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a b s t r a c t

Compact visualization techniques such as dense pixel displays find application in displaying spatio-
temporal datasets in a space-efficient way. While mostly focusing on feature development, the
depiction of spatial distributions of the movers in these techniques is often traded against better
scalability towards the number of moving objects. We propose SpatialRugs, a technique that can be
applied to reintroduce spatial positions in such approaches by applying 2D colormaps to determine
object locations and which enables users to follow spatio-temporal developments even in non-spatial
representations. Geared towards collective movement datasets, we evaluate the applicability of several
color maps and discuss limitations. To mitigate perceptional artifacts, we also present and evaluate a
custom, time-aware color smoothing method.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

The visual exploration of spatio-temporal data can be te-
ious due to the need simultaneously regard space and time.
esides established techniques such as animation or space–time-
ubes, some recent approaches aim to employ abstract, static,
nd dense representations to enable an efficient overview of
patio-temporal datasets (see Section 2). Such techniques order
ata points seamlessly in the visualization space to create a
pace-efficient representation, coming at the cost of reducing or
ven completely giving up a user’s ability to relate the displayed
bjects to their actual spatial positions.
We propose SpatialRugs, an approach to encode spatial posi-

ions using mappings of real space to 2D color maps. Our tech-
ique is intended for the visualization of collective movement
ata, leveraging common behavior to create visually salient pat-
erns that also allow the identification of outliers. We expect that
ur technique can be used for further movement datasets, but the
aliency of the resulting patterns will degrade with fewer or less
oherent movers.
Bellman’s Curse of Dimensionality [1] does not only affect com-

utational problems, but also the visualization of high-
imensional data on the two-dimensional display surface of a
omputer screen. Spatio-temporal data, in particular, contains
wo or three dimensions to represent the position of data points
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E-mail address: juri.buchmueller@uni-konstanz.de (J.F. Buchmüller).
ttps://doi.org/10.1016/j.cag.2021.08.003
097-8493/© 2021 Elsevier Ltd. All rights reserved.
and one additional time dimension if one wants to oversee
temporal developments. In the specific case of collective animal
movement data [2], e.g., in schools of fish or flocks of birds,
uncovering these spatio-temporal patterns is challenging due to
large numbers of entities moving simultaneously over longer
periods of time, close to each other in a similar fashion.

Most state-of-the-art techniques do not scale well to large
amounts of movers and elongated datasets and traditionally re-
sort to complex linked views in this case (refer to Andrienko
et al. [3] for a comprehensive survey). Especially coordinated
behavior as to be found in collective movement poses another
challenge, as similar behavior cannot so easily be discriminated
compared to random, unrelated behaviors of movers.

Nevertheless, recently several visualization techniques that
abstract spatial relations have been proposed to facilitate the
analysis of complex and large-scale spatio-temporal structures,
such as collective movement or dynamic graph data (discussed in
Section 2). For collective movement, in particular, the MotionRugs
technique displays all movers in a static, compact fashion [4].
The MotionRugs approach provides the ideal canvas for exploring
our spatial color feature encoding. Thus, we employ it and the
used dataset to generate the base representations to which we
apply the spatial coloring. In short, the principle of the Mo-
tionRugs ordering technique is based on the idea to linearize
the positions of movers from 2D positions to a one-dimensional
order in each time step. These 1D orderings, generated by space-
filling curves, are then aligned sequentially along the x-axis and
colored according to feature values. For example, in the Mo-

tionRug representation in Fig. 1C, each pixel represents one

https://doi.org/10.1016/j.cag.2021.08.003
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Fig. 1. SpatialRugs A+B and MotionRugs C, all with the same underlying dataset of 151 fish moving in a tank for about 90 s. Excerpts 1–4 show static snippets of
the fish turning from the upper right over the lower right to the lower left. Part A shows unmodified SpatialRugs, where colors can be related to spatial positions
compare colors to Parts 1–4). Part B shows color-smoothed SpatialRugs that mitigate distorted patterns (outlined in red boxes). Part C shows mover speed encoded
n the colors instead of the position. In conjunction, SpatialRugs and MotionRugs can be applied to relate space to features (e.g., in which areas of A movers are fast
r slow as indicated in C.). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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over, while the X-axis denotes time and the Y -axis represents
he 1D order of all movers derived by the spatial linearization.
everal numeric features of interest, such as the speed of the
ntities, can then be encoded by color, evolving over time. In our
xample in Fig. 1C, mover speed is encoded from blue to red.
everal trends of slowing down (red) and speeding up (blue) of
he movers are visible at a glance, while the curvature reveals
patial dynamics of the collective behavior (e.g., changes in group
rientation and position). The dataset used is taken from the
otionRugs approach to be able to compare and evaluate the

etention of the underlying visual structures generated by the 1D
rdering. It encompasses 151 fish moving in a tank, as shown in
he excerpts at the top of Fig. 1 over the course of about 90 s. For
he remainder of this work and all generated visualizations, we
mploy the MotionRugs approach with the Hilbert Curve spatial
inearization to generate the 1D orderings. We color the ordered
ixels by relating the real positions of a mover in 2D space with
color from the 2D color map. Note that the order of the pixels
ithin the visualization is not changed, and thus, MotionRugs and
patialRugs can be directly compared.
Such ‘‘dense pixel displays’’ as introduced by Keim [5] typically

acrifice the representation of certain spatial data properties, like
he precise location or the distance between moving entities. That
ay, the visualization enables the detection of patterns otherwise
idden in sparse representations or animations and provides bet-
er scalability towards larger datasets. Yet, with spatial properties
ully or partially distorted, relating data points to their original
osition in space and time can be difficult, as the MotionRugs
isual results prove, where the spatial aspect only shows spatial
ynamic, but not position or direction as is possible with other
echniques like simple static plotting or animation [6]. This is
drawback since retaining the spatial context is necessary in
any use cases. To explain mover behavior, it is often essential

o identify spatial positions to relate them to areas with semantic
eaning like foraging grounds.
To enhance spatial awareness while preserving a compact

isplay for collective movement analysis, we combine the space-
fficiency of MotionRugs with the space-awareness advantages of
ther advanced techniques for trajectory visualization [7–9]. We
ntroduce SpatialRugs (Fig. 1A and B), a technique that applies
D color maps to dense pixel visualizations by encoding the
patial locations of movers as colors within the chosen color
ap. To design SpatialRugs, we conduct a systematic analysis
nd comparison of various state-of-the-art color spaces. Note
hat our work focuses on representing spatial relations of the
overs themselves and their progress through space. We do not
24
egard contextual spatial features such as regions or borders with
emantic context (e.g., foraging grounds or territorial boundary),
ince there is no more room for further features in the design
pace. We discuss and exemplify an alternative approach for en-
oding such features in Section 7. We observe that the use of color
an introduce perceptional complications, which may lead users
o misinterpret salient color differences. These issues are caused
y color map intrinsics in combination with individual color
erception. As an approach to mitigate these perceptual issues
rising from color space transformations (see Fig. 1B), we refine
patialRugs with a time-aware color smoothing. Our proposed
olor correction process focuses on preserving the visual saliency
f patterns in the generated visualizations by enabling users to
arameterize the smoothing process according to their individual
eeds. We provide heuristics and an approach using edge de-
ectors for estimation of the very use-case-dependent parameter
ettings. To validate the time-aware color smoothing, we evaluate
he corrected result using descriptive statistics. Throughout this
ork, we use the same real-world dataset used in [4] to illustrate
esults and to enable comparison and contextualization with the
otionRugs feature encoding. As illustrated in Fig. 1, the dataset
ontains 151 golden shiner fish, which were tracked moving
hrough a shallow water tank for about 90s. The examples of
oving clusters in Section 6.3 are generated using a collective
ehavior generation model [10,11].

. Spatio-temporal visualizations

This publication is an extension of a previously published
ork [12]. We have extended different aspects of our work: In
ection 5, we have extended the explanations of the smoothing
arameterization and provide examples for sensible parameter
hoices. In the same Section, we also introduce a new approach
or estimating parameters for the time-aware color smoothing.
e updated and extended Section 2 with further related ap-
roaches and elaborated on the construction process in Section 3.
inally, in Section 7, we applied our technique to a new dataset
ith more movers moving in several clusters as opposed to only
ne before, together with a discussion of implications.
The visual analysis of movement capitalizes on human percep-

ion to reveal patterns in space and time [6]. Andrienko et al. [7]
rovide an approach using spatial abstraction for collective move-
ent, transforming mover trajectories to group-based reference
oints in time. However, such trajectory-based visualizations do
ot scale to large-scale collective movement due to the visual
lutter caused by potential overlaps in space and time.
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Space-efficient visualizations are proposed to produce a com-
pact visual summary of long sequences of movement data. Mo-
ionRugs [4] reduce the space of the moving entities from a 2D to
dense 1D representation while still reflecting physical distances
etween the movers as accurately as possible. To create the 1D
rder from a set of 2D positions, spatial linearization strategies
uch as space-filling curves or spatial index structures [13] are
sed to retain neighborhoods as close to the original neighbor-
oods as possible within the limitations of a 1D order. In a
otionRug, every mover in one frame is represented by a single
ixel that is colored according to a feature (e.g., speed in Fig. 1C).
he process is repeated for each time frame ordering the slices on
he x-axis by time. This method creates wave-like patterns, which
llow the identification of spatial dynamics. The result is a static
ense pixel display [5], showing the feature development of the
overs over time.
ParaGlide [14] is another example of a dense representation

or spatiotemporal relations that helps to understand biologi-
al aggregations in the field of collective behavior, such as the
igzagging of flocks of birds. ParaGlide allows experts to explore
ulti-parameter spaces of simulation models and displaying 1D
rojections of marginal densities in the form of a histogram
space and time). Likewise, Luboschik et al. [15] show features
n a dense visualization to provide an overview of simulated
ovement data. The authors propose an overview visualization

hat presents the relationships between simulation model pa-
ameters and the resulting movement characteristics, visualized
s color-coded cells sorted by time. In this paper, we apply the
patial linearization approach of MotionRugs to create the 1D
patiotemporal order of movers, as in contrast to other visually
elated approaches, MotionRugs are primarily used to provide an
verview of feature distributions. The core concept of SpatialRugs
s to employ colors mapped to spatial positions using a 2D color
ap. Essentially, this enables us to use color as visual variable

o encode position, making our approach ideal for spatial feature
ncoding for the continuous, dense MotionRugs visualizations.
Dense representations have also been proposed in the context

f dynamic graphs. Burch et al. [16] introduced parallel edge
platting, a technique that displays a sequence of graphs as a
eries of narrow stripes. The parallel edge splatting technique
isualizes a weighted dynamic graph in a single static view,
roviding a scalable overview of the temporal dimension. Van
en Elzen et al. [17] extend massive sequence views for the
nalysis of dynamic graphs. The authors propose multiple re-
rdering strategies for 1D graph layouts to highlight and interpret
emporal patterns, such as trends and anomalies. Another pixel-
ased visualization for dynamic graphs is GraphFlow [18], which
isualizes evolving graph metrics to provide an overview of struc-
ural changes in the temporal data. Contrary to these techniques
or dynamic graphs, SpatialRugs aims to present the evolving
patial distributions in collective movement and leverages the
pace-preserving properties of MotionRugs, which retains spatial
istances to large degrees in a 1D linearization, allowing an
verview of evolving characteristics (e.g., speed or acceleration)
n a dense pixel-based representation.

Conclusively, most techniques for trajectory visualization
7–9] lack scalability for larger amounts of conformingly behaving
overs. On the other hand, dense pixel methods like MotionRugs

ack spatial awareness by omitting to display accurate spatial
ocations of the movers; they capture changes in space and mover
rientation over time but do not expose whereto entities are
oving exactly. This limitation is critical for many use cases
here analysts need to know the regions in which the entities are
oving. To enhance spatial awareness while preserving the scal-
bility of MotionRugs, we propose SpatialRugs, a technique that
eintroduces spatial positions into dense spatio-temporal visual-
zations, eliminating the necessity for tedious analyses with, for
xample, clutter-prone static trajectory plots or time-consuming
nimations.
25
3. SpatialRugs main design: Retaining spatial readability

SpatialRugs is a compact movement visualization technique
that enhances spatial awareness by projecting the positions of
movers in a 2D-color space to assign each position a color in a
continuous space. Fig. 2 at the top illustrates our approach:

(I) We transform a given color space from its original di-
mensions to a 2D cubic representation as a base for the second
step.

(II) We transform the 2D color space to cover the maximum
extent of the spatial dimensions used by the mover dataset.

(III) We assign the 2D position of a mover to the corresponding
color of the transformed color map. The assigned color is then
applied to the respective data point in the dense pixel display.

Spatial positions are now represented by color, which can be
used in conjunction with pixel-based visualizations of movement,
such as MotionRugs, to encode mover locations. With the col-
ormap reference, users are able to identify the spatial distribution
of entities at a given time. Fig. 1 shows that the movers come
from the upper right corner (green, first excerpt), take a right turn
towards the lower right (blue, second excerpt), move through the
lower middle of the represented space in purple to the lower
(red, third excerpt) and finally the middle left in orange color
tones (fourth excerpt). The resulting patterns allow perceiving
the movers’ spatial distribution, while viewers can also estimate
how the movers progress within the color zones. For example,
between excerpts 1 and 2, just a few movers start to move
towards the blue until everyone follows. This behavior is shown
as a cone-shaped transition from green to blue. Consequently, the
color mapping enables to see patterns over long periods of time
compactly, also relating the spatial development to the feature
development by comparing the excerpts (e.g., by relating Fig. 1A
and C). In this example, we use SpatialRugs to encode spatial
relations, whereas another feature, speed, is encoded using a
blue-to-red colormap as initially described in [4]. It is possible
to stack even more views on the same data with other colormaps
encoding further features, for example, acceleration or heading. If
these views are aligned, users can compare different features and
put them in context, with the spatial relations being one of them.

We have implemented a Java-based prototype that takes CSV-
based movement data and applies a selected 2D color map. The
input data has to provide ids and positions of all movers in
regularly sampled intervals and needs to be free of gaps. For
transforming the chosen color space to a raster image with cubic
dimensions, we refer to the individual and widely differing ap-
proaches described for each color map as referenced in Section 4.
The resolution of the resulting image needs to cover the full co-
ordinate space of the 2D movements to ensure that each location
can (potentially) be encoded with a different color. We use this
base representation of a color space and apply bicubic interpo-
lation for transformation to reflect the minimum and maximum
coordinate extents the input data shows. Finally, coordinates in
the movement space and in the color space are matched and can
then be applied as spatial colormap.

4. SpatialRugs color space selection

With color perception being a very individual property differ-
ing from person to person [20], selecting the appropriate color
map is a critical design choice for the SpatialRugs approach. Sev-
eral previous works apply color space mappings to represent
spatial or temporal relations: Northern Lights Maps [21] by Janet-
zko et al. map spatio-temporal properties of movers to a contin-
uous RGB-color scale. PhenoVis [22] presents color-coded nor-
malized stacked bar charts to allow comparative analysis over
longer time spans. MotionExplorer by Bernard et al. [23] em-

ploys a projection-based view displaying human motions in a
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Fig. 2. Top: In SpatialRugs, a color space is transformed into a 2D cubic form, then adapted to the extent of the moving area. A position is then encoded using the
orresponding color from the color space. Below: Application examples of different colormaps [19] applied to a real-world dataset containing 151 golden shiner fish
xpressing collective behavior. Left of each visualization, we see the underlying transformed 2D color space. (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)
iscretized 2D color-coding to highlight temporal patterns. Spa-
ialRugs employ color spaces, which are continuously and linearly
ransformed in each dimension to accommodate the available 2D-
pace to the fullest. Yet, it is important to consider that, given the
ndividuality of color perception, different individuals will judge
he same colors to be at slightly different positions. Still, Emery
ndWebster [20] state that at least the color perception within an
ndividual person remains quite stable under varying conditions.

A thorough quality assessment of two-dimensional color
paces has been conducted by Bernard et al. [19] with respect
o multivariate data. We consider our use case to be within a
pecific subset of their study and consequently apply their find-
ngs to identify suitable colormaps for SpatialRugs. However, it is
mportant to keep in mind the specific nature of the dense pixel
epresentations we intend to enrich with spatial information,
here every pixel encodes a spatially annotated data point. In
ontrast, multivariate datasets of general purpose with two or
ore features, as regarded by Bernard et al. are usually sparse

o varying degrees. Thus, the visual representations of space-
fficient techniques are continuous in nature, opposed to the gaps
hich can be observed in scatterplots for example.
In a widely recognized article, Peuquet introduced a concep-

ual framework for geospatial dynamics with the fundamental
oncepts of time (When), space (Where) and context (What),
nd how these concepts are connected to each other [24]. In
oncordance with this approach, we derived three requirements
or SpatialRugs: (1) identify individual spatial positions of movers
or mover groups (Where) from the color space, (2) track the
temporal evolution (When) of movers or mover groups continu-
usly through the color space, and (3) judge the relative distances
etween movers or mover groups over time by comparing two
iven colors (When+Where). The listed requirements include the

spatial–temporal (When+Where)-aspects of Peuquet’s model in a
dense representation. As a result of this, a user can explore What
appens between the movers, as shown in a recent extension of
euquet’s framework by Andrienko et al. [3].
We can translate these requirements (1–3) to the elementary

asks (ER 1–3) of color map assessment by Bernard et al. [19].
he first elementary task states that a viewer should be able to
ocate and identify a single object in color space accurately (I).
or instance, if we have n movers at distinct positions in space,
hen the color space ideally also provides n visually separable
26
colors to encode the movers. In the second elementary task, a
viewer must maintain and link equally salient colors with spatial
positions (II). For example, the utilized color space should not
highlight particular movers due to perceptual color differences,
such as bright colors on a rather dark color map. The third
elementary task describes the need for accurate comparison of
two or more locations to identify similar or dissimilar objects (III).
For instance, the distance between movers or mover groups in
space should be perceptually similar to the distance in the color
space. Overall, possible color space candidates need to enable
users to accomplish these three tasks (I–III).

These tasks and requirements constitute ideal conditions for
a color map, which in reality cannot be fulfilled completely. For
example, the amount of visually distinguishable colors is limited,
and thus, the amount of encoded movements is limited, too.
Yet, our use case concerns collective movement, where accurate
movement representations stand back against the analysis of the
similar movements of many movers and possible outliers.

In addition, standard color spaces, e.g., CIELAB, HSV, or sRGB,
are mostly organized in three dimensions and usually do not form
a symmetrical shape. Yet, SpatialRugs needs to represent the 2D
positions of the observed movers. Consequently, a chosen color
space should be mappable to 2D space without compromising
so much uniformity of color distribution that the requirements
cannot be kept anymore. As well, color perception is individually
different in viewers [25], resulting in different abilities to identify
fine-grained differences. Thus, a sensible color space choice is
critical for the effectiveness of SpatialRugs.

In their survey, Bernard et al. [19] investigate the capabili-
ties of 22 state-of-the-art 2-D color maps with respect to these
analytical tasks and perceptual properties. They compare spatial
distributions of color space properties and then evaluate several
quality assessment measures for each color map. Finally, they
judge how well an approach can fulfill their defined requirements
using a basic grading system. Importantly, they judge indepen-
dently between having a black and white background for data
points represented by the compared color spaces. This is the
main difference to our approach, which, due to the density of
the representation, does not feature any background within its
canvas. Below, we discuss the criteria we consider for adequate
color map choice at the hand of a selection of candidate color
maps in three categories. In Section 7, we argue for a suitable
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Fig. 3. Pooling-based color correction. One matrix dimension determines the size of the regarded neighborhood, the other the time ahead to be considered for the
correction. After selecting a use-case appropriate shape and size (step 1), the matrix is shifted over each pixel in every time step (step 2). In step 3, the colors of the
matrix cells are sorted by Euclidean distance in the RGB space. The median color is then applied to the original pixel in step 4. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
color map that fulfills the requirements in the context of the
applied datasets.

Task assessment: Fig. 2 shows a comparison of color maps
aken from Bernard et al. [19] generated with the data described
n Fig. 1. According to the task assessment table of Bernard et al.
olormaps taken from Bremm et al. [26] (labeled as ‘‘Cube Diag-
nal Cut B-C-Y-R’’ in [19]), Ramirez et al. [27], Steiger et al. [28]
labeled ‘‘Mittelstädt et al.’’) and Teuling et al. [29] (labeled ‘‘Teul-
ngFig4a’’) receive high ratings for the tasks ER1-3 and either or
oth background conditions, and thus, would be best suitable
iven our defined tasks I–III.
Yet, the task-based recommendations [19] are made for sparse

istributions of the colors with gaps in between. They are not
esigned to regard the perceptibility of visual structures within
he visualization space — in other words, visual structures which
re entirely created by the seamless order of the colored data
oints themselves without background interference. As retaining
hese structures is important to our approach, we consider further
olor maps and turn to the quality assessment measures provided
y Bernard et al. to do so.
Quality assessment: The JND measure describes the ‘‘Just No-

iceably Different Colors’’ [19], indicating how well a colormap
xploits a color space. Here, the colormaps by Simula and Al-
oniemi [30] and Guo et al. [31] perform best but iterate over
lack or white. Such color maps with a low black- or white
istance score work well only in conjunction with backgrounds
f the opposite color. As dense pixel technique, SpatialRugs does
ot feature intermediate spaces between the data points. Hence,
sing color maps with black or white color ranges could interfere
ith the perceived brightness and saturation of the surrounding
olors due to contrast effects difficult to measure [32], rendering
he color map not applicable for our case. The next best color
aps according to the JND feature are the Cube Diagonal Cut B-C-
-R [26] (labeled ‘‘Bremm et al. 1 in Fig. 2’’) and the Four Corners
-B-G-Y color map (‘‘Ziegler et al.’’) [33].
Transformation assessment: The visual outcome of SpatialRugs

is also determined by the amount of applied transformation to
the color space. Changing the ratio of an original color space in
one axis affects the color discriminability along the same axis.
This holds even if the ratio is changed on both axes. In both
directions (either shrinking or enlarging the color space), color
discriminability suffers since either there will be less space to
represent all colors a color space can provide, or the same colors
are stretched over a larger space. Yet, since color perception
is not necessarily linear, such effects can only be measured in
perceptual studies.

While we acknowledge these effects, we expect our technique
to be applicable to uniformly distributed spatio-temporal data in
space. However, movement data that is not evenly distributed in
space is more challenging to interpret, for instance, in datasets

with a few spatial outliers that expand the size of the coordinate

27
system. In such cases, we recommend preprocessing the data ap-
propriately by removing outliers and using spatial regularization
methods.

As the visual outcome is more dependent on movement dis-
tribution instead of the physical size of the movement space, we
propose to estimate the amount of regions users can visually
distinguish by applying the JND metric as discussed by Bernard
et al. [19]: They count the ‘‘Just Noticeable Different Colors’’
for a colormap, which consequently also denotes, how many
regions a user can distinguish within a color map. By dividing
the available space by the JND metric, we receive the average
size of regions that users can visually distinguish (JND-region-
size). Due to the non-uniformity of color perception, this region
size can vary locally, which Bernard et al. provide a standard
deviation measure σJND−region−size for. In our case, we also have
to factor in the possible distortion caused by a changing aspect
ratio (e.g., 16:9 or 1.78:1). As the amount of JND colors and thus
also regions does not change with the aspect ratio, the following
formula details how users can calculate the size of these areas:

size = σJND−region−size ∗ far

With far being the change of aspect ratio (e.g., 1:1 to 1.78:1/16:9,
so 1.78). As we only distort the color space, the scaling incor-
porates such a distortion factor into the standard deviation. The
result is the maximum area in which a user is not able to further
distinguish the colors in and can be considered the worst case for
parts of the 2D color map.

5. SpatialRugs color design: Pooling-based time aware color
smoothing

We observed adverse perceptual distortions for certain use
cases, especially in the transition areas between primary color
tones. Our use case of collective movement analysis has a strong
focus on group coherence. However, perceptual artifacts can oc-
cur in SpatialRugs, when a part of an otherwise homogeneous
group of movers partially protrudes into another color area. Fig. 1
shows a case of perceptual distortion in excerpt 1, where most
movers are in the green quadrant, with a few extending into the
transition area to the blue quadrant, resulting in a salient blue
line (outlined in the red box). The same effect can be observed in
Figs. 4 and 6. Here, the perceived color distances appear larger
than the actual distances of the blueish movers to the rest of
the green group, possibly creating the false impression of two
independent groups moving around. Such perceptual distortions
are artifacts of the color map showing movers already cross-
ing color borders, perturbing real-world situations by presenting
these movers as outliers.

To mitigate such perceptual distortions, we propose a time-
aware color smoothing technique. Our method regards the mover

distribution of the current and subsequent steps to determine a
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Fig. 4. Comparing an unmodified SpatialRug A to a smoothed one (matrix size 15 × 15) B and Gaussian blur (sigma y, x) D. C provides a difference image between
and B and highlights the areas our smoothing focuses on in red. The table shows quantitative assessment results for time-aware color smoothing (TACS) versus

tandard Gaussian blur (Gauss). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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olor correction factor. If entities close to each other are located
n different color areas, their respective color is corrected towards
he majority. Such a correction enables smoothing artificial bor-
ers introduced by a selected color map to focus on the movers’
eneral behavior.
After applying the smoothing, we do not intend to reflect

ocations as good as in the original, but to enable a focus on
he movement of the group by removing color map artifacts
nd artificial outliers. Such artificial outliers can lead non-expert
nalysts to incorrect hypotheses based on issues arising from a
istorted color schema, e.g., wrong leaders.
Fig. 3 shows our method consisting of three steps: color col-

ection, pooling, and adaption, which are repeated for every pixel.
uring initialization (Fig. 3, Step 1), users adjust the pooling
atrix, selecting three parameters: neighborhood size, time frames
head, and matrix shape. Step 2 applies the user-defined pooling
atrix around the target pixel and collects the colors of included
ixels. In step 3, the collected pixels are ordered with a stable
orting algorithm (e.g., mergesort) on the RGB values individually.
t first, the blue values of the RGB will be sorted, then the green
nd finally the red values. Through the stable sorting algorithm,
he ordering includes a hierarchy for the RGB values and enables
better comparison in the color schema. Outlier pixel colors will
e sorted to both ends of the list, while more similar colors move
o the middle. In Step 4, after the sorting, the median of the array
ields the most prominent color value of the collected pixels, and
he index pixel is corrected using the color generated by taking
he median values of each sorted color channel. In comparison
o calculating an RGB distance value from the combined color
hannels, this approach minimizes unwanted color channel ef-
ects in which the ordering neglects the possibilities of similar
olors belonging to each other. Note that in this process, no pixels
re reordered in the visualization. The color ordering process in
tep 3 is used to determine the color median to apply to the index
ixel to correct, but it has no impact on the order of pixels in the
esult.

Next, we discuss the implementation of the parameters and
rovide initial guidelines on how to select them. Yet, we expect
hat optimal parameterizations depend on the specific movement
ehavior expressed by the movers. In the following discussion,
e outline the relation of the parameters and different kinds
f mover behavior. It is important to note that our proposed
pproaches for determining parameters should be regarded as
nitial recommendations. Given the large range of applicable use
ases as outlined in Section 7, optimal parameters need to be
urther tuned according to the specific dataset.

.1. Neighborhood size

The neighborhood size parameter determines the number of
ts direct neighbors affecting the resulting color correction area
or each data point at hand. The neighborhood size is the most
28
se-case-dependent parameter. It relates to both the visually
pparent neighbors in the image space and to the original spatial
omain. By setting the neighborhoods, the algorithm is steered
o include the specific characteristics of a dataset that an an-
lyst weighs heavier than others. Knowledge about the typical
ize of neighborhoods is necessary to select an appropriate size.
hus, an analyst can include her domain knowledge about typical
eighborhood size in the smoothing process for specific types of
ollective movements.
To illustrate, when the behavior between the movers tends to

e more coordinated, the color smoothing should reward com-
on behavior by grouping the movers together. In contrast, for
ore individualistic movers, less neighbors should be consid-
red to prevent smoothing differing behavior away. Due to the
ase-dependent nature of collective movement behavior, find-
ng a general heuristic might not be feasible, and a user-driven
xploration of the parameter space is essential. To initially de-
ermine default values, we recommend a simple initial heuristic
owards the max neighborhood size (n_mover) by taking a fixed
percentage of ten percent as our initial neighborhood size.

n_nb = n_mover ∗ 0.10

5.2. Time frames ahead

Together with the neighborhood, the movement and frames
looked ahead parameters hold information necessary to under-
stand collective movement patterns (e.g., how neighborhoods
change over time). Looking ahead facilitates to further smooth
color artifacts and incorporates long-term neighborhoods. How-
ever, detecting such long-term neighborhoods is rather difficult
and needs domain knowledge to include the often hidden un-
derlying information into the algorithm. For example, domain
knowledge about observed movers could tell about the foreseen
neighborhood coherence over time. If it is known that the movers
only form loose groups which do not stay together for long, not
many time frames ahead should be regarded and vice-versa.

We propose a basic heuristic that considers the length of the
sequence with an incorporation of the neighborhood size. E.g., as-
suming that only one-third of the neighbors of a mover stay with
it within a given period, we first take one-third of neighborhood
size (n_nb). Next, we take one percent of the number of frames
n_fr). If one-third of the neighborhood size is smaller than the
hort one percent length, we subtract this value from the one
ercent of the sequence to incorporate a weighting of the neigh-
orhood size into the frame ahead. Such a weighting enables to
alance the frame ahead with the neighborhood parameter.

_tfa =

{
n_fr ∗ 0.01 −

n_nb
3 , if n_nb

3 < n_fr ∗ 0.01
n_fr ∗ 0.01, otherwise
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Fig. 5. Results of the TACS smoothing with parameters determined by the heuristics described in Section 5.4. On the right, edges detected by the edge detector for
he original and TACS smoothed version with a decrease of about 25% in edges compared to the original.
.3. Matrix shape

Developing neighborhoods can be challenging for a general
moothing as a rectangular matrix assumes static importance
f neighborhoods over the time frames ahead. Thus, we argue
or another important parameter, the matrix shape. Especially a
atrix in the form of a triangle pointing into the future with
teps like the ones shown in Fig. 6 enables a focus on chang-
ng neighborhoods, since the further we look ahead, the fewer
riginal neighbors exert influence on the data point to correct.
Yet, the matrix shape can also be applied for other scenarios:
rectangular matrix ignores changes over time in the neigh-

orhoods and uses all possible neighbors over the frames with
he same importance, which is useful for movers with strong
nd ongoing group coherence. A less steep, triangular matrix
ncorporates the neighborhood another time frame ahead to the
moothing. Such a matrix helps to include slowly developing
eighborhoods and enforces a smoothing with an influence of
he neighbors over time, which is useful for detecting initial
roup formation. Finally, a more steep matrix only incorporates
he current neighborhood and the developing movement of the
ocused mover over the time frames ahead. Such a matrix enables
o focus only on specific movers and their direct neighbors, which
s useful for more individualistic movers (e.g., car traffic).

.4. Assessing quality using edge detectors

Edge detectors enable another way to further investigate pa-
ameter choices for TACS. As described before, especially for
rouped behavior, visual artifacts in the color space can occur
hen parts of a group leap into spatially closer, but perceptually
ore distant color areas, resulting in misleading edges in the

esult image. Edge detectors like the Canny edge detector [34]
re able to detect and quantify these edges in color transitions,
circumstance we can exploit to find suitable parameters: Un-
er the assumption that a smoothing algorithm applied does
ot create additional edges, the general idea is to compare the
umber of edges found in the original image to the amount in
he smoothed output image. Depending on the number of edge
ixels we found through an edge detector, we then calculate
score. For instance, we can find around 13% edge pixels in

ig. 4A of the overall pixels while the smoothed version of Fig. 4B
educes the edge pixels to around 4%. A reduction of edge pixels
s in general favorable as it smooths the image at a global scale.
owever, our comparison against a Gaussian blur in Fig. 4 leads
o around only 1% of retained edge pixels. Thus, only decreasing
dge pixels as much as possible is not a suitable heuristic to
dentify appropriate default parameters since prominent visual
tructures would be destroyed in the process. A balance between
dge pixels and smoothing needs to incorporate the percentage
f edge pixels towards the overall image and a minimum of
dge pixels. Preliminary results examining the results of various
arameter options suggest a minimum of one-fourth of the initial
ercentage of edge pixels. For instance, with the 13% edge pixels
n Fig. 4A, we can smooth to 3.25% edge pixels, both reduc-
ng unwanted artifacts while keeping visual structures intact.
or further analysis and investigations, a complete user study is
29
necessary to investigate the limits of the smoothing in order to
determine which parameterizations constitute sensible choices
for the best outcome.

Our preliminary results using the edge quantification show
promising results for most smoothing parameters, which use
the one-fourth rule of thumb. In our experiments, smoothing
parameters which retain major edges from the original image
are favorable towards others. Especially, smoothing parameters
that reduce edges near each other lead to promising results with
a focus on the goal of the smoothing itself in mind; reducing
color transitions of spatial artifacts. Figs. 5 and 7 show the two
use cases with the original SpatialRugs and the smoothed ver-
sions edges. Both use cases benefit from the smoothing, showing
clearer transitions between different areas, while clutter and
fuzzy areas are notably reduced. In our use cases, we find promis-
ing recommended parameters based on such an edge detection
metric to be rather small. For instance, 15 and 17 are both promis-
ing default parameters for the smoothing in Fig. 5 for neighbors
and frames with the matrix shape as a triangle.

5.5. Discussion

Visual artifacts can mislead viewers due to the non-linearity of
applied color maps, individual perception, or both. With the TACS,
we propose a mitigation strategy for such artifacts, which can be
parameterized to a user’s specific needs: Based on the analyst’s
domain knowledge on the dataset and task specifications, the
analyst can modify the parameters in Step 1 to her needs. The
neighborhood size parameter describes the spatial region around
the focused pixel in the vertical axis. For analyzing movers of
coherent behavior (e.g., fish as opposed to monkeys), the analyst
can adjust the neighborhood size so that stronger (or weaker for
monkeys) relationships are incorporated.

The time frames ahead incorporate the spatial movement into
the future to smooth in the horizontal direction. For observa-
tions that include fast-changing movements (e.g., in insect move-
ments), the analyst chooses to capture fewer steps in time ahead
to cover fast changes of color as opposed to slower changes in
movement (e.g., for larger animals). Lastly, the matrix shape offers
a way to reduce the amount of neighborhood lookahead in space
and time, limiting the importance of the neighboring movements.
For movers tending to behave more coherently over time, such
as schools of fish, a rectangular matrix shape is recommended,
while less coherent behavior requires a triangular matrix shape,
focusing more on temporal than exact spatial and orientational
coherence (e.g., cow herds). The comparison in Fig. 6 shows the
impacts of different parameter settings. The parameter choice
recommendations should be seen as initial suggestions. Their
optimal choice relies on mover properties such as size or average
group density and even behavioral features like the number of
neighbors influenced by actions of a single moving entity. These
factors cannot be generalized in a single parameter choice for-
mula. Thus, we recommend extracting prototypical use cases with
experts using real-world data to identify parameter boundaries
individually.

The code for the color smoothing is publicly available as
Python notebook [35]. Each of the notebooks shows an imple-
mentation of TACS with the parameters chosen according to
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Fig. 6. Comparison of parameter effects to the original. Second to fourth result: Low, medium, and large lookahead. Fuzzy features are smoothed and sharpened,
ut large values shift and distort patterns. Also, larger values shrink the result in size since the lookahead cannot be larger than the remaining time frames. Fifth to
eventh result: Increasing neighborhood size smoothes artifacts as discussed in Section 5 but introduces more blur for higher values. The marked area corresponds
o the perceptual artifact also highlighted in Fig. 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
his article.)
Fig. 7. SpatialRugs generated with a dataset of three groups of about 65 movers each, moving counter-clockwise (compare excerpts in the lower left). While the
aussian smoothed version in the middle blurs the clearly visible borders between the three groups, the TACS smoothed version corrects mostly within each group
nd sharpens the visible edges instead of fuzzing them. This becomes especially apparent when comparing the difference images in the lower row, outlining large
ifferences in the areas affected by the two smoothing approaches. (For interpretation of the references to color in this figure legend, the reader is referred to the
eb version of this article.)
he discussed heuristics. The runtimes for the creation of one
patialRug using the dataset described in Section 1 average at
7 s. They were generated on a desktop PC with Intel Core i7-
550U CPU and 32 GByte RAM. The first notebook contains the
mage as a matrix of RGB values, the second as the neighborhood
ize, the third as the frames ahead, the fourth as the steps (in
his case, the matrix shape), and lastly, a switch where the steps
hould start. The initial matrix (image) gets enlarged by ones in
eight by half of the size of the neighbors at the top and the
ottom (one-padding in y-direction). We employ this padding to
e able to start at the first pixel at the top left with the whole
liding matrix. Afterward, we slide over the x and y directions
nd apply our matrix to get all possible colors, sort them, and
ake the median to derive the new color value. To aid with
arameterization, we suggest several basic strategies, including a
esult estimation using edge detectors. We also provide all results
nd base images in the code repository to reproduce our own
esults.

. Results: Assessing visual outcomes

We next elaborate on the choice of appropriate 2D color maps
or SpatialRugs and provide statistics on the results of our TACS
30
smoothing method illustrated by examples generated using our
technique. As well, we showcase SpatialRugs with another dataset
with multiple moving groups.

6.1. Color map choice

In Section 4, we proposed an initial set of color maps using
the work of Bernard et al. [19] and defined the tasks I–III. We
further narrow down the selection of well-applicable color maps
by visually investigating color space properties (see Fig. 2). First,
derived colors should be well distinguishable to relate them to
an accurate spatial location, satisfying task I. The color maps of
Bremm et al. 2 [26], Steiger et al. [28] and Teuling et al. [29] are
clearly inferior to their competitors for this property, which is
also expressed in their JND value as stated by Bernard et al. Sec-
ond, task II states that the viewer has to maintain a mental map to
associate particular colors with spatial positions. Here, the color
map provided by Simula et al. [30] introduces a black/dark area
between neighboring colors in the corners, impacting the per-
ceptual continuity and potentially introducing false perceptions
of brightness and contrast in the dense pixel visualizations we
employ here. The color regions by Ramirez et al. [27] and Bremm
et al. 1 [26] are also not linearly distributed, thus distorting
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he distance perception if used as intended by SpatialRugs. This
eaves the colormaps by Ziegler et al. [33] and Guo et al. [31] as
andidates. Ziegler et al. anchor four distinctive colors, amongst
hem three primary colors, to the corners of the color space,
reating a semantic notion of spatial orientation resembling the
atural division of four cardinal directions. Guo et al. extend
he color space radially around a white center. Both approaches
cale well to different aspect ratios, satisfying task III. Guo et al.
nable to encode the center area in white, as well. Yet, this could
nterfere perceptually if an additional feature should be encoded
s modification of the color brightness or, again, cause issues with
rightness and contrast perception, and it would only work if no
lack or white components are present.
In conclusion, we expect the color maps by Ziegler et al. and

uo et al. to fulfill our tasks, while we expect that Ziegler et al.
orks better for most cases. Consequently, we use this color
ap in this publication to illustrate our approach. In addition, as
escribed above, the four-sided anchoring of the color space by
iegler et al. is a unique feature that can be easily related to four
ardinal areas or directions. This is very intuitive for representing
patial areas, and transitions between the clearly distinguishable
olor areas can also be identified easily. This recommendation is
ased on the most fundamental tasks for encoding spatial rela-
ions with colors in dense pixel visualizations. Yet, more specific
se cases could possibly profit from using other color maps. The
ey decision factor are the user’s specific information needs. The
uggested color maps enable users to distinguish spatial posi-
ions of movers in a 2D cartesian coordinate system. If a polar
oordinate system would be applied, encoding the pole region in
ddition to the cardinal directions can gain importance, favoring
olor maps with a central reference area such as the one provided
y Guo et al. [31]. In another potential use case, not the absolute
patial positions of the movers are regarded, but the change in
patial arrangement over time between the movers as observed
rom a given reference point. Here, a circular monochrome color
ap starting from the reference point could enable users to
stimate distances, without having to compare different color
ues. A tradeoff between the readability of the spatial position
ersus the encoding of distances becomes apparent. If the user
ntends to encode spatial context, linear color maps as presented
ould not be applied anymore, and distance information would
e lost. Still, we discuss this possibility briefly in Section 7 and
how an initial example in Fig. 8.

.2. Color smoothing

The time-aware smoothing tries to mitigate the effects of
eighboring colors (outlined in red Fig. 4A) by including the tem-
oral color distribution. In Fig. 4A and B, we see that the methods
educe visible outliers while retaining the temporal structures.
he difference image between (A) and (B) (see Fig. 4C) pro-
ides preliminary evidence for the value of the applied smooth-
ng method as it only affects the color transition areas, leaving
he visual patterns still crisp and visible. In contrast, the Gaus-
ian blur (D) creates a fuzzy impression, aggravating the accu-
ate interpretation of colors at a given point by blurring visual
tructures.
A quantitative assessment of our color-smoothing (table in

ig. 4) shows results of applied quality measures by measuring
he distance to the original, unsmoothed image. The measures
nclude the root mean squared error (RMSE) [36], the mean
quared error (MSE) [36] and the structural similarity index [37]
SSIM). We compare our time-aware color smoothing (TACS) to
standard Gaussian smoothing (Gauss). Similar reference area
arameters are chosen to allow the comparison of the smoothing
ethods. Lower RMSE and MSE values indicate better results, and
31
a higher value for SSIM indicates better similarity between orig-
inal and smoothed images. The results indicate that our pooling
method outperforms the Gaussian blur even for small sigmas and
large window sizes.

6.3. Applicability to other collective movement datasets

The dataset used for the SpatialRugs in Figs. 1, 2, 4 and 6 em-
ploys only one group of 151 movers expressing coherent move-
ment behavior. As the application scope of SpatialRugs is not
limited to single groups of movers, we also evaluate the ap-
plicability of our technique to datasets containing more than
one group of movers. For our demonstration purposes, we use
a synthetic dataset generated using a collective movement data
generator [11] which relies on established behavioral models
such as the Reynolds model [38] in combination with path fol-
lowing and obstacle avoidance features. The visual representation
is created using the spatial linearization provided by Motion-
Rugs [4], the spatial colormap refers is the one argued for in
Section 6.1 and referenced in the excerpts on the lower left in
the background.

The dataset we generated, shown in Fig. 7, displays the movers
moving in three independent clusters (see the excerpts on the
lower left of the Figure), following a counter-clockwise move-
ment pattern. In the rug representation, the three groups are
clearly distinguishable as three stripes moving in different areas
of the dataset. The transitions of the groups between the regions
of the 2D color map can be observed very well, generating visible
transition patterns between yellow, orange and red, red, purple
and blue, and blue and green. Due to the intrinsics of the applied
spatial linearization, the clusters switch positions vertically in the
last quarter of the visualization. This is an artifact of the spatial
linearization technique as provided by MotionRugs [4] and not
related to our spatial coloring approach. Techniques to alleviate
such artifacts have been proposed in [39].

Since the movers are moving continuously, the observed
stripe-like transition patterns originate from two factors: First,
the movers do not necessarily move in a uniform distribution
through the color space. Second and more important, the trans-
formation of the original square-shaped colormap to adapt to
the mover’s space lead to a horizontal distortion. This distortion
increases the distances between two arbitrary points in the red
to purple, purple to blue, and green to yellow areas, meaning
more space for more continuously perceived color interpolation.
Between yellow and red and between blue and green, on the
other hand, the distances between the colors remain short, and
visually well distinguishable colors lie closer to each other.

Again, we compare Gaussian smoothing and our TACS and ob-
serve difference images in Fig. 8. The clear original representation
allows to easily distinguish the three groups of movers and their
transitions between the color regions. Gaussian smoothing again
blurs the visual result and decreases the saliency of the encoded
patterns. The TACS version instead smoothes color transitions and
some coarseness in areas such as the blue area in the middle
group at the end of the rug. By looking at the difference images
comparing Gauss and TACS to the original, a remarkable effect
becomes apparent: While the gaussian blurring mostly affects
the borders between the moving groups, thus worsening their
visual delimitation against each other, TACS ignores these areas
and instead turns to correct the color space transitions within
individual groups, which is exactly the expected and desired
behavior. This way, the applied TACS parameterization ensures
that the correction only applies with respect to close neighbors,
ignoring further off entities of other groups, while the lookahead
eases the sharpest transitions created by a single group transiting
perceptively distinguishable color areas.
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Fig. 8. The principle to encode spatial positions using color can also be applied to define semantic regions. This simulated image shows an example where the
different colors encode several predefined areas with semantic meaning. Using the reference map on the left, one can read from the SpatialRug on the right how
the movers moved from the blue sleeping area via the green travel area to the foraging area (orange) and back on another route (gray), while some visit a certain
POI (red). Unencoded positions appear in white. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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In summary, our approach also works for datasets with mul-
iple moving groups. We were able to demonstrate that the
arameterization of TACS is suitable to specifically define which
reas should be affected by the smoothing and to which degree
hile retaining the visual saliency of patterns.

. Discussion and initial expert feedback

We collected more feedback by informal interviews from four
omain experts (two on PhD level, two PostDocs) from the area
f behavioral ecology to further understand their specific needs
hen it comes to the representation of spatial features. All are

nvolved with research on collective animal behavior, with a focus
n different aspects. The main aspect of their work is the analy-
is of tracked animal movements yet in largely differing scales
anging from observing the behavior of a rather small group of
onkeys in the African desert to large swarms of locusts. Still,

he common analysis tasks are very similar: The experts try to
nderstand how the animals coordinate between themselves and
ow they interact with their environment.
The experts state that two principle approaches are applied

n their research: Lab experiments and tracking animals ‘‘in the
ild’’. For the former, the animals are observed in a controlled
nvironment to determine how they move or react to precisely
pecified stimuli. These experiments focus on analyzing how re-
ctions propagate spatially through mover groups, e.g., in schools
f golden shiner fish [40]. The latter kind of experiments involve
racked animals in their original, natural environments and thus,
raws more attention to the interaction between movers and
heir surrounding spatial surroundings to learn about behavior
pecific to certain areas. For example, it is of interest where
nimals sleep, forage, or roam.
The focus of SpatialRugs is to support the exploration and

nalysis of collective movement, helping users to retain spatial
ontext and identify areas of interest. Thus, on the one hand, it
erves use cases where the semantic spatial context can be dis-
egarded. On the other hand, especially for unexplored datasets,
patialRugs can be applied to identify areas of interest previ-
usly unrecognized by presenting users a static representation of
patial mover distribution over time.
The SpatialRugs approach could even be applied to identify

ovements with respect to semantic spatial context by encoding
reas using a color mapping that directly reflects these semanti-
ally important locations. Fig. 8 shows an illustrative example:
y coloring by semantic contexts such as sleeping area, travel
aths, POIs, and foraging areas, the resulting map can be used
o identify when movers have been at which position for how
ong and how they transited between these locations. While we
cknowledge the fundamental applicability of SpatialRugs also in
emantic spatial contexts such as the described ones or others
ike administrative areas and boundaries, the resulting design
pace is complex and requires its own elaboration: The approach
ould shift the analysis focus from an explorative perspective
32
(i.e., discovering spatial developments and patterns) to a process
more oriented towards hypotheses testing, as one has to define
points and areas of interest beforehand and assign specific colors.
Both approaches could be combined, but the perceptual implica-
tions for choosing visually distinguishable color spaces for both
semantic areas and non-labeled space are complex and lie beyond
the scope of this work.

Initial feedback on the SpatialRugs principle we demonstrated
using the data and visualizations shown in Fig. 1 was largely
positive, and the approach considered a useful extension of the
MotionRugs principle, alleviating the shortcomings of the spatial
linearization. According to their statements, the experts were
generally able to match the colors to a general region. One expert
stated that he thinks that the colormap by Ziegler et al. [33] could
possibly be memorized due to the four corner-anchored, leaving
it interpretable even without reference to a 2D image. One expert
raised concerns about the number of features that can be put
into context meaningfully. Another comment was to introduce
interactive quantification aids to enable users to measure the
distribution of movers in different areas at the same time. With
this initial brief feedback, it becomes apparent that the range
of possible use cases is broad and covers different aspects of
spatial information, varying group sizes, and different grades of
expected behavior. Given this degree of complexity, we focus
on introducing the SpatialRugs approach for the most basic and
universal aspect these use cases share, which is the elementary
movement exhibited by the observed moving objects.

8. Conclusion and future work

SpatialRugs uses 2D color mapping to allow users to perceive
patial relations in space-efficient visualization designs. The in-
ended use of SpatialRugs is as an overview in conjunction with
ther pixel-based movement visualizations that display further
eatures of interest, enabling to relate space and feature develop-
ents. In the MotionRugs context, SpatialRugs can be considered

a spatial feature encoding (compare SpatialRug and MotionRug in
Fig. 1).

We compared several color spaces and discussed perceptual
issues following color artifacts, where movements appear to be
more distant to each other than their physical distance actually
accounts for. To mitigate such distortion effects, we proposed a
color smoothing approach (TACS), which we illustrated in ex-
amples with different parameterizations and we evaluated TACS
using several quality metrics. To find suitable parameter values,
we also propose employing edge detectors to find a compromise
between excessive smoothing and potential visual artifacts. Our
results can be reproduced using our code [35] and base images
provided there. We expect that our approach can be applied to
non-spatial 2D point distributions as well, e.g., to projections
of dynamic datasets. Yet, due to possible contrast effects with
the background, a re-evaluation of 2D color spaces would be
necessary if such point distributions would be sparse.
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The SpatialRugs color-coding comes at the cost of several lim-
iting factors. Foremost, the visual interpretability of SpatialRugs
depends on the ordering technique applied to create the pixel
visualization in the first place. For example, the visual outcome
deteriorates with increasingly independent movement behavior,
which does not create salient visual patterns [39]. As well, we
expect that large amounts of individual clusters are harder to
interpret due to the (individual) amount of colors an observer
can meaningfully distinguish. Since SpatialRugs encodes spatial
positions in dense pixel displays using the full range of a color
map, further properties can hardly be encoded on top of the
visualization. To do so, we suggest using MotionRugs encoded
with features of interest in conjunction with a SpatialRug of
the same data. The same perceptual limitations and the color
smoothing process also introduce spatial errors when trying to
read precise positions, and balancing the parameterization of the
color smoothing for specific use cases can be difficult. As well, in
cases where the spatial context of the observed movement plays
an important role, we discourage the application of the TACS
smoothing due to possible loss of information.

Our approach is not suited for users suffering from limited
color perception, who would be severely limited by the amount
of perceivable space. We also expect contrast effects as described
by Mittelstädt et al. [32], which cannot be measured so far. These
aspects need to be evaluated, while guidelines for the correct
parameterization have to be explored. In future work, we intend
to quantify the viewer’s perception of our technique and choice
of color spaces. Also, the perceptual implications of our color
correction process have to be tested thoroughly. Instead of using
a single color map, we anticipate that SpatialRugs can benefit
from an adaptive color map approach adjusted to the specific
movement distributions, user task, covered area and aspect ratio.

We expect SpatialRugs to be applied as an overview visualiza-
tion for users to identify interesting developments. Here, it seems
natural to introduce interactions for the user to link areas in the
SpatialRug with detail views in more traditional representations,
enabling an overview-to-detail workflow. This selection could
show the current situation at a point in time on the SpatialRug
the user points to, e.g., in a classical 2D plot. More sophisticated
selections could be applied, such as a spatio-temporal clustering
around the selected position to be displayed in more detail to only
focus on spatially close moving entities at a given time. Finally,
we would like to investigate visualizing spatial context features
as described in Section 7.
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