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Abstract

This paper presents the methods that have participated in the SHREC 2021 contest on re-
trieval and classification of protein surfaces on the basis of their geometry and physicochemical
properties. The goal of the contest is to assess the capability of different computational ap-
proaches to identify different conformations of the same protein, or the presence of common
sub-parts, starting from a set of molecular surfaces. We addressed two problems: defining the
similarity solely based on the surface geometry or with the inclusion of physicochemical infor-
mation, such as electrostatic potential, amino acid hydrophobicity, and the presence of hydrogen
bond donors and acceptors. Retrieval and classification performances, with respect to the single
protein or the existence of common sub-sequences, are analysed according to a number of infor-
mation retrieval indicators.
Keywords: SHREC, Protein Surfaces, Protein Retrieval, Protein Classification, 3D Shape Anal-
ysis, 3D Shape Descriptor.

1 Introduction

Automatically identifying the different conformations of a given set of proteins, as well as their
interaction with other molecules, is crucial in structural bioinformatics. The well-established shape-
function paradigm for proteins [1] states that a protein of a given sequence has one main privileged
conformation, which is crucial for its function. However, every protein during its time evolution ex-
plores a much larger part of the conformational space. The most stable conformations visited by the
protein can be experimentally captured by the NMR technique; this is because the hydrogen atoms
are already included in the atomic model, thus giving less ambiguities in the charge assignment.
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Recognising a protein from an ensemble of geometries corresponding to the different conforma-
tions it can assume means capturing the features that are unique to it and is a fundamental step
from the structural bioinformatics viewpoint. It is preliminary to the definition of a geometry-based
notion of similarity, and, subsequently, complementarity, between proteins. From the application
standpoint, the identification of characteristic features can point to protein functional regions and to
new target sites for blocking the activity of pathological proteins in the drug discovery field. These
features can become more specific if one adds to the geometry of the molecular surface also the
information related to the main physicochemical descriptors, such as local electrostatic potential [2],
residue hydrophobicity [3], and the location of hydrogen bond donors and acceptors [4].

The aim of this track is to evaluate the performance of retrieval and classification of compu-
tational methods for protein surfaces characterized by physicochemical properties. Starting from
a set of protein structures in different conformational states generated via NMR experiments and
deposited in the PDB repository [5], we build their Solvent Excluded Surface (SES) by the freely
available software NanoShaper [6, 7]. Differently from previous SHREC tracks [8, 9, 10, 11] we enrich
the protein SES triangulations with scalar fields representing physicochemical properties, evaluated
at the surface vertices.

The remainder of this paper is organized as follows. Section 2 overviews the previous benchmarks
that were aimed at protein shape retrieval aspects. Then, in Section 3 we detail the dataset, the
ground truth and the retrieval and classification metrics used in the contest. The methods submitted
for evaluation to this SHREC are detailed in Section 4, while their retrieval and classification
performances are presented in Section 5. Finally, discussions and concluding remarks are in Section
6.

2 Related benchmarks

The interest of recognising proteins and other biomolecules solely based on their structure is a
lively challenge in biology and the scientific literature is seeing the rise of datasets and methods for
surface-based retrieval of proteins. The Protein Data Bank (PDB) repository [5] is the most widely
known public repository for experimentally determined protein and nucleic acid structures. The
PDB collects over 175, 000 biological macromolecular 3D structures of proteins, nucleic acids, lipids,
and corresponding complex assemblies. A rather small number of proteins in the PDB dataset are
captured with the NMR technique, which is very favourable for characterizing the protein also with
respect to physicochemical properties. The PDB offers also a number of visualization tools of the
contained structures but is not intended to perform either sequence or structure similarity tasks.

Previous benchmarks on protein retrieval based on the shape of their molecular surfaces were
provided within the SHape REtrieval Contest (SHREC). In these cases, the molecular surfaces
correspond to the protein solvent-excluded surface as defined by Lee and Richards [12] and firstly
implemented by Connolly [13]. To the best of our knowledge, the first contest on protein shape
retrieval solely based on molecular surfaces was launched in 2017 with 10 query models and a dataset
of 5, 854 proteins [8]. A second contest considered a dataset of 2, 267 protein structures, representing
the conformational space of 107 proteins [9]. There, the task was to retrieve for each surface the
other conformations of the same protein from the whole dataset. In 2019, the SHREC track on
protein retrieval [10] envisioned the classification of 5, 298 surfaces representing the conformational
space of 211 individual proteins. The peculiarity of this contest was in the classification of the
dataset, which took into account two levels of similarity. In addition to the mere retrieval of
the different conformers of a given protein, the evaluation also took into account the retrieval of
orthologous proteins (proteins having the same function in different organisms, e.g., human and
murine haemoglobin protein) based on their surfaces. Finally, in 2020 the aim of the SHREC track
on protein retrieval [11] moved to the retrieval of related multi-domains protein surfaces. Similarly
to the 2019 edition, a 2-level classification (grouping different conformations of the same protein
and grouping orthologs together) of the dataset was considered; in contrast to previous years, the
2020 edition included the evaluation of partial similarity, i.e., limited to sub-regions or domains of
the entire molecule, thus moving towards a problem of partial correspondence between the proteins.
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Compared to the 2019 track on protein retrieval, our benchmark differs in multiple points:

• Our data set does not limit to geometric information, but takes also into account physico-
chemical properties. Moreover, the data set is already split into a training set and a test
set.

• The set of retrieval evaluation measures is considerably extended; a set of classification mea-
sures is also introduced.

• We consider two novel ground truths, based on the domain of bioinformatics.

3 The benchmark

During years, we witness the consolidation of the idea that to have a more satisfactory answer to the
protein shape retrieval problem it is necessary to combine geometry with patterns of chemical and
geometric features [14]. For this reason, we move from the previous SHREC experiences to build a
dataset equipped of both characteristics.

3.1 The dataset

The dataset proposed for this challenge consists of 209 PDB entries, each one containing a protein
in different conformations experimentally determined via NMR measurements. This leads to about
5, 000 surfaces, annotated with physicochemical properties. Some example of proteins in different
conformational states are provided in Figure 1.

Figure 1: Example of 4 proteins in 4 different conformations (each row identifies a protein). Visu-
alization obtained by using MeshLab [15].

Model surfaces were built starting from the PDB files of proteins used in the 2019 SHREC track
[10]. These proteins were experimentally captures with the NMR technique and contain also or-
thologous structures thus making possible to consider multiple levels of similarity. NMR structures
natively include hydrogen atoms, which do not need to be modelled. Importantly, these structures
encompass a number of energetically favourable conformations of the same protein, representing
important regions of the corresponding conformational space. Each individual conformation struc-
ture was first separated into a unique PDB file. Then, its molecular surface (MS) was calculated
and triangulated by means of the NanoShaper computational tool, choosing the Connolly Solvent
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Excluded Surface model [13], and default parameters [6]. The vertices of the triangulated surfaces
were stored in OFF1 format.

Each surface model was accompanied by a file with physicochemical information, in TXT format.
Each row of the TXT file corresponds to a vertex of the triangulation in the OFF file (in the
same order); each row in the TXT file contains the physicochemical properties evaluated at the
corresponding vertex in the OFF file. An example of protein surface equipped with physicochemical
properties is provided in Figure 2: more specifically, Figure 2(a) exhibits the original triangulated
surface, while Figures 2(b-d) represent the three provided physicochemical properties as scalar values
on the protein surface.

(a) (b) (c) (d)

Figure 2: Example of protein surface (a) equipped with different physicochemical properties: elec-
trostatic potential (b), hydrophobicity (c) and presence of hydrogen bond donors and acceptors (d).
Visualization obtained by using MeshLab [15].

The dataset has been subdivided into a training and a test set (in the proportion of 70%-30%).
The distribution of the number of conformations per PDB through the training set and the test set
is shown in Figure 3.

Figure 3: Distribution of the number of conformations. The two histograms show the distributions
for the training set (left) and the test set (right).

To enrich the MS information we used the electrostatic potential, which we computed by solving
the Poisson-Boltzmann equation (PBE) via the DelPhi finite-differences-based solver [2, 16]. One
of the essential ingredients for the solution of the PBE is a good definition of the MS, which is used
to separate the high (solvent) from the low (solute) dielectric regions. In order to guarantee the
perfect consistency of the approach, we adopted a DelPhi version integrated with NanoShaper [6],
so as that the potential is evaluated on the same exact surface that separates the solute from the
solvent. Other necessary ingredients are atom radii and partial charges, which have been assigned
using the PDB2PQR tool [17].

A different kind of additional information mapped on the MS was the hydrophobicity [3] of the
residues exposed to the solvent. In our setting, we assign to each vertex of the MS the hydrophobicity
of the residue of the closest atom, on the basis of the scale given in [3]; this scale ranges from −4.5
(hydrophilic) to 4.5 (hydrophobic).

Lastly, we have computed the location of potential hydrogen bond donors and acceptors in the
MS. Firstly, vertices of the MS whose closest atom is a polar hydrogen, a nitrogen or an oxygen

1https://segeval.cs.princeton.edu/public/off format.html
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were identified. Then, a value between −1 (optimal position for a hydrogen bond acceptor) and
1 (optimal position for a hydrogen bond donor) was assigned to such vertices depending on the
orientation between the corresponding heavy atoms (see [4]).

3.2 The ground truth

The performances of the methods that participated to this SHREC contest are evaluated on the
basis of two classifications:

• PDB-based classification. In the dataset selected, there is a number of entries having different
PDB codes that contain the structures of the same protein, possibly interacting with different
molecules or having a limited number of point mutations. In these cases it can be expected that
the specific condition in which the protein system has been observed impacts on the identified
conformations and on the corresponding physicochemical properties. The first classification
rewards the techniques that are particularly good at spotting minor differences between similar
candidates; in this classification, a class is made by all the conformations corresponding to the
same PDB code. For reference, we refer to this ground truth as PDB-based classification.

• BLAST-based classification. Protein sequences fold into unique 3-dimensional (3D) structures
and proteins with similar sequences adopt similar structures [18]. Therefore, on the basis of
the similarity among the amino acids sequences, we decided to relax the strict relationship
that two surfaces are similar only if they correspond to some conformation of the same PDB
code. This choice is based on observations coming from the domain of bioinformatics, where a
sequence similarity beyond a value of about 30%, and of sufficient length, has a high likelihood
of giving rise to the same fold [18]. We derive a second classification and name it BLAST-
based classification, since BLASTP is the tool that we used to perform the sequence alignment
and to calculate the sequence similarity [19]. The BLAST-based classification represents a
classification less fine than the PDB-based one, because it is simply based on the similarity
between conformations; in this way, not only the different NMR conformations found in the
same PDB file, but also these of the same protein in different PDB files or these pertaining
to its mutated isoform(s) may be grouped together. The BLAST-based classification presents
four levels. In this setting, two structures are:

– Extremely similar (similarity level 3), i.e. corresponding to the same protein or very
closely related protein isoforms: when they have a sequence similarity greater than 95%
on at least the 95% of both sequences.

– Highly related (similarity level 2), i.e. they are expected to have a similar fold as a whole
or in a sub-domain (above what in the bioinformatics jargon is called the “twilight zone”):
when they have a sequence similarity greater than 35% and at least 50 aligned residuals,
but they do not satisfy the conditions of the previous point.

– Similar (similarity level 1), i.e. loosely related proteins: when they have a sequence
similarity in [28%, 35%] and at least 50 aligned residuals.

– Dissimilar (similarity level 0), i.e. unrelated proteins: when none of the previous condi-
tions holds.

To compare the performance of the methods that make use of the physicochemical properties
against the simple geometric models, we asked the participants to perform two tasks:

Task A: only the OFF files of the models are considered (i.e. only the geometry is considered);

Task B: in addition to the geometry, the participant is asked to also consider the TXT files (physic-
ochemical matching).

For a given query, the goal of this SHREC track is twofold: for each Task (A and B), to retrieve
the most similar objects (retrieval problem) and to classify the query itself (classification problem).
The closeness of the retrieved structures with the ground truth might be evaluated a-priori on the
basis of their PDB code or of their sequence similarity (4-level BLAST classification) [18].
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Retrieval problem Each model is used as a query against the rest of the dataset, with the goal
of retrieving the most relevant surface. For the retrieval problem, a dissimilarity 1, 543 × 1, 543
matrix was required, each element (i, j) recording the dissimilarity value between models i and j in
the whole dataset. The relevance with respect to the query of a retrieved surface is evaluated with
both the PDB and BLAST classifications previously described.

Classification problem PDB-based and BLAST-based classifications define on the training and
on the test sets a decomposition into subsets (that will be referred as communities) consisting of
conformations grouped together on the basis of their similarity. The goal of the classification problem
is to assign each query of the test set to the correct community with respect to the decompositions
induced by the PDB-based and the BLAST-based classifications, respectively.

In the case of the PDB-based classification, each community consists of all the conformations
corresponding to the same PDB code.

In the case of the BLAST-based classification, different community decompositions are obtained
depending on the choice of the previously described similarity levels. For each level ` (with ` =
0, 1, 2, 3), it is possible to retrieve a decomposition into communities referred as BLAST-based
community decomposition of level `. Independently from the chosen level `, each community of the
BLAST-based decomposition of level ` is an aggregation of communities induced by the PDB-based
classification.

Having fixed a level `, the communities of the BLAST-based decomposition of level ` are com-
puted as it follows. Let us consider a graph G` for which each node represents a PDB-based
community (i.e. models corresponding to the same PDB code) and such that there exists an edge
(u, v) whenever the structures u and v have a similarity level greater than or equal to `. Moreover,
each edge (u, v) is endowed with a weight w(u, v) coinciding with the percentage of sequence simi-
larity between u and v. The clustering technique for retrieving the BLAST-based decomposition of
level ` adopts the following recursive strategy which has been specifically designed for the considered
framework but it is inspired by classic methods for community detection [20]. Given G`, compute
the connected components of G` obtained after the removal the edge of G` of minimum weight (and
so representing a low similarity score between models). A connected component C is declared a
BLAST-based community of level ` if C is a complete graph (i.e. given any two of its nodes there
is an edge connecting them). Otherwise, keep removing edges (prioritising the ones with the lowest
weight), compute the connected components and denote them as BLAST-based community of level
` whenever they are complete. The procedure ends when all the nodes have been inserted in a
community.

It is worth to be noticed that the completeness condition has been imposed in order to obtain
transitive BLAST-based communities. In this way, we have the theoretical guarantee that any two
structures belonging to the same BLAST-based community of level ` have necessarily a similarity
level greater than or equal to `. Another relevant aspect to be mentioned is related to the fact that,
for ` = 3, the proposed algorithm does not remove any edge since the connected components of
the graph G` are already complete (see Figure 4). Trivially, the same happens also for ` = 0 since
the BLAST-based decomposition of level 0 produces just a unique “giant” community consisting of
the entire dataset. Finally, please notice that, by increasing the value `, one obtains BLAST-based
decompositions consisting of finer communities.

Given the PDB and BLAST ground truth for the classification problem, the classification per-
formance of each run is obtained through the nearest neighbour (1-NN) classifier derived from the
dissimilarity matrices used in the retrieval problem. For each run, the output consists of two clas-
sification arrays for the test set, with 65 labels/communities for the PDB-based decomposition and
with 31 labels/communities for the BLAST-based decomposition of level 3 (see Figure 4). In these
arrays, the element i is set to j if i is classified in class j (that is, the nearest neighbour of the
surface i belongs to class j).
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Figure 4: The graph G3 associated with the test set. Each node represents a community induced by
the PDB-based classification, while an edge between two nodes occurs whenever the corresponding
structures are extremely similar (i.e. they have similarity level equal to 3). Since they are all
complete graphs, each connected component of G3 represents a community of the BLAST-based
decomposition of level 3.

3.3 Evaluation measures

We here presents the retrieval and classification evaluation measures that were selected for this
benchmark.

3.3.1 Retrieval evaluation measures

3D retrieval evaluation has been carried out according to standard measures, namely precision-recall
curves, mean Average Precision (mAP), Nearest Neighbour (NN), First Tier (1T), Second Tier (2T),
Normalized Discounted Cumulated Gain (NDCG) and Average Dynamic Recall (ADR) [21, 22, 23].

Precision-recall curves and mean average precision Precision and recall measures are com-
monly used in information retrieval [22]. Precision is the fraction of retrieved items that are relevant
to the query. Recall is the fraction of the items relevant to the query that are successfully retrieved.
Being A the set of relevant objects and B the set of retrieved object,

Precision =
|A ∩B|
|B|

, Recall =
|A ∩B|
|A|

.

Note that the two values always range from 0 to 1. For a visual interpretation of these quantities we
plot a curve in the reference frame recall vs. precision. We can interpret the result as follows: the
larger the area below such a curve, the better the performance under examination. In particular,
the precision-recall plot of an ideal retrieval system would result in a constant curve equal to 1. As
a compact index of precision vs. recall, we consider the mean Average Precision (mAP), which is
the portion of area under a precision recall-curve: the mAP value is always smaller or equal to 1.

e-Measure The e-Measure (eM) derives from the precision and recall values for a pre-defined
number of retrieved items (32 in our settings), [22, 24]. Given the first 32 items for every query, the
e-Measure is defined as e = 1

1
P
+ 1

R

, where P and R represent the precision and recall values over them.
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Nearest Neighbour, First Tier and Second Tier These evaluation measures aim at checking
the fraction of models in the query’s class also appearing within the top k retrievals. Here, k can
be 1, the size of the query’s class, or the double size of the query’s class. Specifically, for a class
with |C| members, k = 1 for the Nearest Neighbour (NN), k = |C| − 1 for the First Tier (1T), and
k = 2(|C| − 1) for the Second Tier (2T). Note that all these values necessarily range from 0 to 1. In
our this contest, we estimate the NN, FT, ST, and e values using the tools provided in the Princeton
Shape Benchmark [24].

Average dynamic recall The idea is to measure how many of the items that should have ap-
peared before or at a given position in the result list actually have appeared. The Average Dynamic
Recall (ADR) at a given position averages this measure up to that position. Precisely, we adapt the
definition of the ADR to our four level BLAST classification, slightly modifying the definition used
in previous datasets equipped with a multi-level classification, such as [25, 26]. For a given query
let A be the extremely similar (SR) items, B the set of highly related (HR) items, and let C be the
set of similar (MR) items. Obviously A ⊆ B ⊆ C. The ADR is computed as:

ADR =
1

|C|

|C|∑
i=1

ri,

where ri is defined as:

ri =


|{SR items in the first i retrieved items}|

i , if i ≤ |A|;
|{HR items in the first i retrieved items}|

i , if |A| < i ≤ |B|;
|{MR items in the first i retrieved items}|

i , if i > |B|.

Normalized discounted cumulated gain For its definition we assume that items with highest
similarity score according to the BLAST classification are more useful if appearing earlier in a search
engine result list (i.e. are first ranked); and, the higher their level of similarity (extremely similar,
highly related, similar and dissimilar) the higher their contribution, and therefore their gain. As a
preliminary concept we introduce the Discounted Cumulated Gain (DCG). Precisely, the DCG at a
position p is defined as:

DCGp = rel1 +

p∑
i=2

reli
log2(i)

,

with reli the graded relevance of the result at position i. Obviously, the DCG is query-dependent. To
overcome this problem, we normalize the DCG to get the Normalized Discounted Cumulated Gain
(NDCG). This is done by sorting elements of a retrieval list by relevance, producing the maximum
possible DCG till position p, also called ideal DCG (IDCG) till that position. For a query, the
NDCG is computed as

NDCGp =
DCGp

IDCGp
.

It follows that, for an ideal retrieval system, we would have NDCGp = 1 for all p.

3.3.2 Classification performance measures.

A set of popular performance metrics in statistical classification is derived by the so-called confusion
matrix [27]. A confusion matrix is a square matrix whose order equals the number of classes in the
dataset (in our case, in the test set). The diagonal element CM(i, i) gives the number of items (i.e.
molecular surfaces, in our context) which have been correctly predicted as elements of class i. On
the contrary, off-diagonal elements count items that are mislabeled by the classifier: in other words,
CM(i, j), with j 6= i, represents the number of items wrongly labeled as belonging to class j rather
than to class i. The classification matrix CM of an ideal classification system is a diagonal matrix,
so that no misclassification occurs.
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Sensitivity and specificity These statistical measures are among the most widely used in diag-
nostic test performance. Sensitivity, also called True Positive Rate (TPR), measures the proportion
of positives which are correctly identified as such (e.g., the percentage of dogs correctly classified
as dogs). Specificity, or True Negative Rate (TNR), measures the proportion of negatives which
are correctly identified as such (e.g., the percentage of non-dogs correctly classified as non-dogs). A
perfect classifier is 100% sensitive and 100% specific.

Positive and negative predicted values Specificity and sensitivity tell how well a classifier can
identify true positives and negatives. But what is the likelihood that a test result is a true positive
(or true negative) rather than a false-positive (or a false-negative)? Positive Predictive Rate (TPR)
measures the proportion of true positives among all those items classified as positives. Similarly,
Negative Predictive Rate (NPR) measures the proportion of true negatives among all those items
classified as negatives.

Accuracy This metric measures how often the classifier is correct: it is the ratio of the total
number of correct predictions to the total number of predictions.

F1 score It takes into account both PPV and TPR, by computing their harmonic mean: this allows
to consider both false positive and false negatives. Therefore, it performs well on an imbalanced
dataset.

4 Description of methods

Eight groups from five different countries registered to this track. Five of them proceeded with
the submission of their results. Each participant was allowed to send us up to three runs for each
task, in the form of a dissimilarity matrix per run. All but one submitted three runs per task; one
participant delivered three runs for Task A and one for Task B. Overall, Task A has gathered 15
runs, while Task B has 13 runs.

In the following, we will denote the methods proposed by the five participants as P1, P2, . . . ,
P5.

Specifically,

• method P1 has been proposed by Andrea Giachetti;

• method P2 has been proposed by Tunde Aderinwale, Charles Christoffer, Woong-Hee Shin,
and Daisuke Kihara;

• method P3 has been proposed by Yonghuai Liu, Ekpo Otu, Reyer Zwiggelaar, and David
Hunter;

• method P4 has been proposed by Evangelia I. Zacharaki, Eleftheria Psatha, Dimitrios Laskos,
Gerasimos Arvanitis, and Konstantinos Moustakas;

• method P5 has been proposed by Huu-Nghia Nguyen, Tuan-Duy Nguyen, Vinh-Thuyen Nguyen-
Truong, Danh Le-Thanh, Hai-Dang Nguyen, and Minh-Triet Tran.

Lastly, Andrea Raffo, Ulderico Fugacci, Silvia Biasotti, and Walter Rocchia have been the organizers
of the SHREC 2021 track on retrieval and classification of protein surfaces on the basis of their
geometry and physicochemical properties.

The remaining part of this section is devoted to describe in detail the five proposed methods.
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4.1 P1: Joint histograms of curvatures, local properties and area projection
transform

4.1.1 Adopted descriptors and overall strategy

The proposed approach is based on the estimation of simple surface- and volume-based shape de-
scriptors, and on their joining with the local surface properties. In a previous contest [28], it has
been shown that simple joint (2D) histograms of min/max curvatures (JHC) are extremely effective
in characterizing patterns of elements with approximate spherical symmetry and variable size. On
the other hand, in a past contest on protein retrieval [10], we used a volumetric descriptor called the
Histograms of Area Projection Transform (HAPT) [29] to characterize radial symmetries at different
scales providing good results.

In method P1, we tested both descriptors and their combination to evaluate the similarity of
the shapes included in the test dataset. Furthermore, having the local information on the physic-
ochemical properties, we can improve the characterization creating joint (3D) histograms counting
elements with selected properties in a space characterized by 2 curvature axes and a “property”
dimension. Finally, having a labelled dataset, we evaluated the possibility of applying to the de-
scriptor a trained dimensionality reduction based on Linear Discriminant Analysis, e.g., projecting
the high-dimensional joint histogram descriptors onto a lower dimensional space maximizing the
separation of the training set classes.

A visual description of the pipeline adopted in method P1 is depicted in Figure 5.

Figure 5: A graphical representation of the strategy adopted by group P1 to obtain untrained
and trained descriptors. Joint histograms are obtained from the surface-based descriptors, shape
only (principal curvature) and attributes (labels derived from K-means clustering of the provided
vectors, K = 50). Simple histograms are obtained from the volumetric symmetry descriptor (APT).
Histograms are concatenated in different ways to obtain the different descriptors compared with the
Jeffrey Divergence. Trained descriptors are obtained by estimating LDA mappings of the descriptors
of the training set shapes with known labels. The mappings are used to perform dimensionality
reduction on the test set elements.

4.1.2 Task A

Joint Histograms of Curvature A basic technique to distinguish surfaces endowed with multiple
spherical bumps is to measure curvature values. Minimum and maximum curvatures have been
estimated on the mesh vertices at two different scales. The ranges of min curvature and max
curvature have been subdivided in 10 bins estimating the joint histogram (size 100). Concatenating
the two joint histograms corresponding to the two smoothing levels a final descriptor with 200
elements is obtained. Histograms are compared with Jeffrey divergence [30] to obtain dissimilarity
matrices.
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Histograms of Area Projection Transform For the mathematical formulation of the technique
please refer to the original paper [29]. In a few words, the internal part of the shape is discretized on
a regular grid and for each voxel and for a set of discrete radius values r, it is counted how much of
the object surface can be considered approximately part of a sphere of radius r centered in the voxel.
Looking at some example protein shapes, we decided to apply the technique with voxel size 0.3 and
9 values of r ranging from 0.6 to 3.0 with step 0.3. Then, we binarized the histograms with 12 bins
and concatenated the histograms computed at the 9 scales. This resulted in a HAPT descriptor with
108 elements which have been finally concatenated into a 308-element shape descriptor capturing
the distribution of curvatures on the surface and radial symmetry inside the volume. The Jeffrey
divergence [30] was used to obtain from them the dissimilarity matrices.

Trained descriptors As the data comes with a labelled training set, it is possible to use it to
train the dissimilarity metric to maximally separate elements with different labels. This has been
achieved by using the Fisher’s Linear Discriminant Analysis [31], projecting the original descriptor
onto a C − 1 dimensional space (where C is the number of classes in the training set) maximizing
the ratio of the variance between the classes to the variance within the classes. LDA mapping
for high-dimensional descriptors has been trained on the training set and used on the test data to
evaluate the effectiveness of the approach.

For Task A, three different runs adopting method P1 and generated as it follows have been
proposed.

• Run 1 (JHC): generated by the Joint Histograms of Curvature (two different levels of smooth-
ing) compared with the Jeffrey divergence.

• Run 2 (JHC HAPT): generated by concatenating Joint Histograms of Curvature and His-
tograms of Area Projection Transform compared with Jeffrey divergence.

• Run 3 (JHC HAPT LDA): generated by concatenating JHC and HAPT descriptors mapped
with trained LDA projection.

4.1.3 Task B

In method P1, we did not use any prior related to the knowledge of the meaning of the attributes
associated with the mesh vertices and we just considered them as generic components of a 3D
feature space. The adopted strategy has been to partition this feature space in a set of regions, and
estimating for each model histograms counting the number of vertices with features falling in each
region. To determine a reasonable partitioning, we just applied K-means clustering with K = 50
to the all the dataset vertex attributes and extract corresponding Voronoi cells. Using 50 cells, a
50-elements histogram to describe shape features is retrieved. Joining the attribute dimension to
the two curvature dimensions, a 3D joint histogram per vertex with 10× 10× 50 = 5, 000 elements
is obtained. These Joint Histograms of Curvatures and Attributes JHCA can be directly compared
with the Jeffrey divergence. However, we also tested the combination of JHCA with HAPT and the
LDA-based dimensionality reduction.

For Task B, three different runs adopting method P1 and generated as it follows have been
proposed.

• Run 1 (JHCA): generated by the Joint Histograms of Curvature (single smoothing level)
and Attributes (50 centroids) compared with the Jeffrey divergence.

• Run 2 (JHCA HAPT): generated by concatenating Joint Histograms of Curvature and
Attributes and Histograms of Area Projection Transform compared with Jeffrey divergence.

• Run 3 (JHCA HAPT LDA): generated by concatenating JHCA and HAPT descriptors
mapped with trained LDA projection.
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4.1.4 Computational aspects

Experiments have been perfomed on a laptop with an Intel®CoreTM i7-9750H CPU running
Ubuntu Linux 18.04. The estimation of the descriptors JHC and JHCA took on average 1.5 seconds
per model using Matlab code, while the estimation of the HAPT descriptor took on average 15
seconds. Other required operations included: the descriptor comparison whose computation time
was negligible; the training of the dissimilarity metric and the LDA mapping both implemented us-
ing Matlab and requiring 1 minute in the worst case and 0.1 seconds, respectively; the partitioning
based on K-means clustering whose took approximately 30 minutes.

4.2 P2: 3D Zernike descriptor

4.2.1 Adopted descriptors and overall strategy

The approach adopted in method P2 is based on the 3D Zernike Descriptor (3DZD). 3DZD is a
rotation-invariant shape descriptor derived from the coefficients of 3D Zernike-Canterakis polyno-
mials [32].

3DZD descriptors are adopted as input of a neural network which will return a prediction of
the similarity between any pair of proteins. In a nutshell, neural networks (NN) are a class of tools
enabling the estimation of a desired function (in the current case, the similarity between proteins)
inspired by the biology of a brain. NNs can be are typically represented by a directed weighted
graph consisting of nodes, called neurons and subdivided into layers, and edges connecting neurons
of different layers. In a NN, the leftmost layer consists of the so-called input neurons, while the
rightmost nodes are called output neurons. In between, there are the hidden layers. In case a NN
has at least two hidden layers, it is called a deep neural network. Each neuron of a layer takes a
series of inputs, depending on the edges pointing to it, and transmits an activation value by the
edges linking the considered node to a different neuron multiplying this value by the weight of the
edge. Input neurons receive the features of the input variables and pass them to the next layers
while, the activation values of output neurons will form the output of the NN. The desired function
is obtained through a training process of the NN in which the weights are attained minimizing a
loss function.

We trained two types of neural network, visually depicted in Figure 6, to output a score that
measures the dissimilarity between a pair of protein shapes, encoded via the 3DZDs.

Figure 6: A graphical representation of the two types of neural network adopted in method P2
to measure the dissimilarity of protein shapes encoded via the 3DZDs. The Extractor and the
EndtoEnd models differ by presence of the feature comparator layer (depicted inside the blue square
brackets).

• The first framework (Extractor model) was previously used in a SHREC track on multi-domain
protein shape retrieval, see [11]. The network is structured into multiple layers: an encoder
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layer, which converts 3DZD to a vector of 150 features, has 3 hidden units of size 250, 200,
and 150, respectively; a feature comparator layer that computes the Euclidean distance, the
cosine distance, the element-wise absolute difference, and product; and a fully connected layer
with 2 hidden units of size 100 and 50, respectively. There are multiple hidden units in each
layer. The ReLU activation function is used in all layers, except for the output of the fully
connected layer where the sigmoid activation function has been preferred, This choice allows
to interpret the output as the probability, for any pair of proteins, to be in the same class.

• The second framework (EndtoEnd model) is similar to the first one, except for the removal
of the feature comparator layer. The output of the encoder layer directly flows into the fully
connected layer and the network is trained end-to-end.

The network was trained on the training set of 3, 585 protein structures that was provided by the
organizers. The training set was further split into a training set and a validation set, by using
respectively 80% and 20% of data (i.e. 2, 868 conformations for training and the remaining 717 for
validation). From the 717×717 classification matrix of the validation set, 10, 436 protein pairs were
extracted for the purpose of network validation.

A third attempt is made via a simple Euclidean model, where the Euclidean distance between
pairs of proteins has been computed directly from the generated 3DZD of the pairs.

4.2.2 Task A

The performance of the networks on the validation set was used to determine models to use for
inference on the test set. Training for Task A was performed on the 3DZDs of shape files only.

For Task A, three different runs adopting method P2 and generated as it follows have been
proposed.

• Run 1 (extractor): generated by the Extractor model.

• Run 2 (extractor e2e): generated by the average between Extractor and EndtoEnd models.

• Run 3 (extractor eucl): generated by the average between Extractor and Euclidean models.

4.2.3 Task B

As for Task A, model selection was carried out on the validation set. Training was performed on
input files that concatenate 3DZD of shape with 3DZDs of the three physicochemical properties.

For Task B, three different runs adopting method P2 and generated as it follows have been
proposed.

• Run 1 (extractor): generated by the Extractor model.

• Run 2 (extractor e2e): generated by the average between Extractor and EndtoEnd models.

• Run 3 (extractor e2e eucl): generated by the average between Extractor, EndtoEnd, and
Euclidean models.

4.2.4 Computational aspects

For each protein in the dataset, we performed some pre-processing step to convert the OFF and
TXT files provided by the organizers. The mesh and property files were converted to a volumetric
skin representation (the Situs file) where points within 1.7 grid intervals were assigned with values
interpolated from the mesh [33]. For the electrostatic features, the interpolated values were the
potentials at the mesh vertices. For the shape features, a constant value of 1 was assigned to grids
which overlap with the surface. The resulting Situs files were then fed into the EM-Surfer pipeline
[34] to compute 3DZD. It took approximately 12− 13 minutes to pre-process each file. Generating
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the 3DZD descriptors took averagely 8 seconds for each protein on an Intel®Xeon®CPU E5-2630
0 @ 2.30GHz.

For Task A, training the extractor model took averagely 6 hours and the EndtoEnd model took
about 11 hours. For Task B, training the extractor model took about 9 hours and approximately
14 hours for the EndtoEnd model. Training was performed on a Quadro RTX 800 GPU.

The 3DZD model took averagely 0.22 seconds to predict the dissimilarity between two proteins,
using TitanX GPU. The Euclidean model took averagely 0.17 seconds per prediction. Finally, the
averaging of the three matrices was virtually instant and negligible.

4.3 P3: Hybrid Augmented Point Pair Signatures and Histogram of Processed
Physicochemical Properties of Protein molecules

4.3.1 Adopted descriptors and overall strategy

Considering the twofold nature of this challenge, in P3 we adopted two separate retrieval strate-
gies for the two different tasks. For Task A, we used the Hybrid Augmented Point Pair Signature
(HAPPS) [35], a 3D geometric shape descriptor. For Task B, we adopted the Histogram of Pro-
cessed Physicochemical Properties of Protein molecules descriptor following an Exploratory Data
Analysis (HP4-EDA). Both the strategies rely on traditionally hand-crafted feature extraction from
the respective datasets, using the knowledge-based approach (i.e. non-learning nor data-driven
approach).

The goal of the proposed methods (HAPPS and HP4-EDA) is to provide simple, efficient, robust
and compact representations, describing both the 3D geometry and physicochemical properties of
protein surfaces, using statistically-based descriptors. Visual descriptions of the pipelines adopted
in method P3 for Tasks A and B are depicted in Figures 7 and 8, respectively.

Figure 7: A graphical representation of the strategy adopted in method P3 for Task A.

4.3.2 Task A

Each 3D geometrical protein surface in this challenge contains an average of 35, 000 vertices and
70, 000 triangular faces. The HAPPS method (first introduced in [35]) involves a combination of local
and global descriptors. Specifically, the Augmented Point Pair Feature Descriptor (APPFD), and
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Figure 8: A graphical representation of the strategy adopted in method P3 for Task B.

the Histogram of Global Distances (HoGD). The proposed HAPPS method is particularly interested
in providing a robust, compact, and accurate representation of protein structures with as low as N
points (i.e., [N × 3]) sampled from the triangular mesh surface of each input protein model, where
N = 3, 500 and N = 4, 500.

Histogram of Global Distances (HoGD) This descriptor involves binning a set of normalized
vectors δi = ‖Pc − pi‖ between the centroid Pc of a given 3D object to all other points, pi on
its surface into a 1D histogram with

√
P ≈ 65 bins, normalized to give HoGD, following some

pre-processing steps, where pi ∈ P and P is a 3D point cloud object, with a number of points,
N = 3, 500 or N = 4, 500. Such normalized vectors δi are regarded as global features whose
distribution (histogram) is capable of expressing the configuration of the entire shape relative to its
centroid, and is a rich description of the global structure of the shape. Pre-processing also involves
applying uniform scale, S in all direction to all points in P , such that the root mean square (RMS)
distance of each point to the origin is 1, and centering P on its centroid, i.e. P = pi − Pc.

Augmented Point Pair Feature Descriptor (APPFD) The APPFD describes the local ge-
ometry around a point, pi = [pix, piy, piz] in P . Its computation involves a 5-step process: (i)
pointcloud sampling and normals estimation; (ii) keypoint, pki determination; (iii) local surface
region (i.e. LSP), Pi selection; (iv) Augmented Point Pair Feature (APPF) extraction per LSP; (v)
bucketing of locally extracted 6-dimensional APPF into a multi-dimensional histogram, with the
number of bins, bAPPFD = 8 in each feature-dimension which is then flattened and normalised to
give 86 = 262, 144-dimensional single local descriptor (APPFD) per 3D shape.

Finally, HoGD is combined with APPFD to give HAPPS, with a final feature vector of dimension
262, 144 + 65 = 262, 209 (see Figure 7). For more details regarding the HoGD, APPFD and HAPPS
algorithms, the reader is referred to [35, 11].

The APPFD is characterised by four key parameters, which are r, vs, bAPPFD, and N . r is
the radius value used by the nearest-neighbour algorithm to determine the number of points in a
LSP, and is directly proportional to the size of LSP. The voxel-size parameter, vs determines the
size (big or small) of an occupied voxel-grid by the pointcloud down-sampling algorithm [36]. It is
inversely proportional to the number of sub-sampled points (used as keypoints). r and vs influence
the overall performances of the APPFD/HAPPS.

For Task A, three different runs adopting method P3 and generated as it follows varying the
values of r, vs, and N have been proposed.

• Run 1 (HAPPS): generated by choosing r = 0.40, vs = 0.20, and N = 4, 500.

• Run 2 (HAPPS): generated by choosing r = 0.50, vs = 0.30, and N = 4, 500.

• Run 3 (HAPPS): generated by choosing r = 0.50, vs = 0.30, and N = 3, 500.

Parameters bAPPFD = 8 and bHoGD = 65 remained the same for all three runs. Overall, the
Cosine distance metric between final vectors gave good approximation of the similarity between the
HAPPS for Task A datasets.
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4.3.3 Task B

The HP4-EDA method involves a descriptive statistics (DS) of the 3-dimensional physicochemical
variables or properties, following exploratory data analysis (EDA) of each of these properties.

Let the three physicochemical properties of the dataset in Task B be denoted as f1, f2, and
f3, for Electrostatic Potential, Hydrophobicity, and Position of potential hydrogen bond donors and
acceptors, respectively. First, we carried out an in-depth EDA of the physicochemical properties
to investigate their values distribution, followed by data pre-processing (majorly outliers detection
and removal). Next, we investigated the performances of combining some DS, such as the mean,
variance, first and third interquartile values, and correlation coefficients between these variables as
a final descriptor, including the construction of histograms of these variables, post-processing (see
Figure 8).

Outliers detection and removal Considering that the presence of outliers would adversely affect
the performance of any retrieval system, we checked for the presence of outliers in each of f1, f2,
and f3. Unlike f2, the f1 and f3 variables contain lots of outliers with f3 having almost negligible
amount of useful data. Empirically, the presence of outliers in a distribution may not necessarily
make the observation a “bad data”. For outliers detection and removal, we adopted the Interquartile
Range (IQR) Score, represented by the formula IQR = Q3 − Q1, which is a measure of statistical
dispersion calculated as the difference between lower (Q1) and upper (Q3) percentiles. Here, any
observation that is not in the range of (Q1 − 1.5IQR) and (Q3 + 1.5IQR) is an outlier, and can be
removed. We further investigated the effect of using Q1 = 10th or 25th, and Q3 = 75th or 90th and
recorded better performances with the later option where Q1 = 10th and Q3 = 90th for the training
set, which parameter settings were also applied to the test data.

For Task B, three different runs adopting method P3 and generated as it follows by applying
statistical description techniques for the extraction of statistical features and/or construction of final
descriptors from the pre-processed data have been proposed.

• Run 1 (HP4-EDA): generated by binning each pre-processed physicochemical variable into
a 1D histogram (using 150 bins) and combining the final histograms as the final descriptor for
each input physicochemical surface where matching between two descriptors is done using the
Earth Mover’s Distance (EMD) metric.

• Run 2 (HP4-EDA): generated by binning each of the pre-processed values of f1, f2, and f3
into a multi-dimensional histogram, with 5 bins in each feature dimension, where the flattened
and normalised histogram frequencies represent the final descriptor for a single input data and
descriptors are matched using the Kullback Liebner Divergence (KLD) metric.

• Run 3 (HP4-EDA): generated by first normalizing each of the feature (variable) dimensions
or columns, and selecting their mean, variance, Q1, Q3, and some correlation coefficient values
between f1, f2, and f3 to represent a single input physicochemical surface, with a total of 14-
dimensional feature vector, and combining the outcome of Run 1 to have a feature vector of
dimension 14 + (150× 3) = 464 as a final descriptor representing a single input.

4.3.4 Computational aspects

For Task A, the HAPPS method has been implemented in Python 3.6 and all experiments have been
carried out under Windows 7 desktop PC with Intel Core i7-4790 CPU @ 3.60GHz, 32GB RAM. It
took on average, 0.3 and 20.0 seconds to sample point cloud and estimate normals from 3D mesh,
and extract features and compute HAPPS, respectively. Matching 1, 543×1, 543 testing set HAPPS
descriptors took 3, 212.3 seconds using the Cosine metric, which implies an average of 2.1 seconds
to match any two HAPPS.

For Task B, the HP4-EDA method has been implemented in Python 3.6 and all experimental run
have been performed on 64-bit Windows 10 notebook, Intel Core(TM) i3-5157U CPU @ 2.50GHz,
8GB RAM. The extraction of the features and the computation of the HP4-EDA descriptors took
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an average of 0.01 seconds. Additionally, it took 322.5 seconds to match 1, 543 × 1, 543 HP4-EDA
descriptors for the testing dataset with both the EMD and KLD distance metrics, an average of 0.2
seconds to match two HP4-EDAs.

4.4 P4: Global and Local Feature (GLoFe) fit

4.4.1 Adopted descriptors and overall strategy

The strategy adopted in method P4 is based on a direct approach. Depending on the track, a
collection of local and global features have been calculated. For each feature vector f , a dissimilarity
matrix df has been computed, while their weighted combination produced the total dissimilarity
matrix. The pipeline of the adopted strategy is depicted in Figure 9.

Figure 9: Processing pipeline of the strategy adopted in method P4. It includes extraction of multiple
global and local shape descriptors, non-linear dimensionality reduction (NL-DR), calculation of
pairwise distances, and fusion of the obtained dissimilarity matrices.

The features used for Task A have been 3D shape descriptors from surface unfolding, a shape
index describing local curvature, the volume of each protein, and the size of an encompassing
bounding box. Differently, the ones taken into account for Task B have been global histogram
characteristics of the three provided physicochemical properties.

Using the Euclidean distance normalized by the standard deviation, we calculated the matrices
df that indicate the pairwise distance between pairs of observations, for each geometric or physic-
ochemical feature f . For some of them, we slightly modified the distance value by examining the
inverse consistency of mapping. Specifically, for each protein structure j, we identified the first k-
Nearest Neighbours, i.e. k ∈ N(j), where N denotes the set of neighbours. For each k, we examined
whether j ∈ N(k). If true, the forward and inverse retrieval was consistent, thus the certainty in
estimation of pairwise similarity between j and k was considered high. In this case, we increased by
a factor, α, the dissimilarity value in d(j, k). The values used in the experiments were |N | = 5 for
both forward and inverse mapping and α = 0.3. The final distance matrix d was constructed from a
linear combination of the individual dissimilarity matrices, i.e. d =

∑
wf · df . where wf is a weight

determining the contribution of each feature f . The weights have been empirically estimated by
optimizing the classification performance on the training set.

The classification performance was assessed on the training set in order to allow the optimization
of the several (hyper)parameters of the methodology. As evaluation criterion, the percentage of
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proteins for which the first (or correspondingly the second) closest neighbour belonged to the same
class has been adopted.

4.4.2 Task A

For Task A, four local and global geometric features have been extracted.

3D shape descriptors from surface unfolding In order to remove translation and rotation
differences across the protein structures, for each data matrix V (j) associated with protein j, we
performed Principal Component Analysis (PCA) on the mean centered data and replace them by
their projection in the principal component space. This results in globally normalized surface data.
Since the vertex coordinates belong to 2D surfaces lying in the 3D space, a dimensionality reduction
technique to “unfold” the manifold and embed into a 2-dimensional space has been applied. For this
purpose, we used Locality Preserving Projections (LPP) [37] due to the algorithm’s stability, high
performance, and mainly its capability to preserve local (neighbourhood) structure. The embedded
data Y (j) were calculated as Y (j) = V (j) · W (j) where W (j) is the transformation matrix that
maps the set of vertices of protein j from R3 to R2. Scores in Y (j) cannot be directly used for
protein retrieval because of their high number and variable length across structures. Thus, we
used as data representation the multi-variate kernel density estimate, pY (j) ∈ Rb1×b2 , where b1
and b2 are the number of bins (common for all proteins) for the two columns of Y (j), respectively.
Then, since the obtained kernel density maps were sometimes anti-symmetric, we augmented the
whole dataset by horizontally and vertically flipping pY (j) resulting in 4 replicates for each protein.
Finally, the 4 replicates of pY (j) for all proteins were linearized and concatenated in a big data
matrix, in order to learn the manifold of different proteins and their conformations. The non-
linear dimensionality reduction technique t-distributed Stochastic Neighbour Embedding (t-SNE)
[38] was used to calculate 5 scores that model each protein structure in the lower dimensional
space by retaining data similarity as much as possible. For indexing purposes, the distance of
protein structure j to some other protein structure was defined as the smallest distance across the
4 replicates.

Shape index The third incorporated geometric feature is the shape index which was part of the
first pre-processing phase of MaSIF [14], a network that combines geometric and physicochemical
properties into a single descriptor. The shape index describes the shape of the surface around each
vertex with respect to the local curvature, which is calculated in a neighbourhood of geodesic radius
12Å around it. The proposed neighbourhood size was chosen empirically. The shape index of vi is
defined according to

2

π
tan−1

(k1 + k2
k1 − k2

)
where k1, k2 (with k1 ≥ k2) are the principal curvature values in vi’s neighbourhood. High shape
index values imply that vi’s neighbourhood is highly convex while lower values indicate that is highly
concave.

Volume Since the volume of a protein does not significantly change when the protein obtains a
different conformation, it has been also used as a feature. Although this feature helps to reduce
some possible matches, it has low specificity because the range of volumes across different protein
classes overlaps for many of them. Moreover, volume cannot be accurately calculated for the very
few protein structures which contain holes.

Global scale In order to characterize global scale of the protein, we fitted a bounding box on
the protein surface defined by 8 vertices in the 3D space. We used as global scale descriptor the 3
eigenvalues of the square matrix produced by multiplying the 8× 1 vector by its transpose.

For Task A, three different runs adopting method P4 and generated as it follows by a linear
combination of the individual dissimilarity matrices of four separate geometric descriptors with
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weights have been proposed. Specifically, w1, w2, w3, and w4 refer to unfolded surface, volume,
shape index, and bounding box, respectively.

• Run 1 (GLoFe): generated by choosing w1 = 0.22, w2 = 0.67, w3 = 0.055, w4 = 0.055.

• Run 2 (GLoFe): generated by choosing w1 = 0.22, w2 = 0.67, w3 = 0.055, w4 = 0.055
(without using inverse consistency).

• Run 3 (GLoFe): generated by choosing w1 = 0.25, w2 = 0.725, w3 = 0, w4 = 0.025 (without
using inverse consistency).

4.4.3 Task B

For each of the three provided physicochemical properties, we extracted global histogram charac-
teristics (first order statistics) that included mean intensity, standard deviation, mode of histogram
(i.e. the most frequent intensity value), kurtosis, skewness, and energy. These six features for each
of the three physicochemical properties provide global information on the distribution of gray-level
intensities. Among these 18 features, the mode for the location of hydrogen bond donors and accep-
tors assumes the same value for all proteins and so it has been discarded. Differently, the remaining
features has been merged into a 17-dimensional vector for each protein.

For Task B, three different runs adopting method P4 and generated as it follows by a linear
combination of the geometric and physicochemical dissimilarity matrices with weights have been
proposed. Specifically, w5 refers to the physicochemical dissimilarity matrix and w6 to the geometric
dissimilarity matrix produced by the corresponding run of Task A.

• Run 1 (GLoFe): generated by choosing w5 = 0.065, w6 = 0.935 (geometric dissimilarity
matrix produced by Run 1 in Task A).

• Run 2 (GLoFe): generated by choosing w5 = 0.065, w6 = 0.935 (geometric dissimilarity
matrix produced by Run 2 in Task A).

• Run 3 (GLoFe): generated by choosing w5 = 0.075, w6 = 0.925 (geometric dissimilarity
matrix produced by Run 3 in Task A).

4.4.4 Computational aspects

The experiments on both tracks have been carried out using an AMD Ryzen 7 3700X 8-core Processor
@3.59 GHz PC with 16 GB of RAM, except from the extraction of the surface unfolding and the
physicochemical features which have been carried out using an Intel i5-6402P @2.80 GHz CPU with
8 GB of RAM. The software has been written in Matlab 2019b.

The total time required for obtaining the results for each task in the test set is indicated in Table
1. In addition, an exhaustive search procedure (requiring 54 minutes) was followed to optimize
the weights for fusion of the different dissimilarity matrices based on the training set. Notice
that the total inference cost (illustrated in Table 1) corresponds to the time aggregated due to
sequential calculation of the different feature sets, whereas with a multi-threaded implementation it
is reasonable to expect that the total computational time would be significantly decreased.

4.5 P5: Message-Passing Graph Convolutional Neural Networks (MPGCNNs)
and PointNet

4.5.1 Adopted descriptors and overall strategy

For the meshes in each 3D model of a protein surface, in method P5 we first sampled 512 points on
the surfaces of the meshes based on the area of the meshes. Because a sampled point might not be
an original vertex in the 3D meshes, the original physical and chemical properties are not valid for
newly sampled points. To generate physical and chemical properties for a sampled point p, trilinear
interpolation has been performed from the properties of the three vertices forming the face that p is
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Table 1: Computational times required for Tasks A and B by method P4.

Task Time (mins)

A

Surface unfolding
ntestS = 1, 543 986
ntrainS = 3, 585 2,290

Augment & DR 83
Volume 961

Shape index 85
Global scale 284

Dissimilarity matrix calculation 0.005
Total time 4,689

B
Physicochemical features 1

Dissimilarity matrix calculation 0.001
Total time 4,690

on. Then, to re-assign the topological structures for sampled points, each node has been connected
with their k-Nearest Neighbours based on their original coordinates choosing k = 16.

In method P5, we adopted a deep learning strategy by exploiting the availability of protein class
labels to optimize the representation of protein surfaces with and without textures. The chosen
strategy is based on the use of graph neural networks (GNNs). GNNs are deep learning based
methods that, unlike classic NNs, operate on a graph domain rather than on Euclidean domains.
Remarkable advancements in NNs can be achieved by including in the network hidden layers that
perform convolutions. In such a case, a neural network will be called convolutional neural net-
work (CNN) or graph neural network (GNNs) in the specific considered case. In particular, we
designed message-passing graph convolutional neural networks (MPGCNNs) with the Edge Con-
volution paradigm [39]. A visual description of the pipeline adopted in method P5 is depicted in
Figure 10.

N
 x

 6 K-NN graph 
transform

Dynamic 
EdgeConvN

 x
 6 Dynamic 

EdgeConvN
 x

 6
4 Dynamic 

EdgeConv

N
 x

 1
2

8

Dynamic 
EdgeConv

N
 x

 2
5

6

Dynamic 
EdgeConv

N
 x

 1
0

2
4

256

256

N
 x

 2
5

6

M
LP

 

Fu
lly

-c
o

n
n

ec
te

d

C

N
 x

 5
1

2

5
1

2

M
LP

 

2
5

6

5
1

2
Mean-pool

Max-pool

(a) Dynamic Edge Convolutional Neural Network

N
 x

 6 K-NN graph 
transform N

 x
 6

MLP MLP

N
 x

 2
56

N
 x

 2
5

6

25
6Max-pool

F
ul

ly
-c

o
nn

e
ct

ed

C

(b) PointNet

Figure 10: The summary of the graph neural networks employed in method P5 optimized over the
classification of the training set. The depicted pipelines are used for the geometry with physico-
chemical properties tasks, where a graph has N nodes and each node has 6 initial features. For Task
A, there are only 3 initial node features, which are the spatial coordinates of points. After training,
the 256-dimension vector before the fully-connected layer is used for all the tasks.

Edge convolution In the framework of Task A, the initial node features are the coordinates of
sampled points, while in the setting of Task B, the features are concatenated tuples of coordinates
and interpolated physicochemical properties. Each protein surface is represented by a k-Nearest
Neighbours graph generated in the pre-processing step with 512 vertices. The module that performs
the graph message-passing function is the Edge Convolution (EdgeConv) layer [39]. In the EdgeConv
layer, the information of a vertex i after layer l is calculated as xl+1

i = maxj∈N h(xli, x
l
j) where N is

the neighbouring vertices of vertex i and

h(xli, x
l
j) = ReLU(MLP (xli ⊕ xlj))

where ReLU is Rectified Linear Unit (in the implementation, LeakyReLU, a variant of ReLU, has
been used), MLP is a standard multi-layer perceptron (MLP), ⊕ is the concatenation operator.
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In the implementation of method P5, we adopted a dynamic variant of EdgeConv instead of the
standard EdgeConv described above. At each Dynamic EdgeConv layer, the each vertex’s k-Nearest
Neighbours is re-calculated in the feature space produced by the previous layer, before applying the
standard EdgeConv operation. After the graph is recomputed, standard EdgeConv operation is
performed. After the pre-processing phase, the vertex features first go through 4 layers of Dynamic
EdgeConv. The dimensions of output features for each vertex after these first 4 layers are 64,
64, 128, and 256, respectively. Then, the outputs of these 4 layers are concatenated to become a
512-dimensional vector for each vertex. This 512-dimensional vector is then fed through another
Dynamic EdgeConv layer, creating the output vector with 512 dimensions v. The feature vector v is
pooled using the concatenation of the outputs of a max-pooling and a mean pooling layer to generate
the first graph-level feature vector. This vector is passed through two MLP blocks with BatchNorm,
Leaky-ReLU, and Dropout layers. The retrieval tasks can then be performed by exploiting the
L2-distances between the output vectors.

PointNet Adopting the same data pre-processing procedure, we also implemented PointNet [40],
a well-known graph-based learning strategy for 3D data. In this network architecture, the vertex
features first pass through 2 message-passing modules. Each messages-passing module contains a
MLP block that uses ReLU as activation function. The module captures spatial information between
a node and its neighbours by performing subtractions between each pair of the center’s position and
its neighbour’s position. After having performed calculation, the information of a vertex i after layer
l is calculated as xl+1

i = maxj∈N h(xlj , pj , pi) where N is the neighbouring vertices of vertex i and

h(xlj , pj , pi) = ReLU(MLP (xlj ⊕ (pj − pi)))

where pj is the position of the vertex j and pi is the position of the vertex i. For a MLP block that
the vertex features pass through, its output further goes through a ReLU function. After two MLP
blocks, the feature vector is pooled using a single global max-pooling layer. Then, retrieval tasks
can be performed by the same way as with the Dynamic EdgeConv strategy.

4.5.2 Task A

For Task A, three different runs adopting method P5 and generated as it follows have been proposed.

• Run 1 (EdgeConv): generated by the Dynamic EdgeConv strategy where distances between
output vectors are L2-distances between embeddings.

• Run 2 (PointNet): generated by the PointNet strategy but choosing the number of mesh
surface sample points as 258 instead of 512.

• Run 3 (Ensemble): generated by taking the weighted average of embedding distances from
the above Dynamic EdgeConv and PointNet embedding distances. Specifically, the distances
from Dynamic EdgeConv are empirically weighted by 0.6, while those from PointNet are
weighted by 0.4.

4.5.3 Task B

For Task B, one run adopting method P5 and generated as it follows has been proposed.

• Run 1 (EdgeConv): generated by the Dynamic EdgeConv strategy where the concatenation
of spatial coordinates and properties made up of initial vertex features. The distances between
output vectors are L2-distances between embeddings.

4.5.4 Computational aspects

All of the methods have been implemented in Python 3.8, using Pytorch [41] and Pytorch Geometric
[42] libraries. The experiments have been carried out a machine with an Intel Core i7-8700K 6-core
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CPU Processor @3.70 GHz PC with 32 GB of RAM and an NVIDIA TITAN V with 12 GB of
VRAM. The training and test set’s embedding extraction used both the CPU and the GPU, whose
time is represented in Table 2. The computation of distance matrix only used the CPU and it
required approximately 15 minutes for Run 3 of Task A while just approximately 7 minutes for the
other runs.

Table 2: The (approximated) training and extraction times of employed strategies in method P5.

Task Strategy Training Test Set Extr.

A
PointNet 720 mins 0.5 mins
Dyn. EdgeConv 1,100 mins 3 mins

B Dyn. EdgeConv 1,100 mins 3 mins

5 Comparative analysis

The performances of each run presented in Section 4 are here quantitatively evaluated on the basis
of the measures described in Section 3.3. We remind the reader that: Task A refers to the mere
use of geometry, while Task B includes both geometry and physicochemical properties; for any run,
the method name and its specific settings are given in Section 4. The performance measures are
presented for both the PDB and BLAST classifications detailed in Section 3.2.

An additional analysis, reported in the supplementary material in C, is performed on a 3-level
BLAST-based classification: we introduce a further relaxation by merging the classes containing the
same proteins or their isoforms with structures of proteins that have a significant sequence similarity,
according to what introduced in Section 3.2. In this case, the BLAST-based decomposition of level
2 consists of 25 communities.

5.1 Retrieval evaluation measures

Table 3 summarizes the retrieval performances of all the runs submitted for evaluation with respect
to the PDB classification. More specifically, the table provides the following information: the Nearest
Neighbour (NN), the First Tier (1T), the Second Tier (2T), the e-measure (eM), the Discounted
Cumulated Gain (DCG), and the mean Average Precision (mAP). For each task, method and
retrieval measure, the best performance is highlighted in bold; for each task and retrieval measure,
the best performance among all methods is highlighted in red. All values are averaged for all queries.
Many methods achieve great or excellent performances. For instance:

• For Task A, 10 out of 15 runs have an NN value above 0.9, i.e. their classification rate is above
90%.

• For Task B, 11 out of 13 runs have the NN value above 0.9.

The same methods have mAP and DCG values above, respectively, 0.6 and 0.8. Precision-Recall
plots are provided in Figure 11.

For sake of conciseness, we do not list the analogous values of Table 3 and plots in Figure 11
for the BLAST classification, rather we focus on multi-level indicators, such as the ADR values and
the NDCG plots. Interpreting the elements of a query queue in terms identity or isoform, highly
related, similar and dissimilar surfaces with respect to the BLAST classification, Table 4 reports
the average dynamic recall (ADR) values for the runs of all methods. All the ADR scores, which
range from 0 (worst case) to 1 (ideal performance), are averaged over all the models in the dataset.

A more comprehensive analysis of the retrieval queue with respect to the BLAST classification
is provided by the normalized discounted cumulative gain plots in Figure 12. The NDCG measure
is represented as a function of the rank p. The NDCG values for all queries are averaged to obtain a
measure of the average performance for each submitted run. Remind that, for an ideal run, it would
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Table 3: Summary of results by method and property type (only geometry vs. geometry and
physicochemical properties) for the PDB classification. Here: NN = Nearest Neighbour, 1T = First
Tier, 2T = Second Tier, eM = e-Measure, DCG = Discounted Cumulated Gain, mAP = mean
Average Precision. For each task and for each measure, the best value for each method is in bold.
The best among them is highlighted in red.

Geometry Geometry and physicochemical characterization

method NN 1T 2T eM DCG mAP method NN 1T 2T eM DCG mAP

P1
run 1 0.837 0.605 0.778 0.504 0.845 0.675 run 1 0.982 0.873 0.951 0.685 0.971 0.922
run 2 0.947 0.815 0.940 0.654 0.947 0.877 run 2 0.989 0.922 0.979 0.714 0.985 0.958
run 3 0.927 0.729 0.884 0.597 0.921 0.806 run 3 0.585 0.364 0.518 0.306 0.670 0.414

P2
run 1 0.914 0.735 0.888 0.607 0.916 0.802 run 1 0.951 0.815 0.938 0.653 0.949 0.874
run 2 0.894 0.723 0.880 0.605 0.908 0.791 run 2 0.947 0.800 0.927 0.649 0.942 0.895
run 3 0.924 0.748 0.889 0.613 0.921 0.813 run 3 0.979 0.839 0.937 0.665 0.962 0.858

P3
run 1 0.920 0.683 0.836 0.562 0.897 0.756 run 1 0.902 0.696 0.848 0.572 0.893 0.764
run 2 0.930 0.711 0.858 0.586 0.911 0.782 run 2 0.923 0.592 0.720 0.486 0.847 0.663
run 3 0.922 0.692 0.846 0.572 0.903 0.767 run 3 0.903 0.683 0.820 0.560 0.887 0.757

P4
run 1 0.927 0.593 0.716 0.493 0.865 0.684 run 1 0.941 0.684 0.791 0.550 0.901 0.761
run 2 0.927 0.586 0.705 0.487 0.862 0.675 run 2 0.941 0.676 0.785 0.544 0.899 0.755
run 3 0.907 0.549 0.672 0.453 0.840 0.634 run 3 0.933 0.653 0.758 0.529 0.888 0.730

P5
run 1 0.755 0.537 0.734 0.468 0.806 0.603 run 1 0.718 0.532 0.731 0.466 0.798 0.602
run 2 0.437 0.300 0.477 0.263 0.633 0.358
run 3 0.713 0.494 0.699 0.435 0.783 0.563

Table 4: Summary of average dynamic recalls (ADRs) for the 4-level BLAST classification. For
each task, the best ADR for each method is in bold. The best among them is highlighted in red.

Geometry Geometry and physicochemical properties

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

run 1 0.640 0.700 0.697 0.681 0.631 run 1 0.809 0.770 0.756 0.719 0.733
run 2 0.721 0.688 0.706 0.676 0.543 run 2 0.755 0.738 0.804 0.715 -
run 3 0.729 0.670 0.699 0.660 0.641 run 3 0.635 0.770 0.751 0.704 -

be NDCG ≡ 1. The NDCG measure takes BLAST classification performances into larger account
than PDB one, as all surfaces corresponding to the same PDB code are the same protein for the
BLAST classification.

In C, we include the same multi-level indicators, namely ADR and NDCG plots, for the 3-level
BLAST classification. Since this classification aggregates communities that are extremely similar and
highly related, the ADR scores slightly increase but the overall relationships between the different
methods and runs are confirmed.

5.2 Classification performance measures

Table 5 summarizes the classification performances for both tasks A and B, when considering the
PDB classification; the confusion matrices originating such values are shown, for the sake of com-
pleteness, in Figures 13 and 14. More precisely, the table contains the following information: True
Positive Rate (TPR), True Negative Rate (TNR), Positive Predicted Values (PPV), Negative Pre-
dicted Values (NPV), Accuracy (ACC) and F1 score (F1). One fact we can immediately note is
that, maybe not surprisingly, methods that showed robustness when evaluated with the retrieval
measures yet exhibit strong performances when tested with classification measures. However, we
can additionally notice that:

• All methods have TNR higher than TPR, making them more reliable in correctly finding true
negatives rather than true positives.
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Geometry Geometry and physicochemical characterization
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Figure 11: Precision-recall curves for Task A (geometry only) and Task B (geometry and physico-
chemical properties), with respect to the PDB classification.

• All methods have NPV higher than TPV: it is more likely for these methods to be right when
reporting a negative rather than a positive.

• All methods have accuracy over 97.5%, although they are not equally “accurate” in finding
true/false positives/negatives. This a sign – rather obvious from the nature of the problem –
that positives and negatives are not in equal proportion; methods showing a greater difference
between TPR and TNR (and between PPV and NPV) are more inclined to privilege the
negatives (the predominant class) at the expense of the positives (the minor class). In our
context, accuracy is therefore an overoptimistic estimation.

• F1 score provides a “better” metric than the accuracy, in the sense that it suffers more from
imbalance.

Enriching the protein SES triangulation with physicochemical properties does not always lead to
an improvement. For example, in the third run by P1 it dramatically decreases the performances.
On the other hand, run 2 from the same method shows a marked improvement to deal with (true)
positives.

Table 6 summarizes the classification performance for both tasks A and B, when considering
the (4-level) BLAST classification; the confusion matrices originating such values are shown, for
the sake of completeness, in Figures 15 and 16. As expected, a decrease in the number of classes
leads to an improvement of the classification measures. However, it is also worth noting that this
improvement is not the same in all methods: by comparing Tables 5 and 6, one can indeed note
changes in the best run per method (and in the best overall run).
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Figure 12: Normalized discounted cumulated gain (NDCG) for Task A (geometry only) and Task
B (geometry and physicochemical properties), with respect to the 4-level BLAST classification.

The supplementary material, reported in C, includes classification measures (see Table 7) and
the corresponding confusion matrices (see Figures 17 and 18) in the case of a 3-level BLAST clas-
sification; one can notice that this latter leads to the same considerations as in the 4-level BLAST
classification.

5.3 Discussion

The methods that participated in this SHREC contest are representative of various types of ap-
proaches to the 3D object retrieval problem, ranging from purely feature-based engineered methods,
mainly based on features represented with histograms (P1, P3, and P4), to the combination of fea-
tures and dimensional reduction techniques (P1 Run 3), to deep neural networks (P2) and transfer
learning from deep graph convolutional networks (P5).

On the one hand, the retrieval performances are positive for all methods, in either the PDB or
BLAST classifications. On the other hand, the NDCG and ADR measures are specifically designed
for interpreting a multi-level dataset classification as in this case, and thus offer a complementary
evaluation of the classical retrieval measures (e.g., NN, FT, ST, precision-recall plots, etc.) and
classification measures (TPR, TNR, PPV, NPV, ACC, confusion matrices, etc.). These performance
indicators show that the highest ADR scores vary from 0.729 (geometric) to 0.809 (geometry and
pysico-chemical properties) being 1 the best possible value for the ADR: this confirms that these
approaches are good but not optimal. Similarly, the highest possible area under a NDCG curve
equals 1, while the best scores in this contribution are around 0.9 (for the Task B).

In this SHREC contest, a training dataset was explicitly provided having with the ground truth
based on the PDB classification. The surface distribution in the classes mirrored the distribution
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Table 5: Summary of statistical measures by method and property type (only geometry vs. geometry
and physicochemical properties) for the PDB-based community decomposition. Here: TPR = True
Positive Rate, TNR = True Negative Rate, PPV = Positive Predictive Value, NPV = Negative
Predictive Value, ACC = ACCuracy, F1 = F1 score. For each task and for each measure, the best
value for each method is in bold. The best among them is highlighted in red.

Geometry Geometry and physicochemical properties

method TPR TNR PPV NPV ACC F1 method TPR TNR PPV NPV ACC F1

P1
run 1 0.8373 0.9967 0.8401 0.9973 0.9941 0.8354 run 1 0.9825 0.9997 0.9860 0.9997 0.9994 0.9832
run 2 0.9475 0.9991 0.9489 0.9992 0.9983 0.9467 run 2 0.9890 0.9999 0.9921 0.9999 0.9998 0.9893
run 3 0.9274 0.9990 0.9304 0.9988 0.9974 0.9239 run 3 0.5839 0.9885 0.6086 0.9912 0.9807 0.5727

P2
run 1 0.9145 0.9979 0.9159 0.9984 0.9965 0.9119 run 1 0.9514 0.9989 0.9525 0.9992 0.9981 0.9504
run 2 0.8944 0.9975 0.8977 0.9976 0.9954 0.8931 run 2 0.9469 0.9989 0.9470 0.9991 0.9981 0.9460
run 3 0.9242 0.9983 0.9253 0.9985 0.9969 0.9222 run 3 0.9793 0.9995 0.9819 0.9996 0.9991 0.9791

P3
run 1 0.9196 0.9985 0.9205 0.9986 0.9971 0.9169 run 1 0.9015 0.9977 0.9037 0.9979 0.9957 0.9007
run 2 0.9300 0.9982 0.9333 0.9988 0.9971 0.9276 run 2 0.9216 0.9985 0.9238 0.9987 0.9974 0.9207
run 3 0.9222 0.9982 0.9258 0.9986 0.9969 0.9199 run 3 0.9015 0.9979 0.9005 0.9985 0.9966 0.8987

P4
run 1 0.9274 0.9983 0.9284 0.9987 0.9971 0.9262 run 1 0.9410 0.9987 0.9424 0.9990 0.9978 0.9406
run 2 0.9268 0.9983 0.9277 0.9987 0.9971 0.9252 run 2 0.9410 0.9988 0.9422 0.9990 0.9978 0.9409
run 3 0.9067 0.9979 0.9059 0.9983 0.9963 0.9046 run 3 0.9326 0.9984 0.9336 0.9988 0.9974 0.9323

P5
run 1 0.7537 0.9944 0.7539 0.9943 0.9892 0.7507 run 1 0.7187 0.9937 0.7215 0.9940 0.9886 0.7160
run 2 0.4362 0.9870 0.4412 0.9873 0.9754 0.4328
run 3 0.7123 0.9927 0.7109 0.9930 0.9868 0.7044

Table 6: Summary of statistical measures by method and property type (only geometry vs. geometry
and physicochemical properties) for the BLAST-based community decomposition of level 3. Here:
TPR = True Positive Rate, TNR = True Negative Rate, PPV = Positive Predictive Value, NPV =
Negative Predictive Value, ACC = ACCuracy, F1 = F1 score. For each task and for each measure,
the best value for each method is in bold. The best among them is highlighted in red.

Geometry Geometry and physicochemical properties

method TPR TNR PPV NPV ACC F1 method TPR TNR PPV NPV ACC F1

P1
run 1 0.9086 0.9949 0.9082 0.9959 0.9917 0.9069 run 1 0.9961 0.9998 0.9962 1.0000 0.9997 0.9960
run 2 0.9890 0.9996 0.9891 0.9996 0.9993 0.9888 run 2 0.9981 1.0000 0.9981 1.0000 1.0000 0.9980
run 3 0.9844 0.9996 0.9869 0.9997 0.9993 0.9840 run 3 0.8529 0.9904 0.8562 0.9931 0.9854 0.8452

P2
run 1 0.9760 0.9992 0.9766 0.9993 0.9985 0.9758 run 1 0.9929 0.9997 0.9930 0.9999 0.9996 0.9928
run 2 0.9728 0.9991 0.9746 0.9991 0.9983 0.9723 run 2 0.9909 0.9998 0.9909 0.9999 0.9997 0.9908
run 3 0.9767 0.9985 0.9770 0.9989 0.9977 0.9764 run 3 0.9987 0.9999 0.9987 1.0000 0.9999 0.9987

P3
run 1 0.9689 0.9981 0.9690 0.9985 0.9970 0.9680 run 1 0.9942 0.9996 0.9943 0.9999 0.9995 0.9942
run 2 0.9747 0.9980 0.9754 0.9989 0.9972 0.9740 run 2 0.9916 0.9997 0.9921 0.9998 0.9996 0.9916
run 3 0.9721 0.9987 0.9738 0.9985 0.9976 0.9716 run 3 0.9806 0.9981 0.9809 0.9994 0.9980 0.9803

P4
run 1 0.9799 0.9987 0.9805 0.9991 0.9980 0.9798 run 1 0.9903 0.9995 0.9909 0.9996 0.9992 0.9904
run 2 0.9793 0.9987 0.9801 0.9990 0.9979 0.9791 run 2 0.9903 0.9995 0.9908 0.9996 0.9991 0.9904
run 3 0.9734 0.9984 0.9738 0.9987 0.9974 0.9732 run 3 0.9870 0.9993 0.9876 0.9994 0.9988 0.9871

P5
run 1 0.9209 0.9953 0.9209 0.9958 0.9923 0.9197 run 1 0.9501 0.9975 0.9506 0.9988 0.9968 0.9491
run 2 0.7168 0.9852 0.7201 0.9853 0.9734 0.7156
run 3 0.9047 0.9944 0.9031 0.9953 0.9910 0.9019

of classes in the test set, see Figure 3; the number of conformations per PDB ranges from 2 to
160. This highlights one of the difficulties that learning methods have faced, namely the presence of
classes of very heterogeneous size, which makes prediction very difficult. The severity of the PDB
classification is then mitigated by the BLAST one, but this classification has been used only for the
interpretation of the results and not previously provided to the participants.

A further difficulty for learning methods is the dataset design choice of using different proteins
(and their conformations) between training set and test set. This was done to investigate the ability
of 3D retrieval approaches to reason about and predict the conformations of a protein, even if
not yet “seen” by the training system. This probably motivates that the best overall performance
for the PDB classification was obtained by a technique based on engineered features. This fact
is further confirmed by the lower prediction ability of the same descriptor when combined with a
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dimensional reduction technique as demonstrated by the method P1 (run 3), which show a particular
decrease when the geometry is enriched with physicochemical properties. Conversely, when we
consider the BLAST classification, i.e. proteins that share fairly long amino acids sequences are
considered similar altogether their conformations, we see that learning-based methods improve their
performance proportionally more than direct methods, such as the P1 (run 3) method. In our view,
this reflects the fact that similarities between sequences are reflected in similarities of 3D structure,
and with this classification comes greater homogeneity between the features of the “extended”
classes.

Additional considerations can be derived from the geometric-only and mixed geometry and
physicochemical properties comparison. Not surprisingly, we notice an improvement in the perfor-
mance of the various approaches when switching from runs purely geometry-driven (Task A) to
runs that consider both geometry and physicochemical properties (Task B). Nevertheless, the direct
comparison between the proposed runs is not always possible because for some participants the
geometric method may vary between the 2 tasks. We notice that the most widely adopted solution
is the introduction of a histogram for the physicochemical properties, that is then used as an addi-
tional feature vector whose outcome is combined with the dissimilarity scores given by the geometric
description. Furthermore, from the experiments available to us, we note that the most significant
improvements are seen for methods that are based on learning. This is particularly reflected in the
methods P2 and P5. This suggests that physicochemical properties play an important role in the
characterisation of a protein but, perhaps, more research is still needed to deeply understand their
role and how best to integrate them into engineered descriptors; for instance, considering a joint
description as currently proposed in P1, that adopts joint 3D histograms.

6 Concluding remarks

In this paper, we have provided a detailed analysis and evaluation of state-of-the-art retrieval and
classification algorithms dealing with protein similarity assessment based on molecular surfaces,
which we believe deserve attention from the research community. The introduction of physicochem-
ical properties into the benchmark, represents an element of originality in the available benchmarks
for structural biology and provides a more complete representation of the protein. To enable the
participation of learning-based methods, both a training and a test set were provided for this bench-
mark dataset. Moreover, we are aware that in some of the PDB codes we used, the underlying
structures may correspond to mutations of the same protein, or be isoform, or share a common
fold; for this reason, we performed a multi-level performance analysis, comparing the performance
of the proposed methods to both a classification made according to the protein PDB code and an
aggregation between proteins made by using BLASTP.

Beyond the extensive analysis that has been carried out throughout the paper, we hope that
the experimental results presented here may offer interesting hints for further investigation. For
instance, a better and more informed definition of similarity can be preliminary to a better and
more effective definition of the complementarity between binding biomolecules.

The benchmark, as well as the dissimilarity matrices that originated the results described in
Section 5 and in the appendices, are available at https://github.com/rea1991/SHREC2021.

Acknowledgements

The track organisers thank Dr. Michela Spagnuolo and Dr. Davide Boscaini for the fruitful discus-
sions. Special thanks go to Ms. Daniela Bejan, for her help in using the software PyMol.

This project is co-funded by the project “TEACUP: Metodi e TEcniche innovative per lo sviluppo
di librerie per la modellazione, l’Analisi e il confronto CompUtazionale di Proteine”, POR FSE,
Programma Operativo Regione Liguria 2014-2020, No RLOF18ASSRIC/68/1. The CNR-IMATI
research is partially developed in the activities DIT.AD021.080.001 and DIT.AD009.091.001. This
research was partially supported by TAILOR, a project funded by EU Horizon 2020 research and

27

https://github.com/rea1991/SHREC2021


innovation programme under GA No 952215, and by Vietnam National University Ho Chi Minh
City (VNU-HCM) under grant number DS2020-42-01.

References

[1] K. Roberts, B. Alberts, A. Johnson, P. Walter, and T. Hunt, Molecular biology of the cell. New
York: Garland Science, 2002.

[2] W. Rocchia, E. Alexov, and B. Honig, “Extending the applicability of the nonlinear poisson-
boltzmann equation: Multiple dielectric constants and multivalent ions,” The Journal of Phys-
ical Chemistry B, vol. 105, no. 28, pp. 6507–6514, 2001.

[3] J. Kyte and R. F. Doolittle, “A simple method for displaying the hydropathic character of a
protein,” Journal of molecular biology, vol. 157, no. 1, pp. 105–132, 1982.

[4] T. Kortemme, A. V. Morozov, and D. Baker, “An orientation-dependent hydrogen bonding
potential improves prediction of specificity and structure for proteins and protein–protein com-
plexes,” Journal of molecular biology, vol. 326, no. 4, pp. 1239–1259, 2003.

[5] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov,
and P. E. Bourne, “The Protein Data Bank,” Nucleic Acids Research, vol. 28, pp. 235–242, 01
2000.

[6] S. Decherchi and W. Rocchia, “A general and robust ray-casting-based algorithm for triangu-
lating surfaces at the nanoscale,” PLOS ONE, vol. 8, pp. 1–15, 04 2013.

[7] S. Decherchi, A. Spitaleri, J. E. Stone, and W. Rocchia, “Nanoshaper-vmd interface: computing
and visualizing surfaces, pockets and channels in molecular systems,” Bioinform., vol. 35, no. 7,
pp. 1241–1243, 2019.

[8] N. Song, D. Craciun, C. W. Christoffer, X. Han, D. Kihara, G. Levieux, M. Montes, H. Qin,
P. Sahu, G. Terashi, and H. Liu, “SHREC’17 Track: Protein Shape Retrieval,” in Proceedings
of the Workshop on 3D Object Retrieval, 3Dor ’17, (Goslar, DEU), p. 67–74, Eurographics
Association, 2017.

[9] F. Langenfeld, A. Axenopoulos, A. Chatzitofis, D. Craciun, P. Daras, B. Du, A. Giachetti, Y.-k.
Lai, H. Li, Y. Li, et al., “SHREC 2018 - Protein Shape Retrieval,” in Proceedings of the 11th
Eurographics Workshop on 3D Object Retrieval, pp. 53–61, 2018.

[10] F. Langenfeld, A. Axenopoulos, H. Benhabiles, P. Daras, A. Giachetti, X. Han, K. Hammoudi,
D. Kihara, T. M. Lai, H. Liu, M. Melkemi, S. K. Mylonas, G. Terashi, Y. Wang, F. Windal, and
M. Montes, “SHREC19 Protein Shape Retrieval Contest,” in Eurographics Workshop on 3D
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A Confusion matrices (PDB-based community decomposition)

P1, run 1

10 20 30 40 50 60

10

20

30

40

50

60

P2, run 1

10 20 30 40 50 60

10

20

30

40

50

60

P3, run 1

10 20 30 40 50 60

10

20

30

40

50

60

P4, run 1

10 20 30 40 50 60

10

20

30

40

50

60

P5, run 1

10 20 30 40 50 60

10

20

30

40

50

60

P1, run 2

10 20 30 40 50 60

10

20

30

40

50

60

P2, run 2

10 20 30 40 50 60

10

20

30

40

50

60

P3, run 2

10 20 30 40 50 60

10

20

30

40

50

60

P4, run 2

10 20 30 40 50 60

10

20

30

40

50

60

P5, run 2

10 20 30 40 50 60

10

20

30

40

50

60

P1, run 3

10 20 30 40 50 60

10

20

30

40

50

60

P2, run 3

10 20 30 40 50 60

10

20

30

40

50

60

P3, run 3

10 20 30 40 50 60

10

20

30

40

50

60

P4, run 3

10 20 30 40 50 60

10

20

30

40

50

60

P5, run 3

10 20 30 40 50 60

10

20

30

40

50

60

0

20

40

60

80

100

120

140

160

Figure 13: Confusion matrices for task A (geometry only), with respect to the PDB-based community
decomposition.
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Figure 14: Confusion matrices for task B (geometry and physicochemical properties), with respect
to the PDB-based community decomposition.
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B Confusion matrices (BLAST-based community decomposition
of level 3)

P1, run 2

5 10 15 20 25 30

5

10

15

20

25

30

P2, run 2

5 10 15 20 25 30

5

10

15

20

25

30

P3, run 2

5 10 15 20 25 30

5

10

15

20

25

30

P4, run 2

5 10 15 20 25 30

5

10

15

20

25

30

P5, run 2

5 10 15 20 25 30

5

10

15

20

25

30

P1, run 2

5 10 15 20 25 30

5

10

15

20

25

30

P2, run 2

5 10 15 20 25 30

5

10

15

20

25

30

P3, run 2

5 10 15 20 25 30

5

10

15

20

25

30

P4, run 2

5 10 15 20 25 30

5

10

15

20

25

30

P5, run 2

5 10 15 20 25 30

5

10

15

20

25

30

P1, run 2

5 10 15 20 25 30

5

10

15

20

25

30

P2, run 2

5 10 15 20 25 30

5

10

15

20

25

30

P3, run 2

5 10 15 20 25 30

5

10

15

20

25

30

P4, run 2

5 10 15 20 25 30

5

10

15

20

25

30

P5, run 2

5 10 15 20 25 30

5

10

15

20

25

30

0

20

40

60

80

100

120

140

160

Figure 15: Confusion matrices for task A (geometry only), with respect to the BLAST-based com-
munity decomposition of level 3.
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Figure 16: Confusion matrices for task B (geometry and physicochemical properties), with respect
to the BLAST-based community decomposition of level 3.
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C Supplementary material: Performances with respect to a 3-level
BLAST classification
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Figure 17: Confusion matrices for task A (geometry only), with respect to the BLAST-based com-
munity decomposition of level 2.
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Figure 18: Confusion matrices for task B (geometry and physicochemical properties), with respect
to the BLAST-based community decomposition of level 2.
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Table 7: Summary of statistical measures by method and property type (only geometry vs. geometry
and physicochemical properties) for the BLAST-based community decomposition of level 2. Here:
TPR = True Positive Rate, TNR = True Negative Rate, PPV = Positive Predictive Value, NPV =
Negative Predictive Value, ACC = ACCuracy, F1 = F1 score. For each task and for each measure,
the best value for each participant is in bold. The best among them is highlighted in red.

Geometry Geometry and physicochemical properties

method TPR TNR PPV NPV ACC F1 method TPR TNR PPV NPV ACC F1

P1
run 1 0.9125 0.9922 0.9123 0.9940 0.9878 0.9113 run 1 0.9968 0.9996 0.9968 1.0000 0.9996 0.9967
run 2 0.9903 0.9992 0.9904 0.9995 0.9988 0.9902 run 2 0.9993 1.0000 0.9994 1.0000 1.0000 0.9993
run 3 0.9903 0.9990 0.9905 0.9997 0.9989 0.9900 run 3 0.7991 0.9796 0.8081 0.9842 0.9689 0.7953

P2
run 1 0.9663 0.9967 0.9648 0.9978 0.9953 0.9652 run 1 0.9747 0.9974 0.9733 0.9986 0.9966 0.9733
run 2 0.9495 0.9955 0.9484 0.9959 0.9927 0.9485 run 2 0.9780 0.9977 0.9782 0.9981 0.9965 0.9778
run 3 0.9701 0.9967 0.9680 0.9987 0.9960 0.9682 run 3 0.9864 0.9976 0.9863 0.9996 0.9976 0.9854

P3
run 1 0.9592 0.9969 0.9579 0.9977 0.9952 0.9575 run 1 0.9767 0.9977 0.9784 0.9975 0.9960 0.9771
run 2 0.9682 0.9972 0.9675 0.9980 0.9959 0.9671 run 2 0.9825 0.9983 0.9831 0.9986 0.9974 0.9825
run 3 0.9702 0.9974 0.9697 0.9983 0.9963 0.9687 run 3 0.9760 0.9980 0.9774 0.9980 0.9966 0.9763

P4
run 1 0.9682 0.9969 0.9675 0.9981 0.9957 0.9675 run 1 0.9767 0.9974 0.9762 0.9986 0.9966 0.9760
run 2 0.9689 0.9969 0.9679 0.9982 0.9958 0.9678 run 2 0.9786 0.9978 0.9784 0.9984 0.9968 0.9783
run 3 0.9631 0.9966 0.9627 0.9973 0.9948 0.9626 run 3 0.9754 0.9971 0.9750 0.9981 0.9960 0.9748

P5
run 1 0.8996 0.9915 0.8996 0.9916 0.9855 0.8986 run 1 0.9132 0.9906 0.9125 0.9928 0.9861 0.9120
run 2 0.7155 0.9792 0.7250 0.9778 0.9623 0.7175
run 3 0.8983 0.9913 0.8965 0.9918 0.9855 0.8963
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Figure 19: Normalized discounted cumulated gain (NDCG) for Task A (geometry only) and Task
B (geometry and physicochemical properties), with respect to the 3-level BLAST classification.
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Table 8: Summary of average dynamic recalls (ADRs) for the 3-level BLAST-based classification.
For each task, the best ADR for each participant is in bold. The best among them is highlighted in
red.

Geometry Geometry and physicochemical properties

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

run 1 0.677 0.735 0.741 0.728 0.686 run 1 0.829 0.800 0.800 0.756 0.779
run 2 0.749 0.728 0.751 0.723 0.608 run 2 0.771 0.768 0.849 0.751 -
run 3 0.755 0.715 0.746 0.708 0.698 run 3 0.674 0.806 0.810 0.742 -
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