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Abstract

The computation of geodesic distances is an important research topic in Geometry Processing and 3D Shape Analysis as it is a
basic component of many methods used in these areas. In this work, we present a minimalistic parallel algorithm based on front
propagation to compute approximate geodesic distances on meshes. Our method is practical and simple to implement, and does
not require any heavy pre-processing. The convergence of our algorithm depends on the number of discrete level sets around the
source points from which distance information propagates. To appropriately implement our method on GPUs taking into account
memory coalescence problems, we take advantage of a graph representation based on a breadth-first search traversal that works
harmoniously with our parallel front propagation approach. We report experiments that show how our method scales with the size
of the problem. We compare the mean error and processing time obtained by our method with such measures computed using
other methods. Our method produces results in competitive times with almost the same accuracy, especially for large meshes. We
also demonstrate its use for solving two classical geometry processing problems: the regular sampling problem and the Voronoi
tessellation on meshes.
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1. Introduction

Computing geodesic distances on meshes is important to
many problems in Geometry Processing and 3D Shape Anal-
ysis problems, such as parameterization [1], shape retrieval [2],
isometry-invariant shape classification [3], mesh watermarking
[4], object recognition [5], texture mapping [6], skinning [7],
just to mention a few. Because finding geodesic distances is a
basic step in many geometrical algorithms, the efficiency of its
computation is an important issue.

Meshes are typically described as graphs. Consequently, one
natural approach to solve the problem of geodesic computation
on meshes is to generalize the ideas of distances on graphs to
compute distance maps on surface representations. This path
was pursued by Mitchell et al. [8], who proposed a continu-
ous Dijkstra method that is able to yield exact results. Later,
Surazhsky et al. [9] refined that method and proposed a more
efficient approximate version. Other researchers approached
the problem via physical phenomena analogy. Two of the most
important methods in this class are based on models for wave
propagation and heat diffusion. The Fast Marching approach
belongs to the first category of methods and aims to solve the
so-called Eikonal Equation [10], [11]. The Geodesics on Heat
[12] belongs to the second category and explores the relation-
ship between the heat kernel computation and distances on sur-
faces.
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Here, we propose a parallel algorithm for the computation of
distance maps on meshes that produces results with competitive
accuracy and is simple to implement. Like the Fast Marching
method, our method is also inspired by the grassfire propaga-
tion, but our approach does not require the maintenance of any
priority queue. Instead, we propagate distances simultaneously
around the frontier of propagation. This is the key to our paral-
lelization strategy.

We provide an estimation of the complexity analysis (see
section 6) that justifies the number of required iterations. Our
experiments confirm that the estimation is not too tight, and
show that far less than c

√
n iterations are necessary for the con-

vergence of the method, where c is a small constant between
1 ≤ c ≤ 2 and n is the number of vertices of the mesh. We also
discuss and show that our method is especially appropriate for
solving the multi-source distance map problem (see 6.1.5).

1.1. Contribution

We propose a minimalist parallel method for computing
geodesic distances on meshes with the following properties: it
does not require heavy pre-processing steps; it produces quite
good accuracy results even without pre-processing obtuse tri-
angles; it is able to solve the problem for very large meshes; it
can be used with single precision configurations if necessary;
and finally, it produces speedup results comparable or better, in
some cases, than the state-of-art methods.

We introduce an iterative parallel algorithm called Parallel
Toplesets Propagation (PTP) to compute distance maps from a
set of multiple sources on triangular meshes. Our method is in-
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spired by the Fast Marching algorithm and is based on the prop-
agation of distance information from the inner to outer groups
of vertices that are equidistant to the source vertices. We call
these groups topological level sets (toplesets, for short). The
vertices in each topleset have their distances updated in paral-
lel, independently, enabling us to explore the powerful parallel
architectures present in the GPUs. To appropriately deal with
coalescence problems when accessing the vertices in the GPU
memory we devised a breadth-first search based graph repre-
sentation similar to the one by Zhu et al. [13].

Our method is particularly appropriate for distance computa-
tion from multiple sources when the sources are predominantly
distributed in a uniform way. This makes out method remark-
ably adequate when used as part of the implementation of the
Farthest Point Sampling algorithm [14] for mesh resampling.

The proposed method is applied directly to the meshes and
produces good accuracy results for large and irregular meshes.
Additionally, the speedup values are competitive against meth-
ods where the preprocessing step dominates the overall com-
plexity even without taking into account the preprocessing time.

1.2. Outline

This paper is organized as follows. In Section 2, we describe
some of the most important works related to distance computa-
tion on graphs and minimal geodesic computation on meshes.
Next, in Section 3, we describe and define some concepts and
results that were used to develop our algorithm. The proposed
method is presented in Section 4. In Section 5, we present the
results produced by our algorithm. We first show two applica-
tions of our method: a parallel solution to the Farthest Point
Sampling Problem and a parallel solution to the problem of
computing the Voronoi Diagram on meshes. Next, we present
the speedup of our parallel method for different meshes and
measure the distance error for each experiment. We also com-
pare our results with the exact method of [8], the Fast Marching
Algorithm of [11] and the Geodesics on Heat method [12]. Fi-
nally in Section 7 we present our conclusions.

2. Related Work

The exact computation of geodesic distances on surfaces was
proposed by Mitchell et al. [8]. Their MMP algorithm is based
on a continuous Dijkstra algorithm and its computational com-
plexity is O(n2 log n), where n is the number of vertices.

Due to this high computational cost, approximate methods
were developed. These methods present a better performance
and maintain a comparable level of accuracy. A fast implemen-
tation of the MMP algorithm was presented by Surazhsky et al.
[9]; that algorithm requires less memory and has a computa-
tional complexity of O(n log n).

Over the last decade, several approximate methods were pro-
posed to compute distances by solving the Eikonal equation:

|| 5 φ|| = 1 (1)

where φ is a distance function. We can divide these approaches
into two families: the Fast Marching and the Fast Sweeping.

The Fast Marching method (FM) was introduced by Sethian
to solve distance computation on regular grids [10] and later ex-
tended to triangular meshes by Kimmel and Sethian [11]. The
algorithm preserves the spirit of the Dijkstra algorithm as it uses
a priority queue. It is a single-source to all-vertices algorithm,
whose main advantage is the fast calculation of distances of ver-
tices that are close to the source vertices. However, due to the
sequential requirement of the priority queue, it is not possible
to parallelize this algorithm without critical modifications.

The Fast Sweeping approach [15] has O(n) linear computa-
tional complexity. However, it requires a lot of sweeps to con-
verge, particularly when the grids are unstructured.

A method based on Sethian’s Fast Marching method and
Polthier’s straightest geodesics theory [16] is proposed by Mar-
tinez et al. [17]. In this work, they propose an iterative
method to improve the discrete geodesic distances on triangu-
lated meshes using inexact algorithms. It starts computing an
initial approximate discrete geodesic curve γ0 using the Fast
Marching Algorithm. In the sequel, it applies a sequence of cor-
rection operation that computes a sequence of discrete geodesic
curves γi by applying local correction operations. The local cor-
rection operations aim at improving the positions of the discrete
curve vertices and are inspired by the definitions of straight-
est geodesics and shortest geodesics introduced by Polthier and
Schmies. The authors claim that their method can be used to
improve the accuracy of any inexact method that computes dis-
crete geodesics.

A parallel version of the Fast Marching Algorithm on para-
metric surfaces was proposed by Weber et al. [18]. In this
method, the surface must be divided into several regular grids.
Then, the distance map is computed for each grid, using a par-
allelization strategy based on the Raster Scan algorithm [19].
Finally, the reconstruction is done by joining the distance maps
associated with each grid via the Dijkstra algorithm. Up to now,
this method is the fastest and highly parallelizable for comput-
ing geodesic distances on triangular meshes. However, the error
of the computed distance map depends on the distortion of the
parameterization.

A method that does not use a priority queue is the Fast Iter-
ative method [20], which is an algorithmic framework to solve
the Eikonal equation. The main difference with our proposed
method is that they use an unordered list of vertices which are
removed and added constantly until the distances of the ver-
tices converge, whereas our method keeps a structure of tople-
sets where the toplesets that are removed cannot be added again
to the set of vertices to be updated.

There exists approaches that do not solve the Eikonal equa-
tion, such as the Saddle Vertex Graph (SVG) [21], which en-
codes the geodesic information in a sparse undirected graph,
and the method proposed by Wang [22] which outperformed
the SVG by using a divide and conquer technique.

Recently there was introduced a new family of methods that
require the solution of Poison-like systems. The Heat method
was introduced by Crane [12, 23] and requires the solution of
the Poisson equation. This method can be used with different
kinds of representations because it is possible to compute the
Laplacian operator for many different models, including trian-
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gular meshes, point clouds and polygonal meshes. However,
the accuracy of the distance map computation is sensitive to the
choice of a parameter. A parallel and scalable version of the
Heat method was proposed by Tao et al. [24]. Finally, Lit-
man and Bronstein [25] proposed a method that also works on
the spectral domain, called the Spectrometer. Both methods re-
quire as preprocessing the computation of the Laplacian matrix.
Moreover, the Spectrometer requires the computation of the
Heat kernel, which involves computing the eigendecomposi-
tion and is computationally expensive. In contrast, our method
avoids heavy pre-processing steps.

3. Background

In the next subsections, we present some of the basic con-
cepts and results on which our method is based.

3.1. Discrete distance maps

Many graphical objects are described by 2-d manifolds, em-
bedded in a three-dimensional space, that is, embedded sur-
faces. Surfaces are usually represented by piecewise linear rep-
resentations known as triangle meshes T = (V, E, F), where V
is the set of vertices, E the set of edges and F the set of faces.
We now state the problem of computing distance maps on a
triangulated mesh T .

Let T be a triangulated mesh. Given a subset S ⊂ V , called
source set, compute a map dS (v) : V → R that associates to
each v ∈ V its geodesic distance to S . For the sake of simplicity,
we denote dS as d.

Informally, we define geodesic distance as the length of the
minimum path connecting two vertices of the mesh T possibly
passing through the faces of the mesh. In contrast, we use the
term topological distance as the number of edges in the min-
imum path connecting two vertices passing only through the
meshes’ edges.

3.2. Fast Marching algorithm

The Fast Marching algorithm (Algorithm 3.1), simulates the
propagation of the distance information in a discrete set. It is
possible to make an analogy with the propagation of fire in a
grassland or simply fire propagation. In the beginning, each
source vertex s ∈ S has its distance fixed to zero (d(s) = 0, s ∈
S ) and is inserted in a priority queue R (red vertices), whose
priority is defined in terms of the smallest distance. All other
vertices v < S are labeled with distance equal to infinity (d(v) =

∞). At each step, one vertex v is selected from the priority
queue and inserted in the list of processed vertices B (black
vertices); for all neighbor vertices v0 ∈ N(v) of v, all triangles
incident to it F(v0) are updated using Algorithm 3.2, which was
proposed by Kimmel and Sethian in [11]. The new vertices on
the updated triangles are inserted in the priority queue R and
the algorithm proceeds until all vertices are processed, that is,
B = V .

The update step (Algorithm 3.2) is one of the distinct features
of the Fast Marching method. It yields a linear local approxima-
tion to the continuous distance and guarantees that the solution

obeys both the consistence condition and the monotonicity con-
dition (QXT n < 0) of the signal propagation. When considered
together, they ensure that, for a given triangle, defined by three
vertices v0, v1, v2, if v1 and v2 are closer to the source set, then
v0 cannot be reached by the signal before v1 and v2, producing a
correct solution for the Eikonal Equation. In geometrical terms,
this means that the triangles in the mesh cannot be obtuse [26].
One solution for dealing with meshes that have such triangles is
to subdivide them or to locally unfold the mesh [11]. For more
details about the Fast Marching method, we refer to the reader
to the following references [11] and [26].

Algorithm 3.1 Fast Marching (FM) [18, 26]

Require: Triangular mesh (V, F), source vertices S ⊂ V
Ensure: Distances map d : V → R

1: ∀v ∈ V : d(v)⇐ ∞, ∀s ∈ S : d(s)⇐ 0
2: R⇐ S
3: G ⇐ V \ R
4: B⇐ {}
5: while B , V do
6: v⇐ arg min

v∈R
d(v)

7: R⇐ R \ {v}
8: B⇐ B ∪ {v}
9: for all v0 ∈ N(v) do

10: G ⇐ G \ {v0}

11: R⇐ R ∪ {v0}

12: for all (v0, v1, v2) ∈ F(v0) do
13: d(v0)⇐ min{d(v0), update_step(dk−1, v0, v1, v2)}
14: end for
15: end for
16: end while
17: return d

Algorithm 3.2 update_step [18, 26]

Require: A distance map d : V → R, triangular face
(v0, v1, v2) ∈ F.

Ensure: Solution of the Eikonal equation for the triangle
(v0, v1, v2) and the vertex v0.

1: x1 ⇐ v1 − v0
2: x2 ⇐ v2 − v0
3: X ⇐

[
x1 x2

]
4: t ⇐

[
d(v1) d(v2)

]T

5: 1T =
[
1 1

]
6: p⇐

1T Qt +
√

(1T Qt)2 − 1T Q1 · (tT Qt − 1)
1T Q1

7: n⇐ XQ(t − 1)
8: if QXT n < 0 then
9: return p

10: else
11: return min{dk−1(v1) + ‖x1‖, dk−1(v2) + ‖x2‖}

12: end if

Both exact and Fast Marching based methods rely, to a lesser
or greater extent, on the use of priority queues. This makes it
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hard to parallelize them. Thus, we decided to completely aban-
don the use of priority queues in our proposed method. Instead
of fixing the final distance for the closest vertex, at each iter-
ation, we update the distances on subsets of vertices that are
good candidates for the propagation of distance information.
More precisely we take advantage of the discrete topological
structure of the mesh which can be decomposed in topologi-
cal distance level sets around the source vertices to propagate
the information simultaneously and independently in multiple
phases until the distances converge.

4. Proposed Method

The method proposed here works by simulating the distance
information through an ordered set of vertices using sequen-
tial iterations that refine the estimated distances. One of the
main features of our method is to exploit the natural ordering
induced by the topology of the graph associated with the mesh.
Vertices with the same topological distance in the unweighted
graph induced by the mesh are grouped in sets defined here as
topological level sets (toplesets). The toplesets and their topo-
logical distances to the source are used to guide the propagation
and also mark off its scope. Our algorithm is an iterative algo-
rithm that uses the preliminary ordering defined by the topo-
logical distances as an initial estimate of the real continuous
distance. At each iteration, the distances of a subset of all topo-
logical sets, defining a band (the update band), are updated in
parallel using a relaxation scheme, which is the update function
(Algorithm 3.2) of the Fast Marching method. This relaxation
process is applied for a number of iterations until all distances
converge.

In this section, we define more precisely the concept of topo-
logical level sets (toplesets) and describe the notion of topologi-
cal level sets propagation, which is the kernel of our algorithm.
Next, we describe the proposed algorithm and its parallel im-
plementation on GPU. Finally, we explain how to leverage the
properties of our method to solve the multi-source version of
the problem.

4.1. Topological level sets propagation

The topological level sets propagation relies on the concept
of topological level set (topleset).

Definition 1 (topleset Vr). Let G be the unweighted graph in-
duced by the combinatorial topological structure of a triangle
mesh T = (V, E, F) and S ⊂ V the set of source vertices. A
topleset Vr in G is the set of all vertices v ∈ G, such that the
length of the shortest path from v to the source vertices S in G
is equal to a constant r ∈ N, r > 0. A topleset Vr is defined by
the recurrence relation

Vr =

v ∈ N(Vr−1) : v <
r−1⋃
r′=0

Vr′


where V0 = S and N(Vr−1) is the set of all the vertices that are
neighbors of the vertices v ∈ Vr−1.

The properties below can be proved by inspection using the
definition.

1.
ρ−1⋃
r=0

Vr = V

2. ∀r, r′ ∈ [0, ρ − 1], r , r′ : Vr ∩ Vr′ = ∅

3.
ρ−1∑
r=0

|Vr | = |V |

where ρ is the number of toplesets from S ⊂ V in a triangular
mesh. Note that the toplesets are 0-indexed because we start
counting the topleset V0 = S .

A topological level set propagation is defined as the propa-
gation of the distance information through a sequence of tople-
sets which defines a partial ordering on the vertices of an un-
weighted graph G induced by the mesh’s combinatorial struc-
ture.

4.2. An algorithm based on topleset distance propagation
The proposed algorithm propagates and relaxes distance in-

formation through the meshes’ toplesets. Algorithm 4.1 per-
forms the distance propagation, updating at each k-th iteration,
the current distance map dk, as a function of the previous dis-
tance map dk−1 at iteration k − 1, for all vertices in the update
band B jk

ik
.

We define the update band

B jk
ik

=

jk⋃
r=ik

Vr

for each iteration 0 < k ≤ K, where K is the maximum number
of iterations. The update band B jk

ik
defines the set of vertices

that will be updated in the current iteration k, and is composed
of a set of consecutive toplesets Vr, ik ≤ r ≤ jk. The whole
set of consecutive toplesets are computed with a breadth-first
traversal in the induced graph.

We define the update band’s boundaries ik and jk as se-
quences of values at each iteration k as follows:

ik =

 ik−1 + 1 if
|dk(v) − dk−1(v)|

dk−1(v)
< ε,∀v ∈ Vik−1

ik−1 otherwise
(2)

jk =

{
k if k < ρ
ρ − 1 otherwise (3)

where ε is a threshold for the relative change condition, ρ is
the toplesets number, and dk is the distance map at iteration
k. This means that the lower boundary index is increased, thus
(shortening the band) if the relative change of the vertices in the
corresponding topleset is smaller than an ε from one iteration to
the next. In the experiments, we set ε = 0.001. Algorithm 4.1
(lines 12 to 18) computes at each iteration the size of the update
band. A graphical example of this explanation is depicted in
Figure 1.

One of the most important operations in the topological level
sets propagation algorithm is the update step (Algorithm 3.2),
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Algorithm 4.1 Parallel Toplesets Propagation (PTP).

Require: Triangular mesh (V, F), source vertices S ⊂ V
Ensure: Distances map d : V → R

1: dk current distance map at iteration k
2: ∀v ∈ V : d0(v)⇐ ∞
3: ∀s ∈ S : d0(s)⇐ 0
4: i⇐ 1, j⇐ 1, k ⇐ 1
5: while i ≤ j do

6: for all v0 ∈

j⋃
r=i

Vr (in parallel) do

7: dk(v0)⇐ dk−1(v0)
8: for all (v0, v1, v2) ∈ F(v0) do
9: dk(v0)⇐ min{dk(v0), update_step(dk−1, v0, v1, v2)}

10: end for
11: end for
12: if

|dk(v) − dk−1(v)|
dk−1(v)

< ε,∀v ∈ Vi then

13: i⇐ i + 1
14: end if
15: k ⇐ k + 1
16: if k < ρ then
17: j⇐ k
18: end if
19: end while
20: return d ⇐ dK

... ... ...

Figure 1: A graphical example of the update band for the iterations k, k + 1 and
some iteration k + t ≥ ρ.

which is based on the Fast Marching method update step. It is
possible to update all vertices independently (line 6, Algorithm
4.1), since each vertex v updates its new distance dk(v) accord-
ing to the distance map dk−1 computed in the preceding iteration
k − 1.

One distinct ingredient of the Parallel Toplesets Propagation
(PTP) is that the update band deals with the fact that, as the
frontier travels forward, there will be vertices whose distances
have already converged; vertices which are located in the first

toplesets of the propagation. Such vertices are discarded by
using the relative change based approach (lines 12 to 18, Algo-
rithm 4.1) as mentioned before.

4.3. Parallelization and Implementation on GPU
The Parallel Toplesets Propagation algorithm completely

eliminates the dependency on the priority queue which is nec-
essary for the classical Fast Marching Algorithm. This permits
us to reuse the calculations of the previous distance maps to
generate a new estimate. Furthermore, as the calculation of dis-
tances is independent for each vertex v0, the loop (see Line 6
in Algorithm 4.1) is highly parallelizable on SIMD and GPU
processors.

Since meshes are irregular graphs, they induce random ac-
cesses to the global memory. Thus, the non-coalescence prob-
lem needs to be handled carefully to avoid an inefficient im-
plementation on GPU. In this section, we explain how we deal
with this problem. We were inspired by the method presented in
[13] which addressed the problem of iterative traversing-based
graph processing, for instance, Breadth First Search (BFS). Our
method is quite similar to a BFS approach, with the differ-
ence that traversing tasks are being performed at the same time.
Thus, we adapted some ideas from the WolfPath algorithm [13]
to deal with meshes. To solve the problem of non-coalescing
memory access, they convert the graph into a layered tree rep-
resentation using a breadth-first traversal, where the vertices
that are in the same layer are duplicated in the next level. The
data structure is a layered edge list composed of two arrays, a
source, and a destination array. Our method performs a similar
step when it is used on a GPU. We compute the toplesets and
we change the order of the data array that represents a mesh as
a Compact Half Edge data structure (CHE) [27]. In this way,
coalesced memory access is guaranteed.

5. Experimental evaluation

We have implemented two versions of the proposed algo-
rithm using C++ with OpenMP and CUDA to execute the ex-
periments on CPU and GPU, respectively. We have made avail-
able the source code for the PTP implementation as part of our
framework gproshan (geometry processing and shape analysis
framework) in https://github.com/larc/gproshan.

The experiments were performed in a Docker container
hosted in a machine with this configuration: an Intel Xeon
E5-2698 v4 2.2 GH with 40 cores and 256 GB of RAM, a
Tesla P100 with 16GB of RAM memory and 3584 cuda cores,
and Ubuntu 16.04.3. The Docker container was set with the
GCC/G++ 7.3 compiler, CUDA 9.0, and the required libraries
to run the algorithms.

We have implemented the Fast Marching algorithm that uses
a priority queue, to compare its performance with the perfor-
mance of our algorithm. To validate our FM implementation,
we compared its performance with Gabriel Peyré’s implemen-
tation used in the FM Toolbox Graph [28]. Table 1 shows our
test values. The time of our FM is better than Peyré’s FM for
large meshes. For meshes, where the number of vertices are in
the range of 25000 and 100000, we have competitive time.
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(a) fandisk (b)
bunny_irregular

(c) kitten (d) elephant (e) bunny (f) tyra (g) armadillo (h) ramesses (i) dragon

Figure 2: Geodesic distances map for each mesh in Table 2, from m = 1 sources.

Table 1: FM from Toolbox Graph compiled with -O3 flag vs our FM imple-
mentation. Comparison time and mean absolute percent error (double preci-
sion). The experiment was performed on a Intel(R) Core(TM) i7-6700 CPU,
3.40GHz.

double precision FM toolbox FM ours
Filename Vertices Time Error Time Error
fandisk 6475 0.053s 0.95% 0.105s 1.07%

bunny_irregular 7500 0.078s 1.49% 0.129s 2.14%
kitten 14472 0.138s 1.13% 0.232s 1.13%

elephant 24955 0.323s 0.88% 0.403s 0.90%
bunny 34835 0.497s 0.91% 0.558s 0.96%
tyra 100002 1.991s 0.77% 1.665s 0.93%

armadillo 172974 4.395s 0.62% 2.838s 0.73%
ramesses 826266 24.769s 0.54% 13.838s 0.64%

dragon 3609455 733.167s 0.37% 56.988s 0.39%

Since our FM implementation is faster for large meshes, the
speedup values obtained with the PTP method are lower than
what we would obtain with Peyré’s implementation, so the time
comparison is reliable. We can observe that our FM’s error
is quite similar but not better than Peyré’s FM. In our imple-
mentations (our FM’s code and PTP), we did not deal with the
presence of obtuse triangles by using unfolding or triangle sub-
division. Nevertheless, as it can be seen in the results, PTP pro-
duced quite good accuracy results even without pre-processing
obtuse triangles.

To compare the accuracy of the algorithms, we used the
MMP algorithm proposed by Mitchell et al. [8], to compute
exact geodesics, which is included in the MeshLP package
[29, 30]. We also compare our method with the Heat method
proposed in [12, 23], which requires a heavy pre-processing
step. However, after the computation of the pre-processing step,
the time complexity to calculate distance queries is quite fast
because the linear system is sparse. We chose this method be-
cause it is one of the fastest in literature and its source code is
available [31].

We performed experiments on CPU and GPU, in single and
double precision. The main advantage of single precision over
double precision is memory consumption. The double preci-
sion requires twice the number of bits than single precision re-
quires to represent a decimal number. The specific details of the
implementation as well as the performance and accuracy results
obtained from the experiments will be given in the following
sub-sections. The performance and accuracy are evaluated over
the meshes shown in Figure 2. Tables 2 and 3 summarize the
experiments of distance computation from m = 1 source.

5.1. Performance

We evaluated the performance in single and double precision
separately. The PTP method in CPU was accelerated using the
OpenMP library; the number of threads was 40. For the GPU
implementation, we used a block size of 64.

Table 2 shows the execution times and speedup for the PTP
algorithm implemented on CPU and GPU with single precision.
The speedup is considered over the FM algorithm.

The experiments with double precision are summarized in
Table 3. We included the Heat method experiments only in
this part because the solution of Cholesky factorization requires
double precision.

 10

 20

 30

 40

 50

 60

 70

 80

 0  100  200  300  400  500  600  700  800  900  1000

sp
e
e
d
u
p

# source vertices

fandisk
bunny_irregular

kitten

elephant
bunny

tyra

armadillo
ramesses

dragon

Figure 3: PTP speedup with m ∈ [1 : 1000].

In Table 3 we observe that the implementation of the
Geodesics in Heat method using the Cholmod library is fast and
outperforms our method for small and medium size instances
using a hybrid GPU/CPU solver (using the Cholmod library).
For larger instances, the Geodesic in Heat method could not
produce the correct results whereas the PTP computed the cor-
rect distance maps with an approximate speedup of 55x for the
dragon mesh. Moreover, the implementation of the Geodesics
in Heat method using the Cholmod library requires the use of
double precision while the PTP can be run using both double
and single precision. In the experiments, we noticed that the
Cholmod did not activate the GPU component using only the
CPU cores. We speculate that the reason for this is that the fill
ratio of the Laplacian matrices of the meshes is too small. The
meshes we used in our experiments have a fill ratio between
5 and 8; we compute these values according to the definition
of fill ratio presented in [32]. We can also claim that the PTP
yields better accuracy results than the Geodesic on Heat for ir-
regular meshes like bunny_irregular and tyra.
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Table 2: Single precision: comparison times, mean absolute percent error and speedup.

single precision FastMarching PTP (OpenMP) PTP (cuda)
Filename Vertices Time Error Time Error Time Error
fandisk 6475 0.158s 1.07% 0.006s (25.3x) 1.07% 0.008s (19.2x) 1.07%

bunny_irregular 7500 0.195s 2.14% 0.008s (23.0x) 2.12% 0.010s (18.9x) 2.12%
kitten 14472 0.357s 1.13% 0.009s (38.9x) 1.14% 0.012s (30.4x) 1.14%

elephant 24955 0.624s 0.90% 0.018s (34.3x) 0.91% 0.015s (40.7x) 0.91%
bunny 34835 0.864s 0.96% 0.024s (36.7x) 0.96% 0.015s (57.0x) 0.96%
tyra 100002 2.571s 0.93% 0.137s (18.7x) 1.00% 0.032s (79.5x) 1.01%

armadillo 172974 4.391s 0.72% 0.121s (36.2x) 0.89% 0.035s (126.7x) 0.90%
ramesses 826266 21.438s 0.51% 1.978s (10.8x) 1.28% 0.263s (81.6x) 1.35%

dragon 3609455 89.149s 0.28% 10.946s (8.1x) 0.27% 1.732s (51.5x) 0.31%

Table 3: Double precision: comparison times, mean absolute percent error and speedup.

double precision FastMarching PTP (OpenMP / cuda) HeatMethod (Cholmod / cusolverSp)
Filename Vertices Time Error Time Error Precomp Solve Error
fandisk 6475 0.159s 1.07% 0.005s (29.4x) 1.07% OpenMP 0.068s 0.002s (101.1x) 0.84% Cholmod

0.009s (18.6x) 1.07% Cuda 0.855s 0.646s (0.2x) 0.84% cusolverSp
bunny_irregular 7500 0.195s 2.14% 0.008s (24.6x) 2.12% OpenMP 0.085s 0.002s (117.1x) 14.28% Cholmod

0.011s (18.3x) 2.12% Cuda 0.862s 1.225s (0.2x) 14.28% cusolverSp
kitten 14472 0.357s 1.13% 0.009s (41.1x) 1.14% OpenMP 0.189s 0.004s (96.9x) 1.29% Cholmod

0.012s (29.6x) 1.14% Cuda 0.888s 1.235s (0.3x) 1.29% cusolverSp
elephant 24955 0.623s 0.90% 0.017s (36.0x) 0.91% OpenMP 0.307s 0.006s (102.3x) 0.99% Cholmod

0.016s (39.4x) 0.91% Cuda 0.902s 1.733s (0.4x) 0.99% cusolverSp
bunny 34835 0.863s 0.96% 0.023s (37.3x) 0.97% OpenMP 0.444s 0.009s (95.7x) 0.93% Cholmod

0.016s (52.8x) 0.97% Cuda 0.953s 20.694s (0.0x) 0.93% cusolverSp
tyra 100002 2.572s 0.93% 0.139s (18.5x) 1.02% OpenMP 1.340s 0.029s (89.4x) 1.16% Cholmod

0.036s (71.2x) 1.02% Cuda infs infs (0.0x) inf% cusolverSp
armadillo 172974 4.390s 0.72% 0.122s (36.0x) 0.90% OpenMP 2.384s 0.066s (66.8x) 0.59% Cholmod

0.038s (114.3x) 0.90% Cuda infs infs (0.0x) inf% cusolverSp
ramesses 826266 21.449s 0.64% 1.678s (12.8x) 1.89% OpenMP 12.067s 0.347s (61.7x) nan% Cholmod

0.268s (80.2x) 1.89% Cuda infs infs (0.0x) inf% cusolverSp
dragon 3609455 89.054s 0.39% 9.311s (9.6x) 0.68% OpenMP 60.709s 2.628s (33.9x) nan% Cholmod

1.596s (55.8x) 0.68% Cuda infs infs (0.0x) inf% cusolverSp

We can observe that in the single precision experiments the
PTP method in CUDA outperforms the PTP method on CPU.
However, for small meshes like fandisk and bunny irregular,
both methods have similar speedup values. This behavior is ex-
pected since the acceleration does not compensate for the GPU
overhead for small meshes.

The Heat method requires the solution of a linear system. To
this end, the usual implementation computes the Cholesky fac-
torization, which takes a considerable time to compute. How-
ever, once we calculate this matrix, the time for the queries is
quite fast. To accelerate the Heat method on the CPU, we used
Cholmod from SuiteSparse library [32]. However, we could
not find a method that works with sparse matrices and solves
the problem entirely on the GPU device. We found the CUDA
library cusparse, which is the fastest; the problem is that the
conditions are incomplete and therefore the results do not lead
to a proper distance map. Another CUDA library we found
is the cusolverSp, which uses a hybrid method as parts of the
computation are done on CPU and others on GPU; the use of
cusolverSp produced the expected results, but it is still slow
which can be explained by a possible overhead due to multiple
memory copies from the device to host and host to the device.
Clearly, this is a limitation of current CUDA libraries to im-
plement the Heat method. It is difficult to get benefits from
powerful GPU devices when we use those implementations of

the Heat method as is shown in Table 3. The speedup values
obtained from the Heat method with cusolverSp are quite low.
Additionally, the solution to the Cholesky factorization is not
guaranteed, even with double precision. In our experiments, it
was not possible to get a proper solution for the largest meshes
tyra, armadillo, ramesses and dragon. In the case of CPU, the
Cholmod library is more stable and we got a good result for the
armadillo mesh. Recently, Tao et al. [24] proposed a scalable
version of the Heat Method, which has been tested only on CPU
for large meshes. This method uses Gauss–Seidel iterations in-
stead of solving the linear system using Cholesky decomposi-
tion. The method also improved the memory consumption of
the previous implementation of the Heat method. However, it
still depends on the choice of a good parameter, which for ir-
regular meshes still presents a higher error on the distance com-
putation.

In contrast, the PTP method successfully computes the dis-
tance map using single and double precision. Moreover, as ex-
pected, the speedup values obtained for the PTP method, using
single precision are faster than the speedup values obtained us-
ing double precision.

In Section 6, we showed the importance of the inverse re-
lationship between the complexity of the PTP algorithm and
the number of sources and the way they are distributed. We
also discussed how the distance can be computed independently
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from each source at each iteration allowing the parallel imple-
mentation.

Figure 3 presents the speedup of the PTP algorithm for each
mesh from m sources with approximate uniform distribution.
For this experiment we did not perform the rearrangement of the
vertices on the GPU memory, since there are multiple sources.
Note that the speedup of meshes with a large number of ver-
tices increases with the number of sources m; this illustrates
how our algorithm, performs well when computing distances
from multiple sources and also reinforces the expected inverse
relationship between performance and number of sources in the
proposed PTP algorithm.

5.2. Accuracy

We tested the accuracy of the proposed algorithm, perform-
ing a comparison based on the Mean Absolute Percent Error
(MAPE) between the FM algorithm and the PTP algorithm,
summarized in Tables 2 and 3. We can observe that the PTP
algorithm has error (MAPE) values similar to the FM algo-
rithm, and even less for fandisk and dragon meshes. We can
improve PTP’s accuracy, modifying the ε value for the rela-
tive error. This happens because we neither performed mesh
unfolding nor subdivided obtuse triangles, which are necessary
steps for the FM algorithm. We show experimentally that our
algorithm corrects the Dijkstra’s estimate in the case of obtuse
triangles in subsequent iterations.

We evaluated the convergence of the PTP algorithm as a
function of the number of iterations. The experimental results
show that no more than c

√
n iterations are required for the PTP

convergence, with c ≈ 1.5 for predominantly regular meshes
An analysis of such behavior is discussed in Section 6.

Figure 4 presents the empirical absolute mean errors as a
function of the number of iterations; each chart shows values
starting with an iteration k = ρ (number of toplesets of the
mesh) and finishing within K (number of iterations) empirically
estimated by our algorithm for each mesh. Note that the error
decreases as the number of iterations are increased and it con-
verges for some k between ρ and K. The exact number of itera-
tions K depends on the topology of the triangular mesh and the
geometric relation between the propagation of level sets and the
geodesic distance map.

The relationship between the level sets propagation and the
geodesic distance map is depicted in Figure 5. The topological
level sets propagation and the isocurves defined by the distance
map are quite similar on the disk. This means that the geodesic
curves are almost perpendicular to the discrete curves defined
by the toplesets and that the initial edge-distance is a good ap-
proximation to the final continuous distance. In this case, our
algorithm only needs about ρ iterations to compute the correct
distance map. For the bunny mesh, we observe a similar behav-
ior. Nevertheless, as the topleset arrangement diverges more
from the final isocurves of distance, we need more than ρ it-
erations, but no more than 1.5ρ as expected for well-behaved
meshes; see Figure 4.

5.2.1. Comparison with the Heat method
One of the main problems with the Heat method was the

choice of the parameter. According to the paper [23], a good
approximation is the square mean of the mesh edges’ length.
However in case of the ramesses mesh it was not possible to
obtain a correct result. For this reason, in Table 3, the error
is nan. Another limitation of the considered implementation of
the Heat method is that the use of double precision is mandatory
since this implementation of the Heat method requires to solve
the Cholesky factorization. Furthermore, even with double pre-
cision, the CusolverSparse library does not always produce a
solution when dealing with large meshes. In our experiments,
it crashed for the armadillo and ramesses meshes. So, we got
an inf error. This is another limitation of this implementation
of Heat method because it depends on the Cholesky factoriza-
tion for sparse matrices and this computation is still unstable,
especially in libraries for GPU devices.

In contrast, our method works faster when dealing with sin-
gle precision and the accuracy is little affected. These results
are shown in Tables 2 and 3.

Finally, in Table 3, we note that for the irregular bunny,
the Heat method presents a higher error than the proposed
method. Thus, our method is robust when dealing with irregu-
lar meshes and obtuse triangles because it is able to correct the
error through multiple iterations.

To summarize, we showed how our method scales, has com-
petitive speedup values and yields better accuracy results.

5.2.2. PTP performance on meshes with obtuse triangles
In the next experiments, we show that the presence of obtuse

triangles affects the accuracy of the PTP and FM methods. We
compared the accuracy of the methods in a regular grid mesh,
shown in Figures 6a (input grid), 6b and 6c, that shows the
distance maps for FM and PTP methods, respectively. Both
algorithms have the same error of 0.1229%. Though, under the
presence of obtuse triangles, the precision of the methods is
slightly different.

We created an artificial mesh which contains obtuse trian-
gles, to measure the robustness of the proposed method against
the FM method. We are aware that FM method requires a pre-
processing step, called unfolding, to remove all the obtuse tri-
angles of the mesh. However, we omitted this step in both the
PTP and FM to see how they behave in such conditions. The
initial obtuse mesh is depicted in Figure 6d. This is a mesh,
which contains 1170 vertices. The distance map obtained with
the FM is depicted in Figure 6e. The result produced by the PTP
method is shown in Figure 6f. We observe that the distance map
produced by the PTP method is smoother and presents less er-
ror (2.799%) than the FM method (3.754%). We believe that
this outcome is due to the distance correction or improvement
that our algorithm performs in each iteration. The greedy be-
havior of Fast Marching in these cases is not suitable because
obtuse triangles introduce error, which increases as the propa-
gation moves away from the origin. Thus, we believe, accord-
ing to the experiments, that our method is more robust than the
FM algorithm when dealing with obtuse triangles without un-
folding or subdivision.
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Figure 4: Mean absolute percent error per number of iterations.

(a) (b)

(c) (d)

Figure 5: Level sets propagation in 5a and 5c, geodesics distances map in 5b
and 5d.

5.3. Farthest Point Sampling (FPS) and Voronoi Diagrams

The Farthest Point Sampling (FPS) is a generic algorithm in-
troduced by Eldar [14] that generates a regular sampling. At
each iteration, the farthest vertex to the current set of samples
S is computed and inserted into S .

The FPS algorithm exploits the fact that, in the PTP algo-
rithm, the performance increases when the number of samples
grows. This happens because the FPS algorithm in each it-
eration computes a new sample, which is added to the set of
sources S . This case is very favorable to the PTP algorithm as
the FPS tends to generate uniformly distributed samples.

Figure 7 presents the speedup of the computation of m sam-

(a) 1002001 vertices (b) FM: 0.1229% (c) PTP: 0.1229%

(d) 1170 vertices (e) FM: 3.754% (f) PTP: 2.799%

Figure 6: Distance maps and error comparison between a regular triangular
mesh and an obtuse triangular mesh. Figure 6a shows a piece of a regular
mesh, 6b shows the FM’s distance map computed for 6a, and 6c shows PTP’s
distance map computed for 6a. Figure 6d shows a piece of an obtuse triangular
mesh, 6e shows the FM’s distance map computed for 6d, and 6f shows PTP’s
distance map computed for 6d.

 10

 20

 30

 40

 50

 60

 70

 80

 0  100  200  300  400  500  600  700  800  900  1000

sp
e
e
d
u
p

# source vertices

fandisk
bunny_irregular

kitten

elephant
bunny

tyra

armadillo
ramesses

dragon

Figure 7: Farthest Point Sampling speedup with m ∈ [1 : 1000].

9



(a) (b) (c)

Figure 8: Computation of the Voronoi regions in 8a, 8b and 8c; from the calcu-
lation of m = 100 samples with the FPS algorithm.

ples, using the FPS algorithm based on the GPU implementa-
tion of the PTP algorithm to compute the geodesic distances.
Figure 8 presents some visual results for the computation of m
samples using the FPS algorithm with the geodesics distances
computed with the PTP algorithm; it also presents the Voronoi
regions with m sources, which were computed with the FPS
algorithm.

6. Estimative complexity analysis

In this section, we provide an estimative complexity analysis
for our algorithm. To this end, instead of considering an up-
date band based on the relative change, as in Algorithm 4.1, we
use a fixed update band. This modification enables us to define
an upper bound to our algorithm complexity. We can classify
the toplesets in monotonically increasing, stationary and mono-
tonically decreasing sequences. These toplesets sequences are
present in any triangular mesh. Figure 9 shows the number
of vertices per topleset for each mesh in the experiments. We
can observe that for each mesh’s toplesets, the first ones shape
a monotonically increasing sequence, the last toplesets shape
a monotonically decreasing sequence, and the toplesets in the
middle can alter among monotonically increasing, monotoni-
cally decreasing and stationary sequences.

A finite sequence of topological level sets (Vi)b
i=a, is a set of

contiguous topological level sets where a is the starting index of
the sequence and b is the ending index. We classify a sequence
(Vi)b

i=a according to the behavior of the growth of the cardinality
of each topleset that belongs to it, as follows:

1. Monotonically increasing topleset sequence: when |Vi| −

|Vi−1| > 0, a ≤ i ≤ b
2. Stationary topleset sequence: when |Vi| − |Vi−1| = 0, a ≤

i ≤ b
3. Monotonically decreasing topleset sequence: when |Vi| −

|Vi−1| < 0, a ≤ i ≤ b

Now, let T be a triangle mesh with ρ toplesets and n = |V |. T
is a monotonically increasing mesh when all of its toplesets de-
fine one monotonically increasing sequence (Vi)

ρ
i=0. Similarly,

T is a monotonically decreasing mesh when all of its toplesets
define one monotonically decreasing sequence (Vi)

ρ
i=0. When

all its toplesets have the same cardinality, except for a small fi-
nite number of toplesets c << n, then the set of all toplesets

form a stationary sequence (Vi)
ρ
i=c and we say that T is a sta-

tionary mesh. In any other case we call T an arbitrary mesh.
The proposed algorithm propagates and relaxes distance in-

formation through the meshes’ toplesets.
At each iteration 0 < k < K, where K is the maximum num-

ber of iterations, we define a band B(k), called update band, that
defines the vertices that will have their distances updated. B(k)
is composed of a set of consecutive toplesets Vi, s(B(k)) ≤ i ≤ k,
where s(B(k)) is the index of the first topleset in B(k). B(k) and
s(B(k)) are computed using a breadth-first traversal through all
consecutive toplesets Vi (see Section 6.1).

6.1. Complexity analysis sketch and comparison

We begin the complexity analysis of the Parallel Toplesets
Propagation algorithm without taking the number of threads T
into consideration. In the final part of the analysis, we discuss
the impact of T which will have a strong effect in the through-
put when T ≈

√
n.

The first step in the algorithm is to define the order used to
propagate the distances through the topological level sets. This
can be done in linear time if the mesh is structured using a half-
edge or any similar topological data structure. Now we discuss
the definition of the size of the band B(k) at each iteration k. The
size of the band depends on the combinatorial structure of the
mesh but can be defined for each iteration k corresponding to
each topleset in monotonically increasing, decreasing and sta-
tionary subsequences of the mesh. This step requires segment-
ing the mesh’s toplesets in such subsequences. To obtain such
segmentation, it suffices to start with a given topleset V0 and an-
alyze the behavior of the function 2(H[|V1| − |V0|]− 1/2) where
H[n] is the Heaviside step function. To classify the first se-
quence into increasing (+1), decreasing (−1) or stationary (0),
we iterate through the toplesets using a breadth-first traversal
until 2(H[|V1| − |V0|] − 1/2) changes, signalizing the beginning
of a new subsequence. The process continues until all toplesets
are grouped into monotonically increasing, decreasing and sta-
tionary subsequences. We show later in the text that for mono-
tonically increasing subsequences the size of the band is linear
and equal to k/2, where k is the order of the iteration, and for
monotonically decreasing and stationary subsequences the size
is equal to one.

The next step that the Parallel Toplesets Propagation (Algo-
rithm 4.1) executes is to relax the vertices’ distances using the
update function for a total of K iterations. Consequently, the
complexity of the PTP algorithm is given by the total number of
update operations f (n), in the main loop of the Algorithm 4.1,
expressed as a function of the number of its vertices n = |V | :

f (n) = c
K∑

k=1

k∑
r=s(B(k))

|Vr | (4)

where K is the number of iterations, c is a constant, and s(B(k))
is the index of the first topleset in B(k).

Let Vr′ = max
r∈[0:ρ−1]

|Vr | be the topological level set with the

largest number of vertices, and |Vr′ | the maximum number of
vertices in any topleset. Thus, we claim that:
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Figure 9: Number of vertices per topleset for each mesh in the experiments.

c
K∑

k=1

k∑
r=s(B(k))

|Vr | ≤ c
K∑

k=1

k∑
r=s(B(k))

|Vr′ |

f (K) ≤ c|Vr′ |

K∑
k=1

k∑
r=s(B(k))

1

Here, s(B(k)) denotes the index of the starting topleset of the
band B(k). The number of iterations K, the number of vertices
|Vr | in a topleset Vr and the depth of the bands |B(k)| all depend
on the combinatorial topology of the mesh and are intricately
coupled with each other. Nevertheless, an analysis can be done
for meshes with specific topleset cardinality growth.

Let us now analyze the complexity of each one of the cases
and posteriorly express the worst case complexity for an arbi-
trary mesh.

6.1.1. Stationary mesh case
Let the complexity of a stationary mesh be defined as a func-

tion g(n). For a stationary mesh, the number of toplesets multi-
plied by its constant cardinality |Vi| = |Vr′ | is ρ.|Vr′ | = O(n). To
define the size of B(k) for a stationary mesh we use the result
from the following lemma, which is proved as a special case of
Lemma 5 in the Appendix B.2.

Lemma 1. [Number of iterations necessary to fix the distances
of a topleset of a stationary mesh] Given a stationary mesh T ,
and a topleset Vk, the number of iterations necessary to fix the
distances of all vertices v ∈ Vk is equal to 1.

Thus, the size of the band used in all iterations of a stationary
mesh is equal to 1. As each topleset requires one iteration to fix
all its distances and the total number of toplesets is ρ, then we
claim that K = ρ. Finally, we state that the complexity of the
proposed algorithm when applied to a stationary mesh is:

g(n) ≤ c|Vr′ |

K∑
k=1

(k − s(B(k))) = c|Vr′ |

K∑
k=1

1 = c|Vr′ |K

g(n) = O(n)

6.1.2. Monotonically increasing mesh case
Let the complexity of a monotonically increasing mesh be

defined as a function h1(n). For a monotonically increasing
mesh, Theorem 2 claims that ρ = O(

√
n).

Theorem 2. [Number of toplesets ρ of a monotonically increas-
ing mesh] Let T = (V, E, F) be a triangular mesh and s ∈ V be a
source vertex such that the cardinalities of its toplesets, ordered
according to their distances to the sources, define a monotoni-
cally increasing sequence. Then the number of toplesets ρ from
s satisfies ρ = O

(√
n
)
, where n = |V |.

A proof to Theorem 2 is given in the Appendix B.1. In the
same way, we can prove that for a triangular mesh T = (V, E, F)
and a set of uniformly distributed source vertices S ⊂ V , the
number of toplesets is ρ = O

(√ n
m

)
, where m = |S |.

As the number of toplesets for a monotonically increasing
mesh is ρ = O

(√
n
)

and we are limited to n = |V |, the largest

possible topleset has cardinality equal to |Vr′ | = O
(√

n
)
.

To define the size of the band B(k) for a monotonically in-
creasing mesh, we rely on the partial result presented in the
proof in Appendix B.2. It defines the number of iterations Kr

necessary to update all vertices in a topleset Vr as

Kr ≤

⌈
(∆v − 3)

2

⌉
(r − 1) + 1 (5)

where ∆v is the largest degree of the vertices v ∈ Vr. For a
regular monotonically increasing mesh, whose valency is 6, we
have Kr = 2r − 1; we can observe that in the Kr-iteration the
vertices in the topleset Vr with order r = Kr+1

2 have their fi-
nal distances computed; then we can define an updating band
between all vertices included in the level sets r =

[⌊
Kr+1

2

⌋
,Kr

]
.

Moreover, Theorem 3 states that for monotonically increas-
ing meshes the maximum number of iterations is K = O

(√
n
)
.

11



Theorem 3. [Maximum number of iterations K to compute
the distances of a monotonically increasing mesh] Let T =

(V, E, F) be a triangular mesh and s ∈ V be a source vertex
such that the set of its toplesets Vr ordered by their distances to
s define a monotonically increasing sequence. Then, the maxi-
mum number of iterations is K = O(

√
n), where n = |V |.

A sketch of the proof of Theorem 3 is given in the Appendix
B.2, which is supported by the experimental evaluation in Sec-
tion 5. Based on the Theorem 3, we can compute an upper
bound for the function h1(n) which defines the complexity be-
havior of the PTP for monotonically increasing meshes.

h1(n) ≤ c|Vr′ |

K∑
k=1

(k − s(B(k)))

h1(n) =
c
2
|Vr′ |

K∑
k=1

k =
c
4
|Vr′ |K(K + 1)

h1(n) = O
(
|Vr′ |(K2 + K)

)
= O

(
|Vr′ |K2

)
h1(n) = O

(
|Vr′ |
√

n
2
)

= O
(
n
√

n
)

6.1.3. Monotonically decreasing mesh case
The complexity of a monotonically decreasing mesh is ex-

pressed here as a function h2(n). Similarly to the previous case,
the upper bound to the number of toplesets for a monotonically
decreasing mesh is ρ = O(

√
n). Although we do not present

a formal proof for this case here, this property can be verified
considering that this case is symmetrical to the case of mono-
tonically increasing meshes.

Differently, though, the number of iterations necessary to fix
all vertices in a topleset Vr in a monotonically decreasing mesh
is similar to the stationary case and equal to Kr = 1. This oc-
curs because the number of vertices from topleset Vr−1 to Vr

decreases and the edges in the chain associated to topleset Vr−1
contains a sufficient number of vertices with fixed distances to
set the correct distances of all vertices in Vr. Consequently,
|B(k)| = 1 and the number of iterations is K =

√
n. Moreover,

in this case |Vr | = O(
√

n)
Hence, we claim that:

h2(n) ≤ c|Vr′ |

K∑
k=1

(k − s(B(k))) = c|Vr′ |

K∑
k=1

1

h2(n) = c|Vr′ |K = c′
√

n
√

n = O(n)

6.1.4. General case
An arbitrary mesh is composed of a combination of segments

that can be monotonically increasing, monotonically decreas-
ing and stationary. Let T be a mesh such that its toplesets
Vi, 0 ≤ i ≤ ρ are grouped into contiguous monotonically in-
creasing, monotonically decreasing and stationary sequences
s j = (Vi), k1( j) ≤ i ≤ k2( j) where 0 ≤ k1( j), k2( j) < ρ. Let us
denote by |s j| =

∑
Vi∈s j
|Vi| the amount of vertices in all tople-

sets of a sequence s j. Let I, D and C denote, respectively, the

sets of monotonically increasing (si), monotonically decreasing
(sd) and stationary segments (ss) of toplesets. The sum of all
vertices in I ∪ D ∪C is equal to n = |V |. The number of update
operations in all segments is given by:

f (n) =
∑
sii∈I

g(|sii|) +
∑

sdi∈D

h1(|sdi|) +
∑
ssi∈C

h2(|ssi|)

f (n) =
∑
sii∈I

|sii| +
∑

sdi∈D

|sdi|
√
|sdi| +

∑
ssi∈C

|ssi|

f (n) ≤ c1n + c2n
√

n + c3n

f (n) = O
(
n
√

n
)

6.1.5. Multi-source problem
The complexity of the proposed algorithm is impacted not

only by the size of the mesh but also by the number m of source
vertices s ∈ S . For special cases, in particular, when the source
vertices are uniformly distributed, the number of toplesets can
be shrunk by a factor of m.

For arbitrary meshes, the complexity is dominated by the set
of monotonically increasing subsequences which depend on the
number of vertices n and the diameter of the mesh

√
n. Hence

when the number of toplesets shrinks to
√ n

m we have an overall

complexity of: O
(

n
√

n
√

m

)
.

This will have a great impact on the use of the PTP algo-
rithm for implementing the Farthest Point Sampling Algorithm,
an algorithm used to sample a mesh uniformly which will be
described in 6.1.7.

6.1.6. Complexity of the parallel implementation
For a parallel implementation of the PTP algorithm with a

number T of threads, applied to an input given by m = |S |
sources and a mesh with n = |V | vertices and ρ toplesets, the

final worst case complexity is O
(

n
√

n
T
√

m

)
.

6.1.7. Application: Farthest Point Sampling
The computational complexity analysis of FPS is

O(mn log n) using FM, whereas the parallel version of
FPS using the proposed PTP has complexity of O(

√
mn3/2).

We present this complexity analysis in Section Appendix A.
The experimental results demonstrate that as the number of
samples grows, there is an increase in the performance of the
algorithm.

Table 4: Comparison of complexity algorithm analysis.

Algorithm Complexity
Update Fast Marching O(1)
Fast Marching O(n log n)
Farthest Point Sampling O(mn log n)
Update Fast Marching modified O(1)
Parallel Toplesets Propagation O

( √ n
m

n
T

)
Farthest Point Sampling with PTP O

(√
m n3/2

T

)
12



Table 4 summarizes the analyzed algorithms. We include the
term T to the proposed algorithm because the parallelization
is a feature in our algorithm, and also has impact in the FPS
algorithm.

6.1.8. Note
While the current complexity analysis, based on the sketch

proof, states that the complexity of our algorithm has an upper
bound of O

(
n
√

n
)
, it is not tight enough if we consider the be-

havior of our algorithm for regular and non-regular meshes as
it is shown in the experiments. The number of iterations K nec-
essary for our algorithm to converge is bounded by the number
of toplesets ρ; it is K ≤ cρ. The experimental results depicted
in Figure 4, show that c ≈ 1.5.

Figure 10 shows the total number of vertices that are updated
in each iteration of our algorithm and Figure 11 depicts the
comparison of the number of toplesets per iteration between the
fixed band (green curve) and the dynamic band (purple curve).
The dynamic band is purely empirical, because it depends on
the relative change of the previous iteration (update band in
Algorithm 4.1). The fixed band set the number of toplesets to
be updated per iteration according the analysis of the algorithm
asymptotic complexity. We can observe that the green curve
requires more iterations to converge and also it updates more
toplesets per iteration. In contrast, the purple curve shows that
the algorithm updates a smaller number of toplesets per iter-
ation and also it requires fewer iterations to converge. Note
that in the case of irregular meshes like bunny_irregular and
tyra, the empirical curve is closer to the fixed curve. We left
as future work, finding a tighter upper bound for the algorithm
asymptotic complexity.

7. Conclusion

We have presented a minimalistic parallel algorithm to com-
pute approximate distance maps on triangular meshes. We also
provide an implementation of our proposal on GPU.

The main advantages of our approach are:

• Minimalistic: We believe our method fits the class of min-
imalistic methods because it uses the fewest elements as
possible to achieve the best results. The method itself
takes into account the topological structure (toplesets) of
the mesh and take advantage of it to correct the distances
using only the necessary iterations. At the same time, the
nature of our algorithm enables us to leverage powerful
parallel architectures. Besides, our method avoids compli-
cated pre-processing steps and dependence on parameters
that are difficult to set up.

• Scalable: The distances are computed simultaneously
through multiple iterations, instead of using a priority
queue. We have demonstrated how our algorithm scales
and leverages the use of GPU devices. Furthermore,
the proposed method improves the speedup considerably
when used to solve the multi-source problem.

• Memory consumption management: The proposed
method supports single precision and does not require dou-
ble precision to achieve a good accuracy result. Moreover,
the speedup value is considerably increased when using
single precision while the accuracy is maintained.

• Robustness: Our method achieves an accuracy similar to
the classical Fast Marching method. Additionally, it per-
forms better when applied to irregular meshes and large
meshes.

From the experiments, we can conclude that our method, Par-
allel Toplesets Propagation, achieves competitive speedup val-
ues without any preprocessing time. For problems where mul-
tiple sources are required and when intensive distance queries
will not be performed subsequently, such as the FPS algorithm,
the speedup increases, as the number of sources increases.

A limitation of our method is that it requires triangular
meshes. Also, our method requires more iterations when deal-
ing with irregular meshes.

As future work, we aim at finding a tighter upper bound for
the algorithm asymptotic complexity than the one presented in
our complexity analysis. Also, we plan to give a formal analysis
of the relation between ε and the obtained distance error.

Finally, we also want to investigate the use of our method as
part of a method to compute Centroidal Voronoi tessellations.
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Figure 10: Number of updated vertices per iteration.
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Appendix A. Complexity: Farthest Point Sampling

The FM algorithm has a complexity of O(n log n) similar to
the Dijkstra algorithm. The complexity of the FPS algorithm
without taking into consideration the cost of calculating dis-
tances is O(mn), where m is the number of samples in S . How-
ever, to compute a sub-sampling in a triangular mesh, we must
compute the distance map with the FM algorithm in each itera-
tion. Hence the FPS algorithm complexity is O(mn log n).

The number of operations f (n) of the FPS algorithm using
the PTP algorithm is

f (n) =

m∑
i=1

(
c1

n
√

n
√

i
+ c2n

)
(A.1)

where c1 and c2 are constants. The terms inside the sum in
Equation A.1 represent the operations in each iteration: the PTP
algorithm (Algorithm 4.1) which computes the geodesic dis-
tance map (first term) and the selection of the vertex with the
maximum distance from the i sources (second term). Equation
A.3 reduces Equation A.1:

m∑
i=1

(
c1

n
√

n
√

i
+ c2n

)
≤

m∑
i=1

(c1 + c2)
(

n
√

n
√

i

)
= c

m∑
i=1

n
√

n
√

i
(A.2)

where c = c1 + c2. We can conclude that:

m∑
i=1

(
c1

n
√

n
√

i
+ c2n

)
≤ c

m∑
i=1

n
√

n
√

i
= cn

√
n

m∑
i=1

1
√

i
(A.3)

.
It is possible to prove that:

m∑
i=1

1
√

i
= O

(√
m
)

(A.4)

Proof. We can prove that:

m∑
i=1

1
√

i
= O

(√
m
)

(A.5)

as a consequence of the following facts:

m∑
i=1

1
√

i
≤

∫ m

1

1
√

x
dx = 2

√
m − 2 (A.6)

hence, we can claim that:

m∑
i=1

1
√

i
= O

(√
m
)
. (A.7)

Thus, combining Equation A.3 with Equation A.6 we obtain

cn
√

n
m∑

i=1

1
√

i
= O

(
n
√

n
√

m
)

= O
(√

mn3/2
)
. (A.8)

Appendix B. Sketch Proofs

In this section we analyse the behavior of the number of
toplesets and the number of required iterations for certain
classes of meshes. We show that the number of toplesets in
a monotonically increasing mesh is ρ ≤

√
n and is ρ ≤ n for

a stationary mesh in the worst case, where n is the number of
vertices; also we have established a relation between ρ and the
maximum number of iterations K to compute the distances map
for special classes of meshes. The definitions of monotonically
increasing, decreasing and stationary meshes are established in
the Section 6.

Appendix B.1. Theorem 2

Theorem 2. [Number of toplesets ρ of a monotonically increas-
ing mesh] Let T = (V, E, F) be a triangular mesh and s ∈ V
be a source vertex such that the cardinalities of its toplesets,
ordered according to their distances to the sources, define a
monotonically increasing sequence. Then the number of tople-
sets ρ from s satisfies ρ = O

(√
n
)
, where n = |V |.

Proof. Let a triangular mesh T = (V, E, F) and the toplesets Vr,
r ∈ [1 : ρ]. We can stablish that:

|Vr | − |Vr−1| ≥ c (B.1)

where c ≥ 1 and V0 = {s} is the set containing the source vertex
s. Without loss of generality we can choose a constant c = 1.
Then we have

|V ′r | = |V
′
r−1| + 1 (B.2)

where V ′r is a new increasing distribution of toplesets with the
minimum difference such that |V ′r−1| ≤ |Vr |, r ∈ [1 : ρ′ − 1].
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Figure B.12: Sorted toplesets meshes distribution.

Observe that ρ ≤ ρ′; then, we can solve the recurrence: |V ′r | = r

for all r ∈ [1 : ρ′ − 1]. Now, by
ρ′−1∑
r=0

|V ′r | = n we have:

1 +

ρ′−1∑
r=1

r = n

1 +
ρ′(ρ′ − 1)

2
= n

2 + ρ′2 − ρ′ = 2n

ρ′ = O
(√

n
)

because the fact that ρ ≤ ρ′, we can claim that

ρ = O
(√

n
)

.

Figure B.12 shows the distribution of toplesets sorted by the
number of vertices, and the functions y = x (green line) and
y = 2x (blue line). We can observe that the curve increases
over the minimum increase constant c = 1, which is considerate
in the proofs. This plots confirm that the number of toplesets
ρ ≤
√

n.

Appendix B.2. Theorem 3
To prove Theorem 3, we need the next lemmas:

Lemma 4. Let T = (V, E, F) be a triangular mesh, and s ∈ V
a source vertex; the number of toplesets ρ is Ω(log n).

Proof. To count the number of vertices |Vr | at topleset r ∈ [1 :
ρ], we first consider the number of vertices in topleset Vr that
must be connected to topleset Vr−1. We can claim that it is at
least equal to degree deg(v)−3, for each v ∈ Vr−1. The number 3
in deg(v)−3 accounts for the two mandatory vertices connecting
neighbors in the same topleset Vr−1 together with the neighbor

Figure B.13: Counting vertices at topleset Vr .

vertex at topleset Vr−2. This is the maximum number of vertices
that Vr must have satisfying the constraints given by the degrees
of the vertices v ∈ Vr−1 (see Figure B.13). This is represented
by Equation B.3:

|Vr | ≤
∑

v∈Vr−1

(deg(v) − 3) − |Vr−1|, |V0| = 1 (B.3)

We use the maximum degree ∆V = maxv∈V deg(v), to limit the
number of vertices at topleset r:

|Vr | ≤
∑

v∈Vr−1

deg(v) − 3|Vr−1| − |Vr−1| ≤
∑

v∈Vr−1

∆V − 4|Vr−1|

|Vr | ≤
∑

v∈Vr−1

∆V − 4|Vr−1|

|Vr | ≤ ∆V |Vr−1| − 4|Vr−1|

|Vr | ≤ (∆V − 4)|Vr−1|. (B.4)
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Let b = ∆V − 4. Solving recurrence (B.4) we obtain:

|Vr | ≤ br, |V0| = 1

Now, knowing that
ρ−1∑
r=0

|Vr | = n, where n = |V | we have

ρ−1∑
r=0

|Vr | ≤

ρ−1∑
r=0

br

n ≤
bρ − 1
b − 1

≤ bρ

logb n ≤ ρ

therefore, as long as b is limited, we can conclude that the num-
ber of toplesets ρ is Ω(log n).

Lemma 5. Kr ≤
⌈

∆v−3
2

⌉
(r − 1) + 1 iterations compute the final

distances of all vertices v ∈ Vr.

Proof. Let Kr be the total number of iterations necessary to fix
the final distance for all vertices v ∈ Vr. Similarly, let Kr−1 be
the total number of iterations necessary to fix the final distances
of the vertices v′ ∈ Vr−1 in the previous topleset.

We claim that Vr requires at most the number of iterations of
Vr−1 plus i iterations, that is:

Kr ≤ Kr−1 + i (B.5)

solving this recurrence, we obtain:

Kr ≤ i(r − 1) + 1. (B.6)

In order to compute a superior bound to i, we analyze the
behavior (see Table B.5) of the number of remaining vertices
|Vr | in Vr to have its distances fixed at each iteration i′ and the
total number of fixed distances in Vr−1 ∪ Vr (first column of
Table B.5).

Table B.5: Updated vertices in Vr∪Vr−1 at beginning of iteration i′ and remain-
ing vertices |Vr | at end of iteration i′.

i′ Vr ∪ Vr−1 |Vr |

0 |Vr−1| |Vr |

1 2|Vr−1| |Vr | − |Vr−1|

2 4|Vr−1| |Vr | − |Vr−1| − 2|Vr−1|

3 6|Vr−1| |Vr | − |Vr−1| − 2|Vr−1| − 2|Vr−1|

4 8|Vr−1| |Vr | − |Vr−1| − 2|Vr−1| − 2|Vr−1| − 2|Vr−1|

...
...

...

i 2i|Vr−1| |Vr | − |Vr−1| − 2(i − 1)|Vr−1|

In Figure B.14, the circular icon corresponds to vertices in
Vr−1 with distances already fixed. The triangle icons indicate
vertices with distances fixed at iteration i′ = 1. At i

′

= 1 each
edge in Vr−1 together with a vertex in v ∈ Vr (triangle icon)
defines an updating triangle that is used to compute the final
distance of v. Hence, there are |Vr−1| new fixed distances total-
izing 2|Vr−1|. For i′ > 1, we have the double of edges that can be

Figure B.14: Counting iterations to updated the topleset Vr .

used to define updating triangles. Hence, 2|Vr−1| vertices have
their distances fixed except for i′ = i which may fix less than
|Vr−1| vertices as |Vr | ≥ 0 (the number of remaining distances to
be fixed cannot be negative).

When all vertices v ∈ Vr have their distances fixed, |Vr | = 0.
Hence, we state that:

|Vr | − |Vr−1| − 2(i − 1)|Vr−1| = 0 (B.7)

i =

⌈
|Vr | + |Vr−1|

2|Vr−1|

⌉
(B.8)

Consequently, we also claim that:

Kr ≤

⌈
|Vr | + |Vr−1|

2|Vr−1|

⌉
(r − 1) + 1 (B.9)

Besides, according to Lemma 4, equation (B.4) (lower bound
to the number of toplesets of a mesh), we know that:

|Vr | ≤ (∆v − 4)|Vr−1|

where ∆v is the maximum degree of v ∈ Vr.
Thus,

|Vr | + |Vr−1| ≤ (∆v − 4)|Vr−1| + |Vr−1|

|Vr | + |Vr−1|

2|Vr−1|
≤

(∆v − 4)|Vr−1| + |Vr−1|

2|Vr−1|

|Vr | + |Vr−1|

2|Vr−1|
≤

∆v − 3
2

finally:

Kr ≤

⌈
|Vr | + |Vr−1|

2|Vr−1|

⌉
(r − 1) + 1

Kr ≤

⌈
∆v − 3

2

⌉
(r − 1) + 1. (B.10)

When the mesh is regular ∆v = 6 and we have:

Kr ≤ 2(r − 1) + 1

Kr ≤ 2r − 1.

When the mesh has toplesets whose cardinality is stationary,
that is |Vr | = |Vr−1| for all r we have:

Kr ≤

⌈
|Vr | + |Vr−1|

2|Vr−1|

⌉
(r − 1) + 1

Kr ≤

⌈
2|Vr−1|

2|Vr−1|

⌉
(r − 1) + 1

then Kr ≤ r, and one iteration is sufficient to fix all distances in
Vr once Vr−1 has its distances fixed.
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Figure B.15: Degree histogram for the meshes in the experiments.

Figure B.15 shows the degree histogram considering all the
meshes used in the experiments. We can observe that the pre-
dominant degrees are 6, 4 and 5.

Theorem 3. [Maximum number of iterations K to compute
the distances of a monotonically increasing mesh] Let T =

(V, E, F) be a triangular mesh and s ∈ V be a source vertex
such that the set of its toplesets Vr ordered by their distances to
s define a monotonically increasing sequence. Then, the maxi-
mum number of iterations is K = O(

√
n), where n = |V |.

Proof. To proof Theorem 3 we use the Lemma 5. According to
it, the number of iterations K to compute the final distance to
the last topleset Vρ is K = c(ρ− 1) + 1, ρ ≤

√
n, and c =

⌈
∆v−3

2

⌉
.

Thus, we can claim that K ≤ c
√

n and K = O
(√

n
)
. Observe

that for regular meshes c = 2.
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