and P. Min. Curve-skeleton properties, applications,

and algorithms. IEEE TVCG, 13(3):530–548, May-June 2007.

[13] L. Costa and R. Cesar. Shape analysis and classification: Theory and

practice, second edition. CRC Press, 2000.

[14] T. K. Dey and J. Sun. Defining and computing curve-skeletons with

medial geodesic function. In Proc. SGP, pages 143–152. Eurographics,

2006.

[15] Y. Ge, D. R. Stelts, and D. J. Vining. 3D skeleton for virtual colonoscopy.

In Proc. Intl. Conf. on Visualization in Biomedical Computing, pages

449–454, London, UK, UK, 1996. Springer-Verlag.

[16] M. S. Hassouna and A. A. Farag. Robust centerline extraction framework

using level sets. In Proc. IEEE CVPR, pages 458–465, 2005.

[17] T. He and A. Kaufman. Collision detection for volumetric objects. In

Proc. IEEE Visualization, pages 27–34, 1997.

[18] W. H. Hesselink and J. B. T. M. Roerdink. Euclidean skeletons of digital

image and volume data in linear time by the integer medial axis transform.

IEEE TPAMI, 30(12):2204–2217, 2008.

[19] H. Homann. Implementation of a 3D thinning algorithm.

http://hdl.handle.net/1926/1292, Oct. 2007.

[20] A. C. Jalba, J. Kustra, and A. C. Telea. Surface and curve skeletonization

of large 3D models on the GPU. IEEE TPAMI, 35(6):1495–1508, 2013.

[21] J. Latombe. Robot Motion Planning. Kluwer, second edition, 1991.

[22] J. Ma, S. Bae, and S. Choi. 3D medial axis point approximation using

nearest neighbors and the normal field. The Visual Computer, 28(1):7–

19, 2012.

[23] A. Meijster, J. B. T. M. Roerdink, and W. H. Hesselink. A general al-

gorithm for computing distance transforms in linear time. In J. Goutsias,

L. Vincent, and D. S. Bloomberg, editors, Mathematical Morphology and

its Applications to Image and Signal Processing, pages 331–340. Kluwer,

2000.

[24] K. Palagyi and A. Kuba. Directional 3D thinning using 8 subiterations.

In G. Bertrand, M. Couprie, and L. Perroton, editors, Discrete Geometry

for Computer Imagery, volume 1568 of LNCS, pages 325–336. Springer,

1999.

[25] G. Peyre and L. Cohen. Geodesic computations for fast and accurate

surface remeshing and parameterization. In Progress in Nonlinear Dif-

ferential Equations and Their Applications, volume 63, pages 151–171.

Springer LNCS, 2005. www.ceremade.dauphine.fr/˜peyre.

[26] C. Pudney. Distance-ordered homotopic thinning: A skeletonization al-

gorithm for 3D digital images. CVIU, 72(3):404–413, 1998.

[27] D. Reniers, J. van Wijk, and A. Telea. Computing multiscale curve and

surface skeletons of genus 0 shapes using a global importance measure.

IEEE TVCG, 14(2):355–368, 2008.

[28] R. J. Sadleir and P. F. Whelan. Fast colon centreline calculation using

optimised 3D topological thinning. Computerized Medical Imaging and

Graphics, 29(4):251–258, 2005.

[29] T. Saito and J.-I. Toriwaki. New algorithms for Euclidean distance trans-

formation of an n-dimensional digitized picture with applications. Pattern

Recognition, 27(11):1551–1565, 1994.

[30] M. Schaap, C. Metz, T. van Walsum, A. van der Giessen, A. Weustinck,

N. Mollet, C. Bauer, H. Bogunovic, C. Castro, X. Deng, E. Dikici,

T. O’Donnell, M. Frenay, O. Friman, M. Hoyos, P. Kitslaar, A. Szym-

czak, H. Tek, C. Wang, S. Warfield, S. Zambal, Y. Zhang, G. Krest-

ing, and W. Niessen. Standardized evaluation methodology and reference

database for evaluating coronary artery centerline extraction algorithms.

Med Image Anal, 13(5):701–714, 2009.

[31] J. Schneider, M. Kraus, and R. Westermann. GPU-based euclidean dis-

tance transforms and their application to volume rendering. In A. Ran-

chordas, J. Pereira, H. Aranjo, and J. Tavares, editors, Computer Vision,

Imaging and Computer Graphics. Theory and Applications, volume 68 of

Communications in Computer and Information Science, pages 215–228.

Springer-Verlag, 2010.

[32] J. Sethian. Level Set Methods and Fast Marching Methods, second edi-

tion. Cambridge Univ. Press, 2002.

[33] E. Smistad. GPU-Based Airway Tree Segmentation and Centerline Ex-

traction for Image Guided Bronchoscopy. PhD thesis, Norwegian Uni-

versity of Science and Technology, 2012.

[34] E. Smistad, A. Elster, and F. Lindseth. Gpu accelerated segmentation and

centerline extraction of tubular structures from medical images. Intl. J.

Computer Assisted Radiology and Surgery, pages 1–15, 2013.

[35] E. Smistad, A. C. Elster, and F. Lindseth. GPU-based airway tree seg-

mentation and centerline extraction for image guided bronchoscopy. In

Proc. Norsk Informatik Konferanse. Akademika Forlag, 2012.

[36] A. Sobiecki, H. Yasan, A. Jalba, and A. Telea. Qualitative compari-

son of contraction-based curve skeletonization methods. In C. Hendriks,

G. Borgefors, and R. Strand, editors, Mathematical Morphology and Its

Applications to Signal and Image Processing, volume 7883 of LNCS,

pages 425–439. Springer-Verlag, 2013.

[37] A. Tagliasacchi, I. Alhashim, M. Olson, and H. Zhang. Mean curvature

skeletons. CGF, 31(5):1735–1744, 2012.

[38] R. Van Uitert and R. Summers. Automatic correction of level set based

subvoxel precise centerlines for virtual colonoscopy using the colon outer

wall. IEEE Trans. Med. Imag., 26(8):1069–1078, 2007.

[39] M. Wan, F. Dachille, and A. Kaufman. Distance-field based skeletons for

virtual navigation. In Proc. IEEE Visualization, pages 239–560, 2001.

[40] M. Wan, Z. Liang, Q. Ke, L. Hong, I. Bitter, and A. Kaufman. Automatic

centerline extraction for virtual colonoscopy. IEEE Trans. Med. Imag.,

21(12):1450–1460, Dec. 2002.

[41] Y. Zhou and A. Toga. Efficient skeletonization of volumetric objects.

IEEE TVCG, 5(3):196–209, 1999.

11

Fig. 6. Non-identical results produced by serial (left) and im p (right) algorithms. Please zoom in to see the details. From left to right, top to bottom,
the datasets are aneurism1, aneurism2, aneurism3, aorta, ben, colon, dino, dinoSkeleton, hand, horse, knot, octopus, snake, and toy, respectively.

12

View publication statsView publication stats

https://www.researchgate.net/publication/260756704

