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A B S T R A C T

When reasoning about similarity in a collection of objects with heterogeneous qualities,
there are several aspects of interest that can be followed to explore the collection. In-
deed, the notion of similarity among 3D models is not only grounded on the geometric
shape but also, for instance, on the style, material, color, decorations, common parts.
These are all important factors that concur to the concept of similarity. Search engines
for visual content are expected to address similarity assessment in collections, providing
a higher degree of flexibility with respect to the traditional 3D object retrieval opera-
tions. In this work, we describe the design and functioning of a search engine working
on multiple factors and discuss the results on a number of collections, which challenge
existing 3D object retrieval engines.

c© 2019 Elsevier B.V. All rights reserved.

1. Introduction1

The digital era makes available an increasing number of2

scans of objects. The availability of this wealth of data and3

information opens-up the possibility to build new tools to study4

and explore collections, leveraging on the digital accessibility5

to large sets of exemplars that can provide insights difficult to6

achieve by manual inspection of the datasets. Visual search en-7

gines are the natural tools for supporting comparative studies8

of object collections and they are generally based on content-9

based approaches [1]. They are based on the combination of10

shape descriptors as signatures synthesizing the geometric con-11

tent of 3D models [2, 3], and of similarity measures for match-12

ing descriptors [4, 5]. The first prototype of 3D search en-13

gine [6] permits to select models from sketches, text searches14

or selecting a number of global shape descriptors. Query re-15

sults are ordered according to their distance from the query16

model. The implicit assumption behind this kind of search is17

that there exists a unique key to interpret the dataset and that18
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is possible to codify the intuition behind human similarity in a 19

single measure. Unfortunately, a single shape similarity mea- 20

sure is not sufficient to characterize the many different flavors 21

of shape comparison when dealing with complex and hetero- 22

geneous datasets [7, 8]. For this reason, we think that search 23

engines should be flexible, multi-modal and able address simi- 24

larity assessment in collections of different nature. This is par- 25

ticularly important when the assets to be studied are only parts 26

of objects, and therefore their overall shape does not have, in 27

most cases, a meaning, as for fractured archaeological findings. 28

Moving from these considerations, facets were proposed in [9] 29

as quantitative or categorical aspects that are relevant for the 30

user. Therefore, faceted browsing, i.e. the possibility for the 31

user to specify the desired shape properties, has been identified, 32

altogether with query refinement, as one of the challenges that 33

search engines for 3D models must be tackled for effectively 34

exploring 3D shape collections [8]. 35

In this paper, we present the settings and experimental re- 36

sults of a search engine for 3D shape collections able to address 37

faceted queries and automatic search relaxation. This search ap- 38

proach was originally presented in [10], with the setting and ini- 39

tial experiments carried out in the context of the GRAVITATE 40

project [11], targeting similarity search to support the analysis 41

of fractured archaeological objects of various collections. In 42
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this paper, we generalize the approach to a wider context of ob-1

ject types and signatures. In particular, the novel content with2

respect to [10] is:3

• larger set of descriptors: ten descriptors are included and4

tested in the current search framework, with respect to the5

five ones of the original paper;6

• new collections for the validation: while the original paper7

was focusing only on archaeology, in this paper we tested8

and evaluated the efficacy of the search methodology on a9

totally different collection of objects, targeting the appli-10

cation of the search to a broad and generic search context.11

We believe that this testing is particularly significant to the12

development of visual content-based search engines;13

• extended evaluation: the performance of the search frame-14

work has been discussed in more details, up to the inclu-15

sion of a quantitative, yet limited, evaluation session on a16

ground truth that we were able to collect for the archaeo-17

logical domain.18

With respect to the current state of the art, the novelty brought19

by the paper is the development of a search framework able to20

adapt the navigation to the properties of the objects, which may21

differ for different collections, and adapt also to the goals of the22

search session, which may differ from session to session even if23

the user is the same. The search framework defined is flexible24

with respect to the choice of descriptors, and also to the inclu-25

sion of different similarity distances, depending on the proper-26

ties one might be interested to capture. Another advantage of27

the proposed solution is related to the ease of formulating the28

query, which allows to specify the search intent by combining29

multiple descriptors in a single query. We believe it is impor-30

tant to explore the possibility to move from traditional object31

retrieval methods to more general search by similarity, or bet-32

ter, by similarities. An easy approach to formulate the search33

intent is therefore useful given the intrinsic difficulty to map the34

search intent, inherently multi-faceted, into a fixed combination35

of descriptors.36

The reminder of the paper is organized as follows. In Section37

2, we overview the state of the art on the exploration of 3D ob-38

ject collections, also discussing the most popular shape descrip-39

tors and similarity measures. In Section 3, we describe how the40

search engine was conceived as a combination of several prop-41

erties and how they act as independent filters in the conceptual42

dimensions that describe the collection of 3D models. Section43

4 details the mechanism behind the properties combination and44

how to automatically set the search engine parameters accord-45

ing to the variations emerging in the collection. In Section 546

we describe the validation scenario: first, we present the collec-47

tions used for the validation, in the archaeological and generic48

domains; we then discuss ground truths and evaluation method-49

ology, given the peculiarity of the search addressed which can50

be hardly captured by quantitative performance measures. It51

will be shown how the criteria elaborated for the archaeological52

domain and the results obtained generalize to a wider domain.53

Experimental results on these datasets are discussed in Section54

6. Finally, in Section 7, we draw some conclusions and sketch55

plans for future development.56

2. Related work 57

In the last fifteen years, search engines have being addressed 58

with a large number of content-based techniques aimed at de- 59

tecting global shape similarity [6, 12] or part-based search and 60

retrieval in 3D object collections [13, 14] or specific contexts, 61

like product design [15, 16], parametric shape collections [17] 62

and cultural heritage [18, 10]. As similarity is a cognitive pro- 63

cess, the user’s intent during the search should be included in 64

the loop [19]: methods for relevance feedback where introduced 65

for 3D object search [20, 21], while the first 3D search engine 66

able to support user interaction appeared quite recently [22] un- 67

der the paradigm of the faceted meta-data. 68

2.1. 3D shape similarity 69

Most of the methods for shape analysis and description focus 70

in the 3D geometric information [2, 3, 23, 14, 5]. Shape can 71

be stored in a wide variety of descriptions (histograms, matri- 72

ces, graphs, etc.) and can be based on many different types of 73

information (punctual, normal vectors, surface or volumetric, 74

possibly with attributes). All methods extract salient geomet- 75

ric information, and use that to derive a concise description. 76

Over the years, descriptors and similarity measures were re- 77

fined to deal with geometric invariances, from rigid transforma- 78

tions to isometries, according to the application at hand [24, 5]. 79

A further characterization of the descriptors as local or global 80

depends on their locality with respect to the whole model. Ap- 81

pearance was also taken into account beside geometry, resulting 82

in techniques for the retrieval of textured 3D models, which are 83

common for example in cultural heritage applications [25, 18]. 84

Finally, other aspects can concur to the concept of similarity, 85

such as functionality [26] or semantics [27]. 86

Shape descriptors. For 3D objects exploration, only a sub-part 87

of the shape descriptors actually available in the literature is 88

adopted, being the selection a tuning between computational 89

efficiency and efficacy of the description. 90

The Lighfield descriptor (LFD) [28] is one of the most pop- 91

ular global descriptors [29, 30, 31], possibly with some ad-hoc 92

variation [32] like the inner-distance [33]. Other choices of 93

global descriptors are the Shape Diameter Function (SDF) [34], 94

the Spherical Harmonics (SH) [35], the Heat Kernel Signature 95

(HKS) [36], the histograms of Gaussian Curvature (hGC) [29], 96

the Shape Distributions (SD) [37], the Voxel Shape Histogram 97

(VSH) [38], the 3D Shape Context [39], altogether with local 98

geometric properties of facets [40], and representative land- 99

marks [41]. In general, not one single descriptor is consid- 100

ered and a combination is adopted. For instance, [32] consid- 101

ers four different shape descriptors: LFD (with Inner-Distance), 102

SFD, SH and HKSM [29] uses hGC, LFD and SD; [17] adopts 103

SD, VSH and LFD. Other approaches encode parts as a box, 104

[42, 43]. In this case, the 3D model comes with multiple dis- 105

connected components and its representation is a probabilistic, 106

part-based deformable model, which encode clusters of parts, 107

correspondence across clusters and alignment of a template to 108

each model. At a higher level of abstraction, [44] encodes each 109
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shape with a spatial relation graph. Each node in the graph cor-1

responds to a component, while each edge denotes a contact or2

symmetry relation.3

Finally, it is worth mentioning, that there exist methods suit-4

able for the exploration of model collections made of uniform5

families of objects that do not adopt descriptors in the usual6

conception, like [45] and [46]. In [45] a meta-representation of7

a family of objects is the set of PDFs (Probability Density Func-8

tions) of relations defined between shape parts. The PDFs can9

be used to estimate the probability of a specific value for any10

relation (e.g., the angle between wing and fuselage). In [46] a11

collection of shapes is represented as a collection of shape dif-12

ferences. In this formulation, shapes are compared by the differ-13

ences of two inner products: the area-based and the conformal-14

based inner product.15

Distances. In the standard approach to similarity assessment16

distances between 3D shapes are computed as distances be-17

tween shape descriptors. For instance, when the shape is de-18

scribed as a feature vector or a bag of features, a common19

choice is to select the Minkowski Lp family of distances, for20

instance in [30] used the L1 or Manhattan distance, [44, 43, 13,21

42] adopted the L2 or Euclidean distance, etc. Sometimes, the22

Lp distance is applied to an embedding of the feature vectors23

in the 3D Euclidean space, as done in [31] through the Multi-24

dimensional Scaling (MDS), or to a reduction via MDS of the25

similarity matrix between an object and a set of templates as26

done in [44] for a human model and a set of user-specified hu-27

man poses. Other distances, often selected when the objective28

is to deal with shape or part classification, are the Mahalanobis29

distance [47], the Bhattaccharya distance [48] and the Earth30

Mover’s Distance (EMD) [49].31

When dealing with global/local descriptors also the similar-32

ity distance may reflect this characteristic, with a hierarchical33

computation of global and local similarity scores, [40, 30, 13].34

For instance, the overall idea in [30] is to compute these scores35

only for models that are sufficiently similar, namely in the sense36

of k-nearest neighbours with respect to the 2D views of each37

model used to compute the LFD. In this way, it is possible to38

reduce the computational complexity from quadratic to linear39

in the number of models. Then, the sparse distance metric is40

propagate to all pairs of models via a heat diffusion embedding41

and the local similarity is derived from the initial co-alignment42

given by the light field computation. Sub-part, fuzzy correspon-43

dences are first evaluated only for sufficiently similar models44

and again propagated to all pairs of models, by using N-order45

graphs.46

2.2. Dataset exploration47

The exploration of large collections of 3D models is a chal-48

lenging task and only a few methods tackle such a prob-49

lem. Most of methods make several hypotheses on the classes50

of the dataset, for instance focusing on man-made objects51

[50, 45, 44, 13, 42]. Again, [45] assumes that the input shapes52

are coming from the same family and are pre-segmented and53

consistently labeled, with labels from a pre-defined, family-54

specific set of labels, while [44] assumes that during experi-55

ments all models belong to the same category (only chairs, only56

bikes...). Others, like [50], assume that the shapes in the col- 57

lection all share a common global part structure (e.g., a set of 58

four-legged chairs or two-winged airplanes) and that most of 59

the shape variability within the collection can be explained in 60

terms of the relative sizes and positions of the shape parts (e.g., 61

changing size and positions of the wings in the airplanes, but 62

the number of wings is fixed). Similarly, [31] focuses on the 63

evolution of an entire population of 3D models which belong 64

to a certain class (e.g., lamps, chairs, candelabra and teapots). 65

Here, the assumption is that the initial set of shapes was pre- 66

analyzed to possess part correspondence and built-in structural 67

information such as inter-part symmetries. The set should be 68

reasonably rich and diverse and the shapes therein sufficiently 69

developed. 70

Other methods consider classes of 3D object made of varia- 71

tions of a set of basis shapes, e.g. [46] proposes a human dataset 72

of 64 shapes, each with 6.5K vertices and a “bunny dataset” 73

containing 218 (approximately conformal) deformations of the 74

Stanford bunny, each with 14K vertices. In similar settings, 75

[17] focuses on the exploration of parametric shape collections, 76

i.e. shapes that can span the large set of possible geometries 77

resulting from the variability of a fixed set of parameters,like 78

it may happen for CAD models. In this case, the crucial point 79

is to identify the shape descriptors that reflect the continuous 80

variation of the parameters into the shape descriptor space. 81

The use of heterogeneous shape collections, like the Prince- 82

ton Shape Benchmark1 and 3D Warehouse2, is acknowledged 83

by [32, 29, 43, 30] and, at the moment, the collection used in 84

[30] is the largest one adopted for content-based exploration, 85

with its 103738 3D models. These methods do not explicitly 86

declare any particular assumptions/requirements on the type of 87

the 3D shapes but do not permit a multi-facet exploration by a 88

user-driven combination of different descriptors. 89

3. Similarity for collections with uneven property varia- 90

tions 91

When reasoning about similarity in a collection of objects 92

with heterogeneous properties, it is useful to use multi-modal 93

information in combination (e.g., geometry and texture) and 94

also proceed someone in an iterative manner, by grouping 95

items, or their parts, into meaningful clusters. This scenario is 96

still quite far from the scenario depicted by the current state- 97

of-the-art: most methodologies for comparing, retrieving, or 98

classifying objects in repositories are based on a single anal- 99

ysis of the geometric 3D shape, possibly building on specific 100

invariants, such as the presence of axis of symmetry [51] or 101

appendages [52]. Even if several recent approaches for similar- 102

ity assessment aim at identifying (dense or sparse) correspon- 103

dences among the model elements (e.g., [53, 13, 54]) or com- 104

bining texture and geometry information (e.g., [18, 55, 56]), 105

they actually pursue a shape matching at a global level rather 106

than evaluating similarities based on the comparison of specific 107

1http://shape.cs.princeton.edu/benchmark/
2https://3dwarehouse.sketchup.com/
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features. With respect to these strategies, we present an ap-1

proach that addresses similarity on the basis of a set of aspects2

that describe the models, following an approach similar in spirit3

to the faceted meta-data proposed for images in [57].4

This work has been pushed by a challenging scenario for vi-5

sual search, archaeology, where traditional approaches fail and6

where trendy approaches based on learning are not really ef-7

fective due to the lack of large training sets and to the inherent8

complexity of capturing the search intent of users.9

3.1. Similarity characterization in an archaeological context10

Archaeology is a challenging context for similarity assess-11

ment. First of all, similarity is the guiding principle behind rea-12

soning for the analysis of artifacts and it usually involves all as-13

pects which may contribute to the shape: geometry, color, tex-14

tures, chemical properties of color pigments, and many more.15

Beside data related to the tangible essence of assets, artifacts16

come with all the contextual information, primarily in textual17

form, related to the archaeological description and documenta-18

tion of the findings themselves.19

What complicates the computational model of similarity is20

the fact that, typically, assets are fractured, eroded, and their21

color faded. Moreover, pieces of fractured objects may be22

mixed-up. At the same time, there are a lot of visual cues that23

may suggest that fragments belong to the same object, and these24

cues are used jointly or in sequence to answer typical ques-25

tions related either to re-assemble (may these fragment match26

together?) or to re-association (could this fragment belong to27

that collection?) or simply to the stylistic analysis of the frag-28

ment itself (do these fragments share the same decoration?).29

In the initial phase of the GRAVITATE project, we worked30

with the archaeologists to understand what were the basic simi-31

larity criteria used in traditional studies, within the scope of the32

project case studies. In the following, we enumerate the prop-33

erties identified as useful by the users and the motivations that34

concurred to build our first search engine [10].35

1. Overall fragment size: the size of the fragment, in terms36

of the overall space it occupies. Alone, such a criterion37

is generally too rough to assess similarity, but it becomes38

useful as a further filter to help restricting results obtained39

in queries.40

2. Thickness: the thickness of a fragment. This property in-41

dicates, for instance, if two shards could come from the42

same object.43

3. Roughness: the grain and finish of the fragment surface.44

Again, similarity according to this property may be sig-45

nificant for assessing if two fragment belong to the same46

object or where manufactured in the same workshop.47

4. Shape continuity: if two fragments fit close together on a48

same object, it is likely that they exhibit a similar, overall49

curvature of the outer skin surface.50

5. Color: colorimetric information provide a rich set of vi-51

sual cues for assessing similarity, and color distribution52

is an important one. This property indicates that users53

may want to cluster fragments with similar colors, inde-54

pendently of other characteristics.55

6. Decorations: some fragments exhibit parts of the same 56

decorations, usually as local relief or colored/painted pat- 57

terns, providing again an important insight for similarity 58

assessment. 59

7. Overall shape: the global shape of a model. This crite- 60

rion is the closest to the classical global similarity crite- 61

rion. This property is used to reason on similarity aiming 62

fragments that contain a relevant and semantically signifi- 63

cant part of an object, such as a head or a feet. 64

The criteria listed above represent the basic similarity types, 65

or better, comparison axis, that are used as single searches or as 66

concatenated filters by the archaeologists in their current prac- 67

tices manual. The interesting fact is that all the properties above 68

are used, with different weight and relevance, in all reason- 69

ing processes underlining re-assembling, re-association or re- 70

unification problems. 71

3.2. Matching similarity criteria to shape signatures 72

The second important step is to translate the similarity crite- 73

ria identified into computational tools, able to perform accord- 74

ing to the criteria expressed. This can be done either resorting 75

to state of the art descriptors methods, or by implementing new 76

ones if none can provide the behaviour sought. We translated 77

all the similarity criteria except for the shape continuity and the 78

decorations, which are still work in progress. 79

As a driving guideline for associating a shape descriptor to a 80

similarity criterion we followed the following rules: 81

• simplicity of the descriptor. If two or more descriptors are 82

suitable for a task, we select the simplest one, in terms of 83

output storage and matching complexity (e.g., real num- 84

bers or feature vectors); 85

• scalability, depending on the details we have to focus on 86

(e.g. a chiselled decoration) we need to compare high- 87

resolution 3D models with millions of vertices and there- 88

fore, we prefer the shape signatures that are able to deal 89

with the larger meshes (in term of vertices and faces); 90

• coherence, meaning that the shape signatures should rank 91

the query results with respect to a model as close as possi- 92

ble to the similarity types identified by the archaeologists. 93

Moreover, it can happen that a single descriptor is not enough to 94

fully capture the complexity of a similarity criterion or is able 95

to capture it only partially; in these case, we propose either a 96

combination of descriptors or present multiple choices to the 97

user. 98

In the description below, we use the term compatibility in- 99

stead of similarity to discuss the mapping from criteria to de- 100

scriptors, to emphasize that each similarity measure contributes 101

to a reasoning rather than retrieving a crisp result. In other 102

words, each criterion acts as a filter with respect to a specific 103

property and it is not meant to return the whole similarity as- 104

sessment. To give an example of this effect, when selecting a 105

colorimetric property when the the query model is mainly red, 106

in the results we expect models with a predominance of the red 107

texture, independently of their shape. 108

In the following, we define the implemented descriptors. 109
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Fig. 1. Left: the diagonal and Right: the three edges of the MMB.

Fig. 2. Left: Two fragments are colored according to the local SDF value,
ranging from white-yellow (low values) to red (high values). Right: the
distribution of the SDF function; the abscissa of the maximum value of the
histogram corresponds the thickness descriptor.

1. Compatibility in terms of the overall size. We identify the1

object size with the volume occupied by the object, there-2

fore we use the oriented minimal bounding box as an ap-3

proximation of such a volume. Two descriptors are used to4

map this criterion: the diagonal of the minimal bounding5

box (MBB) and the vector of the length of the three sorted6

edges of the MBB (MMB(edge)). We also considered the7

hull packing value (i.e., the ratio between the minimum8

and maximum edge of the minimal bounding box) as pro-9

posed in [12] but, in our experiments, the MMB(edge)10

value seems to provide a higher discriminating capability.11

Figure 1 depicts the meaning of the descriptors based on12

the minimal bounding box on a GRAVITATE fragment.13

The distance between the descriptors is the L1 distance,14

which works nicely as the descriptors are scalar values or15

three-dimensional vectors.16

2. Compatibility in terms of the thickness. The thickness is17

computed as the shape diameter function (SDF) [34] that18

has been shown to provide a stable approximation of the19

diameter of a 3D object with respect to a view cone cen-20

tered on the object surface and with the axis aligned to21

the surface normal. After computing the SDF function on22

each point of the fragment surface, we defined as thickness23

descriptor the average of the most frequent value. Other24

possible choices for the thickness descriptor are possible,25

for instance, we could consider considering the thickness26

around fragment profiles or fragment fractures [58, 59].27

However, these methods generally require a heavy pre-28

processing step, often not completely automatic, either in29

terms of the detection of fragmentation orientation or iden-30

tification of the fracture creeks. With reference to Figure31

2, the thickness descriptor correspond to the bin that scores32

the maximum value of the histogram. As distance between33

two thickness descriptors, we adopt the usual L1 distance.34

3. Compatibility in terms of the roughness. Often, roughness35

is quantified by the deviations, in the surface normal direc-36

tion, of a real surface from its ideal form. It is often asso-37

Fig. 3. Lest: The hairs of the statue are represented on the fragment by a
regular relief pattern. Right: the corresponding mean curvature distribu-
tion histogram.

ciated to local, shape texture-like properties [60]. Among 38

the possible descriptions, we identified the mean curva- 39

ture and the shape index as two possible geometric proper- 40

ties for representing these local surface variation [61, 62]. 41

We computed the value of the minimum k1 and maximum 42

k2 curvatures at each vertex adopting the implementation 43

presented in [63]. The mean curvature K and the shape 44

index S I are derived for each vertex, as K = k1+k2
2 and 45

S I = 2
π

arctan
(

k1+k2
k1−k2

)
, k2 ≥ k1, respectively. In our experi- 46

ments, we saw that the mean curvature better highlights the 47

roughness of a model, thus we use it as the descriptor for 48

this property. The corresponding descriptor is defined as 49

the histogram of the distribution the mean curvature, in an 50

interval of values that holds for the whole collection and is 51

determined on the basis of the overall curvature variation 52

over the collection. 53

We adopt the Earth Mover’s distance [49] as the distance 54

between two histograms. 55

4. Compatibility in terms of the color distribution. In the 56

meshes we have considered, colorimetric information is 57

associated to the vertices in terms of a RGB value. How- 58

ever, it is well known that the Euclidean distance in the 59

RBG space does not correspond to the perceived distance 60

between two colors. The CIELAB color space was de- 61

signed to be perceptually uniform with respect to human 62

color vision [64], meaning that the same amount of nu- 63

merical change in its values corresponds to about the same 64

amount of visually perceived change. Therefore, the Eu- 65

clidean distance in this space is a good approximation 66

of the perceived color distance. Among the descriptors 67

adopted in the literature to code the colorimetric infor- 68

mation for objects, we have considered the concatenated 69

histogram of the three color channels (L, a and b) in the 70

CIELab space [65, 18], see Figure 4 for its simplicity. 71

For each color channel, we computed 100-bins histograms 72

for all the models and we clamp them between the overall 73

minimum bin-value and the overall maximum bin-value 74

that are not empty. The color descriptor is composed by 75

the concatenation of the three clamped histograms. Us- 76

ing the GRAVITATE use case as example the first 60 bins 77

correspond to the interval [20,80] for the variation of the 78

L-channel, the next 35 bins correspond to the interval [- 79

15,20] of the a-channel and the last 65 bins correspond 80

to the interval [-15,50] of the b-channel. The color de- 81

scriptor for each model of this collection is a 160-bins 82
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Fig. 4. A fragment and the corresponding concatenated color histogram
with respect to the L, a and b channels.

Fig. 5. Left: The non-normalized D2 signatures of two fragments; Right:
the persistence space with respect the distance from the center of mass and
the average, geodesic distance for a vase model.

histogram. The single CIELAB channels contain a spe-1

cific colorimetric information: the L channel represents2

the lightness, while the a and b channels respectively rep-3

resents the green–red component, with green in the neg-4

ative direction and red in the positive direction and the5

blue–yellow component, with blue in the negative direc-6

tion and yellow in the positive direction. For this reason,7

we also considered the histogram of the single color chan-8

nels as three separated descriptors, for a total of four color9

descriptors. Being the CIELab a non uniform space, thus10

we the Earth Mover’s distance as distance between two11

color histograms [49] to compensate the problem of non-12

uniformity.13

5. Compatibility in terms of the overall shape similarity: Due14

to the large variability of shapes within the collections, the15

selection of a geometric signature yielding good results for16

all shapes is challenging. For instance, in our use cases,17

the collection is made of heads, feet, legs, busts, vases,18

broken arms and hands, and these artifacts can have differ-19

ent scale (e.g., small and big statues) or can have cracks20

and missing parts. The quite limited number of elements21

per class also prevents the use of learning techniques. We22

opted for a combined descriptor that mixes rough filters23

with scale invariant and non-rigid descriptions (called sim-24

ply Shape descriptor). Namely, we adopted a combina-25

tion of multiple global signatures, like compactness and26

hull packing [12], the spherical harmonics indexes [35], a27

non-normalized variation of the shape distribution signa-28

ture with respect to random chords (this signature codes29

the probability distribution of the distance between two30

random points on a surface and is called D2 in [37]) and31

the persistence spaces computed according to the average32

geodesic distance and the distance from the main axis of33

an object [66].34

Figure 5(left) represents the non-normalized shape distri-35

bution D2 [37] for a head and a foot model and Figure36

5(right) shows the persistence space obtained with respect37

to the distance from the center of mass and the average 38

geodesic distance, evaluated according to [66]. All the dis- 39

tances adopted in this setting are metrics in the descriptors 40

space. 41

As a second global shape descriptor, we considered the 42

Spherical Harmonics indexes [35] alone, which is gener- 43

ally efficient for rigid matching and comparison of objects 44

with spherical, or at least cylindrical, symmetries [17]. 45

As concluding remarks for this section, it is worth noticing 46

that the selections made for descriptors are not, and cannot 47

be, guided by knowledge about the performance of specific de- 48

scriptors on specific classes. Rather, the selection is made on 49

the prospects opened by their combination in a search engine: 50

there might be descriptors in the current literature that are better 51

suited for a specific similarity task. However, the goal is to in- 52

vestigate how a user can navigate a dataset based on a given set 53

of computed descriptors that capture different properties, like 54

orthogonal axes in the similarity space. 55

4. Conceptual modelling of the similarity engine 56

The proposed comparison framework acts as a query-by- 57

example search engine that combines a set of properties, fol- 58

lowing the ideas of faceted metadata for images [22, 57]. Start- 59

ing from a model A (the query model) of a given collection of 60

3D models R, the list L of models in R that are considered sim- 61

ilar to A is retrieved. The search is based on the activation of 62

a number of properties (P1, P2,...) that the user selects before 63

running the search. Each property corresponds to one of the 64

shape signatures discussed in Section 3.2. The design of the 65

search engine is compatible with prior classifications of the the 66

types of the objects collection. For instance, in case of archae- 67

logical datasets like the GRAVITATE use case the type of the 68

query object (sherd/non-sherd) determines what properties are 69

considered valid search criteria based on the nature of A (e.g.: 70

if A is sherd-like, the filter related to properties that works on 71

non-sherd-like object are not activated). 72

Each property Pi is interpreted as a filter (Fi), which removes 73

from L the models that are dissimilar to A with respect to Pi. If 74

the user judges the filter results too restrictive, it is possible to 75

relax the filter severity incrementally adding more models to L 76

and gradually enlarge the queue of models shown in the query 77

window. Note that the list L could be empty. 78

From a more technical point of view, the single filters are 79

distance matrices among models, one matrix for each property. 80

When the user selects one or more criteria to compare a query 81

model against the dataset, each criterion acts as a filter. The 82

combination of more filters is done on the basis of the logic 83

and operator. In practice, the model A is similar to the model B 84

with respect to the two properties P1 and P2 if the two models 85

A and B are similar with respect to both P1 and P2. If L1 is 86

the list of the query results for the property P1 and L2 is the set 87

of retrieved models for P2, the set L of the models that satisfy 88

both P1 and P2 corresponds to the intersection of the two sets, 89

i.e. L = L1 ∩ L2. With these settings, the combined distance is 90

a metric if all the distances for the single properties are metrics. 91
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The query results that fulfill all the criteria are ranked ac-1

cording to a combined measure defined as the product of all the2

distances that are smaller than a threshold t: this threshold acts3

as a tuning parameter for the granularity of the search results,4

using the criteria described below.5

A different threshold is automatically set for each shape sig-6

nature, as follows. Given a distance matrix D, the k − th row7

Qk stores the distance of the k − th model with respect to all the8

other elements in the dataset. Given a threshold t, the set Vk of9

models such that Qk( j) ≤ t are considered valid query results10

for the model k with respect to the property stored in D.11

The similarity between two models is defined as a score, rep-12

resented in terms of a non-negative, real value that translates13

the distance between two signatures in a number. Depending14

on the shape signature adopted and the variety of the elements15

in a dataset, the image of the similarity distance spans differ-16

ent intervals of values, unless the similarity distance is normal-17

ized into interval [0, 1]. In our framework, we prefer to avoid18

normalizing the similarity distances and then combining the19

similarity scores derived from the methods described in Sec-20

tion 3.2. If a unique, global maximum is not known a priory,21

the normalization would depend on the dataset, and the sim-22

ilarity distance could be biased by the context. For this rea-23

son, we describe in the following the procedure to determine24

the initial thresholds for dataset exploration, adaptively tuning25

them to the dataset variations. For each matrix D, the threshold26

t is automatically predetermined as: t = averagek{tk}, where27

tk = argmin{#{Vk} ≈ 5% of the elements in the model collec-28

tion}. With the symbol # we mean the set cardinality. Since tk29

is an average value, it the size of L varies from model to model30

and, the list L could be empty.31

By tuning the thresholds values, it is also possible to enlarge32

the search result set, offering more flexibility and interaction33

to the user. A value dt is determined as the average of the dtk34

values that increase the number of elements of Vk of approx-35

imately 3%. The value dt is selected as many times the user36

decides to relax the threshold t. The thresholds values t and dt37

are automatically determined for every property and dataset.38

A schema of the components and behaviour of the search en-39

gine is shown in Figure 6. The schema also sketches the layout40

of the graphical user interface, which has been fully developed41

in the GRAVITATE project (Figure 6(Bottom)).42

5. Datasets43

The performance of the search framework has been evaluated44

in two domains using three different datasets. For the archaeo-45

logical domain, we have used the GRAVITATE case studies and46

the Virtual Hampson collection. For a more generic search do-47

main, we have selected the dataset proposed by the YCB bench-48

mark [67], which consists of objects of daily life with different49

shapes, sizes, and textures.50

5.1. The GRAVITATE case studies51

The primary GRAVITATE [11] collection is composed by52

fragments of terracotta figurative statues discovered in Salamis,53

on the island of Cyprus, dating back to the seventh - early sixth54

century BC [68]. Most of these statues are fractured, while most 55

shards are faded and eroded: in the project, we worked on 241 56

digital models of Salamis statues fragments, acquired by laser 57

scans. 58

Another set of models come from the Naukratis collection 59

at the British Museum [69]. It is a collection of pottery ves- 60

sels fragments from Naukratis, a Greek trading port on the Nile 61

Delta, in Egypt, dated from the VII century BC to the VII cen- 62

tury AD. The collection available for our studies is made of 72 63

digital fragments, acquired by photogrammetric scans. Figure 64

7 shows some examples of the fragments in the GRAVITATE 65

use cases. 66

5.2. The Hampson collection 67

The second collection of archaeological artifacts is provided 68

by the Virtual Hampson Museum 3 in the form of textured, 69

triangle meshes. The dataset comprises 442 models, 395 of 70

them are available for download, representing remains of Na- 71

tive Americans groups that were living in the northwestern por- 72

tion of the central Mississippi valley from about 1450 to 1650 73

AD and that are referred to by archaeologists as the Nodena 74

phase. An overview of this dataset is shown in Figure 8. 75

5.3. The YCB benchmark 76

This benchmark contains a set of 71 3D models gen- 77

erated from visual data that are commonly involved for 78

human-robotic interaction. These models are available at 79

http://ycb-benchmarks.s3-website-us-east-1.amazonaws.com/. 80

The dataset contains everyday objects whose common trait 81

is the fact they can be grasped with a robot, see Figure 9. 82

Data were acquired with the scanning rig used to collect the 83

BigBIRD dataset. Details on the dataset can be found in 84

[70, 67]. 85

6. Experiments on similarity reasoning 86

The considered collections are organized with respect to cri- 87

teria that are different with respect to the similarity criteria that 88

the archaeologists have identified as suitable for their findings. 89

Indeed, these collections are organized through factors like the 90

functionality of the models or the provenance and it is really 91

complex (or impossible) to define a single descriptor that is able 92

to asses such tricky classifications. Since we are not able to 93

evaluate the search results with a rigid ground-truth, we judge 94

their correctness based on their visual appealing, minding also 95

the similarity criteria considered in each query search. 96

In the Sections (6.1 - 6.3), we discuss the outcome of some 97

queries based on the ten shape signatures detailed in Section 98

3.2. Although the quality of the query results is obviously de- 99

pendent on the descriptor(s) selected, we think that these exam- 100

ples highlight how the combination of multiple properties can 101

tailor the engine to the users needs. 102

3VHM, http://hampson.cast.uark.edu
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A query model is selected Filters are selected, in this example with a relax option

Similarity matrices with respect to three descriptors

Significant similarity scores (in this example tk = 0.3 and dtk = 0.05)

Query results Relaxed query results

Fig. 6. An overview of the search engine behavior using three descriptors on a model of the Naukratis collection and the effect of a further relax.

As an exception, the experts provided a limited ground-truth1

for 46 of the 72 fragments in the Naukratis collection, identi-2

fying 8 groups of sherds that are likely to belong to the same3

object. This allows us to provide a quantitative analysis of the4

combination of two descriptors against the single ones, high-5

lighting the advantages in using the search engine as a naviga-6

tion tool instead of considering the single descriptors. This is7

discussed in Section 6.4.8

Finally, since the YCB dataset is not a Cultural Heritage re-9

lated dataset, in Section 6.3 we discuss the generalization of10

the similarity criteria listed in Section 4 towards a more generic11

collection.12

6.1. The GRAVITATE case studies13

On the Salamis collection, we performed a preliminary dis-14

tinction of the fragments into two broad categories: those15

shaped like a classical sherd and those representing still a vol-16

umetric component of the original object. This distinction was17

validated by archaeological experts. For instance, with refer- 18

ence to Figure 7 (right), the heads, the figurines and the busts 19

are examples of volumetric fragments, while the decorated frag- 20

ments (e.g. top-right and bottom-right) or the fragments in Fig- 21

ure 7(Right) are examples of sherd-like fragments. 22

Figure 10(A-F) shows a set of query results for the GRAVI- 23

TATE use cases. Rows 10(A-B) present the same query model 24

with two different query options: in (A) only the Color Dis- 25

tribution filter is adopted, thus admitting models with different 26

geometric shape. The combination of Color Distribution with 27

Roughness (here, we are considering a sherd-like fragment of a 28

statue and the overall smoothness of the fragment surface is rel- 29

evant) is shown in 10(B) and provides a large set of fragments 30

that are intuitively more similar (in terms of red-like color dis- 31

tribution and surface smoothness) to the query model. Row 32

10(C) presents the combination of Color Distribution, Rough- 33

ness and Thickness at once. Again, the results are quite intu- 34

itive. The archaeologists classified the first six fragments (the 35
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Salamis dataset Naukratis dataset

Fig. 7. Examples of fragments of Salamis terracotta figurines (right) and of Naukratis potteries (left).

Fig. 8. Examples of fragments from the VHM dataset.

query models and the first five results) as potential elements1

of the same vase. Nevertheless, also the other elements of the2

row 10(C) present quite homogeneous properties. Similarly, the3

example in row 10(D) highlights how using only Color Distri-4

bution and relaxation on the threshold we are able to select all5

the fragments in the dataset that potentially belong to the same6

group because they are made of the same material. One of the7

peculiar characteristics of this group is that all its elements are8

made by a gray stone, while the Shape, the Roughness and the9

Thickness of these fragments is largely variable. Finally, rows10

10(E-F) look at the different capability of the global shape de-11

scriptors we have implemented in the search engine. The Shape12

property corresponds to a combination of global descriptors that13

are able to deal with both volumetric and topological shape dis-14

tribution, thus mixing the head model with other heads but also15

hands. On the other hand, the Spherical Harmonics is a scale,16

invariant, global representation where the overall shape of the 17

object is represented with the coefficients on the spherical har- 18

monics computed with respect to the center of mass: besides the 19

heads in the dataset the query results are tricked by cylindrical 20

objects, like the last model in the result set. 21

6.2. The Hampson collection 22

Figures 10(G-J) report some query results for the Hampson 23

collection. The example 10(H) is based on the size of the model 24

(described using the MBB(edges) descriptor) and shows us the 25

possibility to navigate the dataset considering only fragments 26

of a specific overall size. In this case, all the five models in the 27

class are retrieved, without any false positive. The rows 10(G,I) 28

combine other properties, such as Shape or Color Distribution, 29

with the model size. The outcome of these queries highlights 30

that the combination of properties targets the query results to 31
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Fig. 9. Overview of the YCB dataset.

the query models. Finally, the row 10(J) shows an example of1

query results when combining Shape with Thickness when the2

query model is a bowl-like model.3

Most of the examples on the Hampson collection highlight4

that a threshold relaxation is often applied. Indeed, when act-5

ing with multiple filters it is possible that the queue of the query6

results (i.e., the set of models satisfying all the properties se-7

lected) is empty. This is not surprising because the collection8

is not complete in the sense that there are not exemplars for all9

the possible property combinations. Moreover the thresholds10

are automatically set roughly evaluating the property variance11

on the whole collection and the query queue of some models12

can be very short. To overcome this effect, the relax option is13

crucial, allowing the user to complete the query search desired14

without being forced to ignore one of the similarity criteria.15

6.3. YCB Benchmark16

Aiming at a generalization of the criteria identified for ar-17

chaeological context, we have revisited the model properties in18

order to identify the search axes in the conceptual dimensions19

of the similarity space that could be useful in generic contexts.20

We do not argue, obviously, that these are the only and the most21

relevant ones and we point the reader to specific studies in this22

direction, such as [71].23

1. Overall size: in a generic context, this property is still rele-24

vant, and it reflects the need of considering the volume oc-25

cupied by the model, not only in terms of absolute volume26

but also in terms of proportion among the three dimensions27

of the spatial embedding. item Local shape properties:28

this concepts involves properties related to local surface29

properties, like roughness and thickness.30

2. Color: similarly to the CH use case, with colorimetric sim-31

ilarity we mean similarity by global texture behavior.32

3. Overall shape: this criterion corresponds to the classical33

global matching measures. It admits similarity by global34

shape distribution but also with respect to articulations.35

We test these criteria over the YCB collection that presents 36

a large variety of colors, shapes (spherical-like, elongated, 37

kitchen utensils, boxes with sharp edges, cans, etc.). The ex- 38

amples in Figure 11(A-B) shows that the Color Distribution 39

property is far more effective in a dataset with such a larger 40

variety of colors than the GRAVITATE use case and the Hamp- 41

son dataset, which are populated of artifacts that are mostly 42

brown (terracotta) with colors ranging from yellow to red, at 43

most. Figure 11(C-E) instead shows searches done using the 44

Spherical Harmonics as global shape signature. The results are 45

satisfactory, as the closest models have similar global shape to 46

that of the query model. The addition of the Thickness to the 47

query search 11(E) highlights how this property keeps models 48

with a shape distribution similar to the query cup model. Sim- 49

ilarly, Figure 11(F) provides an example of query results when 50

the combined shape signature is considered. Still, some false 51

positives pop up in the results, but this is due to the nature of 52

the descriptors and the fact that the false positives are actually 53

very similar to the query models in terms of elongated shape 54

distribution. Finally, the examples in 11(G-H) show examples 55

of queries under overall size and the combination of color and 56

overall shape for some utensil-like models. 57

6.4. Discussions and quantitative evaluation 58

The aim of this search engine is to provide a tool for the nav- 59

igation of 3D model collections where multiple similarity axes 60

can be identified. Depending on the user needs and tasks, the 61

similarity notion can be different and vary in time; for instance, 62

a professional user could be interested in details like manufac- 63

turing aspects and specific decorations, while a more generic 64

user could search for all statues with black stripes. The data 65

collections we are targeting generally are not fully classified 66

and a well specified ground-truth is not available. Therefore, 67

a generic, meticulous analysis of the performance of the shape 68

descriptors combinations proposed by the search engine against 69

the single methods is impossible. 70
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GRAVITATE: Color Distribution

A
GRAVITATE: Color Distribution + Roughness, Relax 1

B
GRAVITATE: Color Distribution + Roughness + Thickness, Relax 2

C
GRAVITATE: Colorimetric Distribution, Relax 1

D
GRAVITATE: Shape

E
GRAVITATE: Spherical Harmonics

F

Hampson: Spherical Harmonics + MBB(edges) Hampson: MBB(edges), 2 relaxes

G H
Hampson: MBB(edges) + Color Distribution, 3 relaxes

I
Hampson: Shape + Thickness, 2 relaxes

J

Fig. 10. Examples of query search on models of the GRAVITATE use case and Hampson collection. The first model in each cell is the query model.

As a possible case study, we analyze the search engine per-1

formance over the groups of fragments in the Naukratis collec-2

tion that are likely to belong to the same object. The intuition3

behind this test is that fragments that belong to the same object4

share the same colorimetric distribution and, if they are con- 5

tiguous, they have compatible thickness. Therefore, we analyze 6

the ability to group each fragment with the other elements of 7

the object it belongs to for the single shape descriptors (color 8



12 Accepted manuscript / Computers & Graphics (2019)

YCB: Color distribution + A chn + B chn + L chn, 2 relaxes

A

YCB: Color distribution

B

YCB: Spherical Harmonics

C

YCB: Spherical Harmonics

D
YCB: Spherical Harmonics + Thickness

E

YCB: Shape

F

YCB: MBB(edge) YCB: Color distribution + Shape

G H

Fig. 11. Examples of query search on models of the YCB dataset. The first model in each cell is the query model.

distribution and thickness) and their combination. In turn, we1

use each model as a query against the whole Naukratis collec-2

tion. As performance measures we consider the percentage of3

true positives and the number of false positives that appear in4

each query result. The main intuition is that the similarity com-5

bination adopted in this search engine diminishes the number6

of false positives because the query results of the combinations7

much satisfy multiple criteria at the same time.8

In practice, we consider 46 fragments of the Naukratis9

dataset, grouped in 8 different classes (a sample model per class10

is reported in Figure 12). Notice, that the classes are num-11

bered according to the archaeological catalogue; thus, there is12

not continuity in the class labels. In summary, for every frag-13

ment, we analyze its query results with respect to the following 14

runs: 15

• Search 1 - filter: Color Distribution; 16

• Search 2 - filter: Thickness; 17

• Search 3 - filter: Combination of Color Distribution and 18

Thickness. 19

In all the runs, the we equally set the relax filter to two. We 20

overview the performance of the three filters, Search 1, Search 21

2 and Search 3 in Figure 13. In the ideal case, we want the 22

combined query (Search 3) to hold the same true positive per- 23

centage as in Search 1 and 2 but with a smaller number of false 24
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Class 6 Class 7 Class 8

Class 13 Class 18 Class 22

Class 25 Class 26

Fig. 12. The list of classes used for a quantitative evaluation on the
Naukratis dataset.

positive results. Each element of the diagrams corresponds to a1

model and the height of the columns measures the performance2

of search engine when that model is adopted as the query. Mod-3

els that belong to the same class have same color. In the dia-4

grams on the left, for each model, we report the percentage of5

the elements of the same class of the query model correctly re-6

trieved (true positives). The value 1 means that all the elements7

of the class are shown in the list of the query results, 0.5 means8

that on a half of the elements are correctly retrieved when that9

fragment is adopted a the query. In the diagrams on the right,10

we report the number of false positives that are present in each11

query. Theoretically, this number could equal the dataset size12

less the elements of that query group. We observe that some13

of the classes (the first, third, fifth, sixth and seventh classes)14

for Search 1 and 2 have comparable percentages of true posi-15

tives and numbers of false positives. For Search 3, we observe16

that while the percentage of true positives is slightly lower over-17

all, the number of false positives is far away lower than in the18

other searches. Overall, these results show how the combina-19

tion proposed in this search engine works and highlight that it20

can manage queries based on multiple descriptors diminishing21

the number of false positives in the query results.22

7. Conclusions23

Working with real use cases poses a lot of problems, which24

span from the need of keeping results consistent across different25

resolutions to the management of damaged models.26

We have shown that the search engine conceptual model can27

be generalized across different domains. However, each domain28

has its own needs and the same object can be seen from differ-29

ent points of view. Therefore, future efforts will be devoted30

to a specialization of descriptors and measures to the different31

domains, especially in the CH domain, since that is where this32

search engine is born. For instance, a peculiar aspect of the33

archaeological fragments is that they do not have a unique in- 34

terpretation and multiple similarity criteria can be applied de- 35

pending on the archaeological interests. The classical partial 36

matching problem interpreted as a part-in-whole problem is not 37

enough to address similarity among fragments because the orig- 38

inal model is generally missing and the archaeologists only own 39

small fragments that cannot be completely reassembled. In this 40

sense, it is necessary to develop forms of multi-signatures that 41

specifically target the different fragment parts; for instance, the 42

external part for decorations and internal one for recognition the 43

print of the technical turning. 44

Many problems are still open and need further efforts to be 45

solved. For instance, the CH artifacts present quite complex 46

features such as decorations, style elements and patterns (ei- 47

ther colorimetric and geometric) that require the development 48

of specific descriptors [72, 73]. In this direction, we are cur- 49

rently working on localizing the descriptors to sub-parts only 50

and on the integration of further descriptors into the search en- 51

gine. The quantitative analysis of the combination mechanism 52

performed in Section 6.4 highlights that, to be effective, the 53

single descriptors must have high true positive rates rather than 54

a small number of false positives: this could be an advice for 55

the development of future descriptors that aim at modeling a 56

single similarity aspect. Same goes for skin continuity, which, 57

in terms of compatible overall skin curvature, is crucial for re- 58

assembling artifacts. Currently, it is addressed for models with 59

symmetries, such as potteries, for instance considering the the 60

partial axial symmetry of the surface [74]. 61

As mentioned in Section 3.2, in the CH domain and in small 62

datasets like the YCB there is a lack of substantial training 63

data that in our opinion partially prevent the adoption of learn- 64

ing techniques. Indeed, learning techniques are based on su- 65

pervised information, requiring extensive training data in ad- 66

dition to practical configuration expertise and computational 67

resources [75]. On the contrary, in our use cases only a few 68

shapes of a certain class or type exist, and they do not corre- 69

spond to existing, complete shapes. Using methods like those 70

addressed in this paper, a domain expert might be better able to 71

determine the type of properties needed (occurrence of feature 72

points, curvature statistics, repeated patterns, etc.) and which 73

may be interpreted to some extent. 74
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