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Accurate modeling and rendering of food, and in particular of bread and other baked edible stuff, have
not received as much attention as other materials in the photorealistic rendering literature. In particular,
bread turns out to be a structurally complex material, and the eye is very precise in spotting improper
models, making adequate bread modeling a difficult task. In this paper we present an accurate
computational bread making model that allows us to faithfully represent the geometrical structure
and the appearance of bread through its making process. This is achieved by a careful simulation of the
conditions during proving and baking to get realistically looking bread. Our results are successfully
compared to real bread by both visual inspection and by a multifractal-based error metric.

Photorealism
Fractal
Procedural models

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Since its very beginning, computer graphics was concerned with
the achievement of photorealistic modeling and rendering of real-
world scenes [1]. There have been large ongoing efforts to produce
realistic results for a large variety of scenes, from natural to synthetic,
and from natural landscapes to urban scenarios. This has resulted in
spectacular models to represent almost every possible material,
natural or man-made, from water to fire, and from clouds to concrete.

However, not much attention has been paid to the modeling and
rendering of food and edible materials, and only a few efforts can be
mentioned in the literature [2-5]. On the other hand, accurate
modeling of bread and its baking process has attracted a lot of
attention in food engineering (e.g., [6]). However, this research is not
taken advantage of in the computer graphics community.

In this paper we aim to produce a flexible and realistic model of
bread, performing an accurate simulation of the different stages that
bread undergoes during its cooking process, in particular proving and
baking. For that, we use state-of-the-art models from food engineer-
ing, simulating first the gas bubbles formation in the dough during
proving, and then the heat and mass transfer processes during
baking.
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The computational modeling of these processes, together with
the initial shaping, is encapsulated in a procedural pipeline that is
inspired in real bread formation. The pipeline is flexible enough to
model arbitrary instances of the material, both in (macroscopic)
shape and in (mesoscopic) texture.

The computation can be interrupted to show the material at
intermediate stages, for instance to slice the raw dough, or to see the
appearance of the bread after partial cooking. Since the crust making
process is extremely complex, and not yet fully understood, we
added an ad hoc mechanism, inspired in real crust measurements, to
simulate and render crusts after the baking process. The complete
modeling process requires little or no supervision.

The final images of the crumb and crust of baked breads appear
to be quite realistic. To phenomenologically validate the results,
we compared slices of the volume texture induced by the bubble
distributions with different real bread types using multifractal
measures. As far as we could find in the literature, this is the first
attempt to develop an automatic process that can be configured to
produce realistic simulations of bread.

2. Previous work

Procedural modeling of geometry substantially reduces the need
for artistic intervention in domains or situations where repetitive
supervised action would turn out impractical, for instance in shaping
cities [7], planets [8], buildings [9], and plants [10]. Some methods
employ grammars to define mathematical descriptions that repre-
sent spatial relationships between primitives, for instance cubes,
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cylinders, or lines. The final structures usually arise using recursion
over tokens in the grammar.

Although there was some initial research in computer graphics
on bread crumb modeling and rendering [2,3], the overall process
of bread making involves several stages that were not always well
accounted for in the field. Earlier works applied physical baking
models to certain bread types for rendering animations (e.g. [11]),
but the bread crumb bubbles' geometric modeling issue was not
considered.

Procedural bread modeling, on the other hand, is a multidisci-
plinary research subject. Literature in food engineering has various
decades of ongoing research aimed at understanding the bread
production process. Studies in this area show that the proving stage
of bread making strongly determines the features present in bread
crumbs, in particular the bubbles [12]. The interaction between the
yeast and some nutrients present in the dough produces CO,.
Bubbles' radii and their spatial distributions show fractal-like struc-
tures, exhibiting a distinguishable statistical self-similarity at different
measurement scales. Studies computed different fractal dimensions
for these structures in certain bread types [13], suggesting uniform
fractal bubble distributions. The bread baking modeling has also been
a subject of significant research [14].

Procedural fractal representations for other materials gave rise
to a wide variety of research interests, including disparate topics
such as mountains [15], moon craters, and bubble size distribu-
tions in cheeses [16]. In addition, complex mathematical models
represent the behavior and growing of several natural phenomena.
In computer graphics, these models are one of the foundations
used to model water and fluids [17,18]. Authors borrow complex
differential models from other science fields and compute them
using numerical techniques. In recent years, GPGPU technology
[19] enabled the possibility of real-time or interactive frame rate
computation and rendering of these numerical models.

Notwithstanding these breakthroughs, our final goal still presents
several challenges. In addition to an accurate mesoscopic model (3D
texture), bread crumb rendering requires an adequate representation
of the light transport phenomena, including self-occlusion, self-
shadowing, transmittance, and reflection, among others. Only a few
publications propose to manage both the geometric and illumination
models, and mostly stressing only artistic considerations [3]. Also,
these authors did not disclose enough details of the modeling and
rendering algorithms (probably due to intellectual property issues)
and thus the results are hardly reproducible.

On the other hand, the artistic community usually produces
realistic bread rendering results using photographs and defining
geometries from them, using translucent materials and subsurface
scattering effects® and other ad hoc considerations.* These solutions
generate realistic outcomes, but the required processes are tedious
and time demanding. Moreover, defining different bread models
requires repeating the whole modeling afresh, making the process far
from practical. This way of coping with bread modeling is rigid in
nature, and therefore has several other drawbacks. For instance, it is
not possible to get arbitrary slices of the resulting object.

3. A pipeline for bread modeling

In relation to the previous work mentioned above, we propose
to unify and differentiate the key steps of bread making (proving
and baking) to produce a physically inspired pipeline for proce-
dural generation of bread crumb and crust materials. These

3 http://www.blenderguru.com/tutorials/how-to-create-realistic-bread
4 http://design.tutsplus.com/tutorials/create-a-realistic-loaf-of-bread-in-photo
shop-psd-10555

processes have to be well understood before development of
accurate modeling.

In this section we describe all the stages that lead to the final
generation and rendering of a realistic bread material. First, we
review the state-of-the-art in understanding the bread baking
process and we briefly introduce some ancillary mathematical
models that will be required for understanding the main compu-
tational developments that we will present in our work. Then, we
present the modeling procedures that, together with the illumina-
tion model, give rise to the main results presented in this paper.

The whole process is comprised in a modeling pipeline (see Fig. 1),
where all the stages that emulate bread making are processes
operating on a (binary) voxelized space. The user can feed the pipeline
with a 3D mesh model of their preference, or allow the system to
provide standard shapes, usually found in bakeries. Then, this 3D
model is voxelized into a volumetric texture in order to proceed.
During the bread proving simulation, the user can change the
voxelization of the dough (parameterizing the bubble distribution —
amounts and radii of bubbles-), or, again, leave the default parameters
that lead to a generic voxelized space and, latter on, to a generic
appearance. The dough shape will be intersected with the voxelized
geometry in the previous step (the external shape provided by the
user) to obtain a final volumetric texture, with its interior filled with
the bread material (see Section 3.2). Then a specific baking model is
computed [20] to rise the dough while slightly twisting the volumetric
texture (and the bubbles therein) according to the effects that baking
produces in the bread making process. Finally we apply direct volume
rendering (DVR) [21] to the final voxelization, obtaining realistic
images of the resulting bread.

3.1. Model voxelization

Users can generate arbitrary 3D bread shapes using our pipeline.
The first step voxelizes a user-provided mesh with the open source
binvox utility® [22]. The voxelization generates a binary volumetric
texture, where 1 represents that the given voxel is inside the
geometry, and O means that the voxel is outside. In the proving
simulation step (next subsection), we generate the material that lies
inside this voxelized model. This allows us to generate arbitrary
bread types such as baguettes, sliced breads, or fancy shapes.

Once the user-provided geometry is converted into a volu-
metric texture M, we generate a second volumetric texture of the
same size that contains, in each voxel, the result of computing the
distance to the closest boundary voxel in the original volumetric
texture [23] as follows. Given a binary volumetric texture M, the
algorithm evaluates the new volumetric texture DFy; as

DF[i, j, k] = min{&([i,j, k1. [i',j’, K] : M[i'.j, k1= 0},

where [i,j, k] and [i',j,k'] are cells in the respective textures
representing the (i,j, k) and (i',j, k') spatial positions, and & is the
function that computes the distance between two cells, computed
as either the Manhattan or the Euclidean distances. Entries far
from the object boundaries get higher values than closer ones. This
new volumetric texture acts as a discrete distance field, which will
be required later at different stages of the pipeline.

3.2. Proving simulation

As stated above, the actual volume texture of the bread dough
is due to bubble patterns, which in turn are the result of complex
processes, including chemical reactions and physical deformations.
The proving step accounts for the free bubble growth produced by
living yeast in the dough. Then, human intervention deforms

5 http://www.cs.princeton.edu/min/binvox/
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Fig. 1. Pipeline for synthetic bread making. The automatic procedures appear in rounded shapes (left) while the user inputs are shown in rectangular containers (right). The
image shows that the user has control on the global shape, local bubbles, global and local deformations during baking, and colors for rendering.

dough shapes in several ways, and the baking process produces
the final bubble shapes. Phenomenological studies of bubble
distributions employ X-ray tomography devices and image feature
extraction [12,13,24]. To obtain a similar structure variability, we
generate bubble distributions with a fractal-based model inspired
in the cheese and moon crater distributions proposed in [16], and
we further validate it using the sandbox multifractal spectrum, as
will be explained later in detail.

The volume texture of the dough is procedurally created in a
separate 3D volumetric texture, in a similar way as in the previous
subsection. Each voxel is initially set to 1, meaning that there are
no bubbles so far. The process begins by subtracting randomly
positioned spheres of radius r,;, to this structure (by setting the
respective cells to 0). Then, larger spheres are subtracted, also at
random positions, up to a maximum radius g The relationship
between the amount N(r) of spheres to be subtracted to the
material at each step, and their respective radii r, is given by the
following fractal law:

k
N(r) = e

where d is the fractal exponent that models the likelihood of
occurrence of spheres in relation with their radii, and k controls
the amount of actual spheres at each radius. Both parameters are
sufficient to model a wide range of volume textures in general, and
bread 3D textures in particular.

Fig. 2 shows a 2D slice of this model. Even though the resulting
bubble shapes are not completely realistic (for instance, the
spherical nature of the bubbles is apparent and artificial), the
results show high resemblance in size and distribution with real
bread binarizations (see [12]). During baking, the resulting volu-
metric texture will undergo geometric deformations so that the
final texture will more accurately resemble actual bread. Quite
related to this, the issue of finding adequate parameter values to
obtain features similar to real bread crumbs will be further
discussed in the validation section.

The volumetric texture P produced by this proving simulation
must then be constrained to the interior of the user-provided
geometry. For this, a naive solution would be to intersect the two
volumetric textures by means of a simple masking Py =P x M,
where P; is the resulting volumetric texture (i.e., the dough after
being shaped to the user-provided geometry M). Fig. 3 shows some
results of this naive procedure.

Even though these results might appear satisfactory, a careful
examination shows that bubbles are seldom present close to the
exterior surface of real bread due to complex processes during
proving (the exterior of the dough gets dehydrated and therefore
the yeast is unable to form CO, bubbles). This process is not fully

Fig. 2. Fractal bread proving simulation.

understood in the food engineering literature. To account for it in
our model, the discrete distance field DF,, computed at the
previous stage is used to disallow the generation of bubbles close
to the geometry boundary. Bubble generation, then, is constrained
to occur only when the outermost part of the bubble is within a
given threshold distance to the external boundary of the shape.

Figs. 4 and 5 show the result of limiting the bubble interactions
to the inner region of the original voxelized geometry. These
images show that the approach also allows us to produce realistic
arbitrary unbaked doughs. Note that our model is flexible enough
to render the material at any stage of the pipeline, and also to
arbitrarily slice or intersect the model.

3.3. Baking

Adequate physical models of the bread baking process should be
able to accurately model the heat and mass transfer in dough. Full 3D
bread baking models may lead to precise solutions to the tempera-
ture's distribution in dough during baking. However, these models
are usually very complex to implement and have high computational
costs. In addition, only the most complex models take into account
crust formation, but usually using overly simplified assumptions. This
is due to the fact that a formal crust definition is currently missing
[25]. Dough rising constitutes another visible phenomenon and
modeling its coupling with heat and mass transfer results in a very
complex model [26]. In our pipeline we simulate dough rising and
bubble warping in one step.
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Fig. 5. Proved bunny-shaped bread before baking.

3.3.1. Temperature warping

The most relevant results suggest that a 1D model could suffice
for most purposes. For instance, Purlis [6] models bread baking as
a 1D problem, representing bread as an infinite cylinder. Other
frameworks also assume only one radial coordinate, resulting also
in 1D models [20,27]. These works show that employing a simple
1D representation produces almost identical results on the bubble
deformation, as compared to the ones using higher dimensions.

The numerical simulation that we implemented is based on the
finite-differences framework proposed by Powathil [20] and Thor-
valdsson and Janestead [27]. It consists of a set of three coupled
equations describing heat transfer, water vapor diffusion and
liquid water diffusion. In our algorithm, we require only the
computed temperatures (T) as the input for the next stages. Eq.
(1) models heat transfer in bread dough, accounting for energy
balance and water evaporation due to temperature [27]:

af _ 1 0 kﬂ +,16W AW ap
ot~ pCpox\ ox

Cp ot " pCyot’
where T is temperature, x is the radial coordinate, ¢ is time, G, is
the specific heat, p is density, k is thermal conductivity, 4 is the
latent heat of evaporation of water, and W(x, t) is the liquid water
content. The initial conditions

T(x,0)=To(x), 0<x<L/2,

M

and the boundary conditions (continuity and smoothness) define
the model:

(ﬂ) =0, t>0
X/)x_12

ST ow
-k (0_)() x=0 = hr(Tr ~Ts)+ hc(Tair —T5)=4Dw (W)x =0

where h; and h. are subterms of the heat transfer coefficient (h =
hy+he), Tair, Ts, T are the temperatures in the surrounding air, at

the surface of the bread and at the radiation source, respectively, L
is the bread height (x=1L/2 is the bread center and x=0 is the
bread boundary), D,, is liquid water diffusivity, and Ty is the initial
temperature. Temperatures are expressed in Kelvin (K). The model
presents similar equations for water vapor diffusion (W) and liquid
water diffusion (V). Further details of this model can be found in
[27]. We use this model to obtain an array of temperatures during
the baking process. These temperatures in turn will affect the
bubble shapes and sizes.

The baking simulation sets an oven at a typical baking tempera-
ture (by default we take 210 °C) and discretizes time in intervals of
At=30s, and from the simulation we obtain an array Temp of Ngriq
temperature values. For numerical stability, we set Ny = 32 and we
interpolate the temperatures to obtain higher resolutions (Njy,).

The array we obtained from baking has decreasing temperatures
from its boundary (Temp[0]), where we can observe the highest
temperature, to its center (Temp[L/2]), which has the lowest tem-
perature (heat transfer flows from the boundary to the center). Then,
we can use the previously computed discrete distance field DFy, in
conjunction with the Temp array to map distances to temperatures.
This allows us to define temperatures in the volume in a way that is
compatible with a 3D baking simulation. Based on these considera-
tions, we map the temperatures array Temp into 3D coordinates
using the following relationship:

Ryoix, y, 2] = Temp[round(DF m[x, ¥, Z])],

where R, is the resulting volumetric texture, and x, y and z are 3D
coordinates in R,,. When DFy[x,y,z] =0, the 3D position lies at the
exterior of the geometry, and Temp[0] is mapped to R,,[x,y, z]. When
DF[x,y,z] >0, a lower temperature is mapped to R, since the
position lies in the geometry's interior. Fig. 6 shows slices of the
result of this mapping (R,.), using temperatures from an arbitrary
baking time step in the three Cartesian planes. The images are almost
identical to what will be obtained with a 3D simulation [28].
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Fig. 6. Resulting temperatures from the baking simulation, mapped onto a bunny-shaped 3D volume. The images show that temperature distribution results similar to a

complete 3D simulation.

Fig. 7. Two dimensional cuts showing bubbles after temperatures warping over different shapes.

Fig. 8. Effect of the parameter p. From left to right p is 5, 10, and 15, respectively. Bubbles are realistically pushed and stretched towards the crust.

After a number of simulation steps (up to t=20 in our case), we
compute the gradient vector g of R, [29], and we smooth it using
a Gaussian kernel. We use a Gaussian smoothed version (g’) to
warp the original volume by modifying the sampling coordinates
in the following way:

[x,y,2] = [u,v,w]+pg'u,v,w],

where [u,v,w] is the original voxel entry, [x,y,z] the warped
voxel entry, p a real positive valued parameter that denotes
intensity (it controls the baking effect on bubbles) g’ the
smoothed Gaussian version of the original gradient g, and
g'[u,v,w] is the vector gradient at the entry [u, v, w]. Fig. 7 shows
2D slices with the process described applied to different bread
shapes.

The parameter p can be used to synthesize different bread
crumb appearances, from non-baked to highly deformed bubbles
(see Fig. 8). When we increment p, we force the bubbles to follow
more tightly the bread outer shape. The image also shows that the
method more intensely deforms bubbles closer to the surface.
Also, the image clearly shows the stretching of circular bubbles
close to the right bread boundary.

3.3.2. Dough rise

Rising constitutes one of the most visible phenomena during
bread baking. Temperature increase causes CO, to be released in
dough bubbles, resulting in a net volume increase. Bubble volume
changes are responsible for bread rising during baking. Studies
show that, in a typical scenario, the bread dough grows to a
volume that approximately doubles its original size [30], depend-
ing on oven conditions.

In our model, this process can be simulated using bubble radii
distribution information from proving. To compute this informa-
tion, we create an ancillary volumetric texture P storing the bubble
radii at each entry:

P[x,y,z] = max{r},

where r is the radius of a bubble that occur at the voxel entry
[X,y,z]. The max term in the computation retains the maximum
radius occurring at [x,y,z]. To obtain smooth radii transitions, a
Gaussian filter is applied to P. This volumetric texture allows us to
define several useful functions that simulate plausible approxima-
tions of dough rise.
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Fig. 9. Examples of dough rising, using different S values. The image shows the baking effect on the overall dough shape and on particular bubbles. Different bubble growth

and bubble coalescence is observed.

The original volume will be warped with the values from P to
obtain different growing ratios for different bubble radii. For this,
we set the p value from the previous section with the P value for
each entry. We warp the embedding coordinate system as follows:

[r.s, t]=[u,v,w]+Plu,v,wig'[u,v,w],

where [u, v, w] is the original voxel entry and [r,s, t] is the warped
voxel entry.

The actual rising is accomplished by means of local scaling. We
deform the auxiliary volumetric texture using a function that
scales it using a real valued parameter S > 1, and the bubble radius
at the corresponding entry, producing the rising doughs:

[x,y,z]=[r,s, t]SP[r, s, t], 2)

where [x,y,z] is the final voxel entry in the dough after the
warping induced by the rising.

Fig. 9 shows examples of doughs before and after rising. The
image also shows different growths for different bubbles. In
addition, we can observe that coalescence is produced on growing
bubbles. The differences in growth can be randomized to obtain
bubble growth variability.

3.4. Crust formation

The baking model we introduced does not include precise
details of the crust formation. In these equations, the crust is
assumed to be produced on the surface and at certain tempera-
ture, but this assumption is not exactly what actually happens in
the real baking process. The food engineering literature defines the
crust as an interface that appears between the dough and the
surrounding air. Its main characteristics include the formation of a
thicker material at the dough surface, and color differentiation, but
the precise details surrounding the crust formation and appear-
ance are still far from known.

The crust is mostly determined by an evaporation front which
is produced by the temperatures in the dough [31]. Therefore, we
can obtain crust positions using the distance field, since we have
defined a relationship between temperature and distance to the
surface. We use a distance parameter to obtain different thick-
nesses for the crust, getting different bread appearances.

In addition, we use colors measured from real baking [32] to set
the appearance of the crust. We employ the L channel in the CIELab
color space [33] to control baking histories at each crust voxel. The L
channel determines luminance, while the a and b channels deter-
mine the chromaticity. In [32], it was stated that values in the L

channel approximately ranges from 90 (unbaked) to 40 (burned). The
chromaticity values for the channels were chosen using colors from
real bread images. Using this information, we define a range of
CIELab colors, smoothly ranging from unbaked to fully baked.

Several artistic considerations can be employed to distribute
the defined colors over the crust. For instance, bubble proving
information can be used (radius of the closest bubble), or even
procedural noises (e.g., Perlin). At each crust position, the values
obtained from these functions are used to choose a color from the
previously defined colors.

In our case, we define the crust density at each position in the
volumetric crust texture as N,/W;,., where N, is the number of
voxels with value 1 in a window surrounding the position, and
Wiize is the voxel count in that window. We use this value to
modulate the L channel in the crust color, at each position in the
volumetric crust texture, obtaining plausible crust appearances.
We based our choice in the observation that in places where there
is fewer mass (for instance, corners in the crust), the baking effect
is more noticeable. The size of the window can be used to obtain
variability in the crust appearance.

3.5. Rendering

We applied Direct Volume Rendering (DVR) [21,34,35] to obtain
the final images. DVR approximates the light transport equation by
throwing rays from a virtual camera into a volume defined by a
discrete 3D density function, accumulating density information and
providing a 2D representation. DVR samples the density function
along the ray to approximate the effect of different light phenomena
such as extinction, transmittance and scattering, among others.

The choice of DVR over other state-of-the-art methods such as
Ray Tracing [36,37], Path Tracing [38] and Photon Mapping [39], is
mostly due to the fact that these methods are computationally
expensive and require a detailed object mesh.

4. Results

In this section we present the results of our procedural bread
making pipeline. Figs. 10-15 show DVR-rendered images of 3D
volumes we obtained in this work. Figs. 10 and 11 highlight the
differences in image quality between a low (256°) and high (5123)
resolution versions respectively. Fig. 12 shows high resolution ver-
sions of other voxelized geometries. Fig. 13 shows the same crust
with different baking histories. We achieve these effects by setting a
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Fig. 10. Sliced breads after baking, using a volumetric texture of dimensions 256°. The images show that crumb and crust are taken into account in our approach. The rising
effect is appreciated.

Fig. 11. Sliced breads after baking, using a texture of dimensions 512>. Finer details can be seen in the crumb. Also, the S parameter was chosen with a random behavior at
each point, producing visible spikes in the crust. The crust color slightly differs from the previous image.

Fig. 14. Breads after baking showing different deformation parameters. The S parameter is incremented from left to right.
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Fig. 15. Bunny-shaped breads after baking showing different deformation parameters. The S parameter is incremented from left to right. Images appear realistic even for

unrealistic dough models.

different maximum L value in the CIELab color space for each image.
Figs. 14 and 15 show the effect of setting different S values in Eq. (2),
observing different rising outcomes. The images show that the
method produces realistic baking results even for an unrealistic
bunny-shaped dough.

Cuts and slices can be easily produced by setting to 0 different
regions in the volume after baking and before rendering.

4.1. Computing times

We used Python® and Cython’ for the implementation. In
Table 1 we show typical times for the different processes in the
bread making pipeline. In addition, rendering times with DVR are
around 0.3 s, achieving interactive framerates.

It is worth to mention that most of the baking time is dedicated to
the gradient computation and not the baking itself. Our code is
currently not fully optimized, so better performance can be achieved
with a more careful design at each stage. The user can generate
previews using lower resolution matrices, avoiding high computing
times when testing different bubble distributions and dough shapes.

5. Model validation

This section is included for the sole purpose of having a more
objective assessment of our model's visual quality, apart from
what subjective inspection may indicate. We validated our model
using multifractal features, in particular the multifractal spectrum
method, that is widely used for texture analysis in computer vision
and pattern analysis. Fractal Dimensions (FD) can be used to
characterize key image features using just a few parameters.
Different FDs capture different features, e.g., porosity and rugosity.
Multifractal theory has also been used for image feature descrip-
tion, but not much in bread characterization. A few previous
studies show fractal bread characterizations using several FDs
[13,40]. There are two main classes of multifractal spectra: gen-
eralized multifractal dimensions (D) and Lipschitz-Hdélder expo-
nents (f(a)). The latter representation boosts the performance in
classification tasks.

The generalized multifractal dimensions can be computed in
several ways, of which the Sandbox multifractal method [41] aims
to compute the dimensions using the mean value in a set of
randomly distributed points belonging to the structure [42]. The
generalized multifractal dimension of order q with the sandbox

6 python.org
7 cython.org

Table 1

Typical computing times in our pipeline expressed in seconds.
Voxelization resolution 2563 3843 5123
Proving 3.62 12.07 31.29
Intersection 8 10.27 14.97
Distance field 7 23.73 56
Baking 49.81 144.69 313.7
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Fig. 16. Best fitting parameters for the baguette bread type. The total error in
medians is ~0.21.

method is defined as

oo 1 In((MR/Mey~1)
a#1 TgC1R% In@R/D
o o (In(M(R)/Mo))
D=l /i

where My is the background pixel count in the image binarization
and M(R) is the foreground pixel count within a circle of radius R
centered at a given foreground point in the structure. When q # 1,
Df,b is computed as the limit of the slope of the linear fit of the
values In(R/L) vs. ln<(M(R)/M0)q‘1>, for R in [Ryin, Rmax], Where (-)
denotes mean value over sampled points. The procedure is similar
when g=1. The sandbox multifractal spectrum, then, is produced
by computing DfJb for different values of q € [Qmin> Qmax]-

This kind of analysis is reported to be the most adequate for
geometrical and texture feature analysis [13,40], so we applied it
to 10 binarized scanned real bread crumb images of the baguette
bread type, and 10 synthetic images produced using our pipeline,
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Fig. 18. Model distribution example showing similar multifractal features to the
baguette real bread type.

after the baking step, obtaining 20 feature vectors. We then
separated each class and we computed boxplots for the two
classes. Actual bread crumbs were manually segmented to prevent
errors from automatic segmentation as in [43]. The model has
5 parameters:

k
N(r):ﬁ’

I''= T'ypin 4 Stepsj,j € {0, ;ZZ’;} ,

k,d, rmin, Tmax and step that controls bubble generation in the
proving stage. To compute the sandbox spectrum of each image,
we used 1000 different random points to grant stability in the
resulting spectrum.

We implemented a partial automated search in parameter
space. First, we manually set initial values for the parameters
based on visual inspection of real and synthetic binarizations.
Starting on those initial values, the method performs an auto-
mated search in parameter ranges centered on each initial value
up to some threshold. The search exhaustively compares synthetic
spectra with the real spectrum using different range steps for each
parameter. The method performs the comparisons defining an
error metric:

Error = _ abs(meaneq — Meanyngec).

The algorithm returns the lowest error found and the associated
parameters.
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Fig. 19. Best fitting parameters for a home-baked bread type. The total error in
medians is ~0.88.

For the baguette bread type, we found that the following
parameters produce the smallest error:

3

R
k= 007%,
d=2.78,
T'min = 2,
T'max = 20.
step=1,

where R is the resolution of the proving volume in each spatial
coordinate (we chose R=512). The accumulated error in medians
is ~0.21 meaning a mean error of 0.21/21 ~ 0.01 in each dimen-
sion. Fig. 16 shows boxplots of real and synthetic breads with the
medians for each dimension joined by dashed lines. When g <0
dimensions have a higher dispersion, since the method approx-
imates these dimensions less accurately. The figure shows almost
identical spectra for real and synthetic breads. Figs. 17 and 18 show
an example of real and synthetic binarizations for these
parameters.

Also, we found parameters for a home-baked bread type using
the same search:

3

R
k= 0.69%,
d=5.6,
T'min = 1,
T'max = 24.
step=1,
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Fig. 20. Real home-baked bread and binarization example.

Fig. 19 shows boxplots of real and synthetic breads for this
bread type. Figs. 20 and 21 show an example of real and synthetic
binarizations for these parameters and bread type.

6. Discussion

To the best of the authors' knowledge, this is the first attempt
in computer graphics to comprehensively model bread material
using a physical model of bread baking. Previous work in bread
material computation involved advanced tomography equipment
[24] or artistic considerations [3]. These works are usually incom-
plete or inflexible to work with different bread types. To overcome
these difficulties, our pipeline comprises different stages simulat-
ing bread making that allow a flexible and versatile modeling. This
allows us to fine tune and test each step separately. Several bread
types can be simulated by simply setting appropriate parameters
for external shapes and the dough volume texture. This method
allows us to approximate the appearance of any real bread crumb,
by extracting parameters in order to accurately simulate it. The
choice of geometry representation through volume textures pro-
vided a flexible approach that allows us to define the final shape,
and to perform arbitrary cuts and slices in the geometries.

The proving step was inspired by visual similarities with
Mandelbrot's model [16]. These patterns can be seen in several
other porous materials such as foams, sponges, cheese, and many
other. Users can define different parameters related to the amount
of bubbles, their radii, and their mutual relationship, obtaining a
flexible framework for porous geometries. The main visual differ-
ence between synthetic and real bread is that in the latter the
bubbles in the crumb seldom intersect. Even though it is feasible
to modify our dough generating algorithm to include a bubble self-
avoiding feature, the computational cost would be too high.

A 1D baking model was employed, but generalized to fit 3D
geometries using a discrete distance field, which retained the corr-
ectness and realism of the model. This choice does not seem to impair
the quality of the results, reducing the model complexity and the
computing resources consumed. The warping induced by the baking
step shows acceptable results in the global and local deformations
exerted to the dough volume texture. Also, since we physically
emulated key steps in bread making, bubbles' shape adapted to the
bread exterior silhouette, producing convincing patterns.

Bubble distributions under our model were shown to be statis-
tically coincident to real bread, according to multifractal methods.
Even though our bubble generation procedure initially employs
mono-fractal generation, further steps in the modeling (like bubble
intersection and deformation) generate structures that are not
necessarily mono-fractal (i.e., the strict exponential scale invariance
breaks). The sandbox multifractal analysis method produced very
similar fractal features both with our synthetic images and with
images of real bread crumbs. Two bread types were tested: a home-
baked and the baguette bread types. The home-baked multifractal
spectrum was more difficult to fit (i.e., the errors were larger than

Fig. 21. Model distribution example showing similar multifractal features to a
home-baked real bread type.

those of the baguette bread type), but notwithstanding this the final
bubble distribution was adequate for emulating this bread type.
Multifractal spectra showed higher dispersion in the negative dimen-
sions (q < 0), which means that at finer geometric scales it is more
difficult to characterize the statistical distribution, due to the image
resolution. A more detailed link between bread crumb physical
features (coarseness, porosity) and multifractal features may be
useful for designing better procedural models [40].

Our pipeline can be regarded as among the first attempts to
faithfully model bread making in computer graphics. The actual
phenomenon is highly complex, not fully understood, involves
human interaction, and includes several deformations and transfor-
mations of the dough material through processes that have been
studied independently. To be computationally feasible, some of these
processes require sensible simplifications, for instance the dough
shaping by the cook, and some features arising in the crust, like
cracking, or its actual color and texture. These simplifications are in
line with the current state-of-the-art in understanding the bread
making process, since in the specialized literature (for instance, in
food engineering) there is no specific baking model that is both fully
accepted and feasible to reproduce computationally. As in fluid
dynamics simulations, to mention just an example, physically based
modeling may lead to implementations that are computationally
demanding and full of ad hoc considerations (convergence criteria,
border conditions, and so on) which are not always adequate for a
computer graphics application in which a more phenomenological
solution would suffice. Further comprehension of the baking process,
together with the increasing computational power, may hopefully
lead in the near future to achieve a more physically sound modeling
process than the one presented here.

While the pipeline might seem specialized only to model bread
images, real pipelines in food production are similar for other
materials (pizzas, cookies, croissants). If physical accuracy is not an
issue, the modeling pipeline can be used directly, tuning parameters
at different stages (colors, bubbling) in order to obtain credible
images. In our pipeline, baking constitutes the bread-bounded step.
If physical accuracy is desired, in order to be able to extend the
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method for other materials, the baking stage should be replaced. The
food engineering literature presents baking models for other foods
[44,45] that can replace the bread baking model. In such a case, the
validation section will remain the same and indeed it will be useful
for designing and validating inner structures of those foods.

7. Conclusions and future work

In this paper we introduced a pipeline to model realistic arbitrary
bread crumb and crust geometries based on a fractal generation
procedure. The proving step is defined by the user in two ways: the
bread global shape is determined feeding a 3D mesh model to the
pipeline, and the bread local features are determined by setting
different bubble distributions parameters (maximum and minimum
bubble sizes, amount of bubbles, etc.). A physical simulation of the
baking process produces bubble growth and coalescence, and also
dough rise. Finally, the crust is generated around the exterior of the
baked volume. The results were generated applying direct volume
rendering, producing realistic images of crumb and crust for several
bread types. This pipeline is far more flexible and powerful than
other state-of-the-art approaches for modeling bread geometry.
Multifractal image analysis was used to validate the model. The
statistical similarity between 2D cuts in our results and of real-word
bread slices suggests that it may be suitable for applications in 3D
engines, serious games [46] and photorealistic rendering.

We are currently exploring several venues based on this work.
One of the most useful features of our model is its ability to
emulate different 3D dough textures. For this, we are aiming to
fully automate the search in the parameter space, which will help
to match several other bread types and materials. On the modeling
side, we are considering inexpensive algorithms to introduce self-
avoidance in the bubble generation model. Initial dough shaping
will also be addressed. Crust generation is still ad hoc since a
proper physical model is lacking, which gives space to artistic
considerations (colors, knife cuts, cracks, etc.). Also, we plan to
perform further tests on the image processing feature analysis, to
gain insight in the multifractal bread characterization.
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