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Abstract

We present a simple algorithm for synthesizing 3D jigsaw
puzzles from arbitrary 3D freeform 2-manifold geometric
models represented with trimmed NURBS surfaces. The
construction algorithm is based on a few conventional geo-
metric operations on freeform curves and surfaces. In par-
ticular, we need to compute the offset of freeform NURBS
surfaces (for thickening the 2-manifold surfaces) and the
functional composition of a univariate curve representa-
tion to a bivariate rational surface (for breaking up a 3D
model into curved jigsaw tiles). It is thus almost straight-
forward to convert the proposed algorithm to a practical
system using standard tools available in B-rep based ge-
ometric modeling systems, that employ trimmed NURBS
surfaces. We demonstrate the effectiveness of the proposed
approach by fabricating several test sets of 3D jigsaw puz-
zles for freeform solids consisting of trimmed NURBS sur-
face models.

1 Introduction

Jigsaw puzzles are the most popular puzzles beloved by
juniors and seniors alike [5]. Even small children can en-
joy playing with jigsaw puzzles of a few dozens of pieces.
Jigsaw puzzles improve the visual-spatial reasoning power
of the human brain. There are many surprising benefits
in assembling jigsaw puzzles, for all ages, and in partic-
ular, for dementia patients by improving brain functions,
in short-term memory. Motivated with these good reasons
for promoting the computational art, we aim to develop
support of classic jigsaw puzzles that will be more general
than the state-of-the-art, and in 3D, in specific. A signif-
icant portion of industrial artifacts are nowadays geomet-
rically designed with and manufactured from 3D NURBS
models [6, 9, 12]. In this paper, we propose a practical so-
lution for converting freeform (possibly trimmed) surface
models to 3D jigsaw puzzles that can be fabricated using

3D printers.
As shown in Figure 1, the contemporary state-of-the-art

3D jigsaw puzzles are mostly composed of jigsaw pieces
placed along planar or developable surface panels. (Devel-
opable surfaces include cylinders, cones, and those obtained
by bending planes without stretching or compression.)
There are certainly some technical difficulties that must be
resolved, in order to extend the current plane-based method
to a general doubly-curved, possibly trimmed, surface-
based technology.
Much of geometric industrial design yields products that

are solids consisting of trimmed NURBS surfaces, where the
surface intersection curves delineate the boundary of one
surface patch across which the adjoining surface patches
are connected in a watertight manner. This common rep-
resentation, to virtually all geometric modeling systems,
is also known as B-reps, for boundary representations. In
this work, we deal with the surface trimming problem by
generating a sequence of adjoining jigsaw pieces along the
trimming curves.
Because our input consists of (possibly trimmed) NURBS

surface models, we have full control over the parame-
terization and aside from singularities, the mapping into
tiles is simple. Assuming the given NURBS models are
continuous, our construction algorithm transparently con-
verts the trimmed surface models to the desired pieces of
3D jigsaw puzzles. The remaining algorithmic steps are
based on conventional algebraic and geometric operations
on freeform curves and surfaces such as functional compo-
sition of curves on surfaces and the offset computation for
curves and surfaces. (They support the fabrication pro-
cesses for thickening 2-manifold surfaces and breaking up
a 3D model into curved jigsaw tiles.) Based on these com-
putational tools, available in most contemporary CAD sys-
tems, we can generate fabrication files (in STL or OBJ com-
mon file formats) for 3D printing the jigsaw puzzle pieces.
Further, the precision of these operations ensure the re-
quired accuracy for the fabrication and then the assembly
of the component pieces, for a physical realization of the
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Figure 1: Conventional 3D jigsaw puzzles mostly composed
of planar and/or developable surface pieces.

3D freeform model under consideration.
There are many previous results on the fabrication of 3D

puzzles. As we discuss in more details in Section 2, on
Previous Work, the majority of these results are developed
for the volumetric puzzle representations, including those
transformable to other 3D shapes. There are very few ex-
ceptions. The 3D polyomino puzzle of Lo et al. [20] is based
on a surface representation of quadmesh model, which also
requires an offset surface computation for the fabrication
of a physical 3D puzzle. The quad-based approach is not
directly applicable to trimmed surface models, especially
with C1 discontinuities as well as polar points or singulari-
ties. A quadmesh approximation may convert some surface
models to those acceptable to the algorithm of Lo et al. [20],
but not always, due to certain polyomino constraints on the
quadmesh structure.
The main contribution of this work can be summarized

as follows:

� A general algorithm is proposed for the synthesis of
3D puzzles for B-rep geometric CAD models.

� The input can be any solid model bounded by trimmed
surfaces, including open surfaces.

� The tiles can be of any shape as long as the tiling
covers a proper domain, including interlocking tiles.

� C1-discontinuities in the surface interior and/or along
trimming curves are supported.

The rest of this paper is organized as follows. In Sec-
tion 2, we briefly review related previous results. In Sec-

tion 3, the different steps of the proposed algorithm are ex-
plained using the conventional tools of geometric modeling.
In Section 4, several test results are presented, including 3D
printed and assembled jigsaw puzzles, only to be concluded
in Section 5.

2 Previous Work

Compared with the long history of geometry and math-
ematics, it is quite surprising that most geometric puz-
zles have been designed and crafted only within the last
200 years [5]. Jigsaw puzzles are simpler and thus have
a longer history (over 200 years, presumably invented by
John Spilsbury around 1760) than most other types of geo-
metric puzzles. This also explains the popularity of jigsaw
puzzles among the general public and in almost all ages. On
the other hand, polyomino puzzles are considerably more
involved and even under the subject of recreational math-
ematics [10].

In computer graphics, the computational design of 3D
geometric puzzles has attracted much research attention
since the introduction of 3D printing technologies, which
made the physical realization of 3D puzzles simpler than
ever. (The state-of-the-art techniques currently available
on a wide range of fabrication capabilities are reported
in Bermano et al. [1] and Bickel et al. [2].) The ma-
jority of these recent results are in the form of volu-
metric dissections [17, 26], often with interlocking struc-
tures [16, 27, 28, 32, 35] or even with transformable struc-
tures [31, 36, 37].

Sequin [26] used dissection puzzles in a graduate course
at UC Berkeley for training the spatial understanding and
modeling of solid shapes. Xin et al. [35] proposed an au-
tomatic construction algorithm for burr puzzles from 3D
mesh models, whereas Song et al. [27] introduced a formal
approach to the interlocking mechanism and developed an
efficient scheme for constructing decentralized interlocking
puzzles. Sun and Zheng [31] introduced dynamically inter-
locking twisty puzzles that generalize Rubik’s Cube and its
variants to user-supplied 3D models. Kita and Saito [16]
proposed a computational design method for generalizing
centrifugal puzzles, by embedding the core mechanisms into
complex 3D geometric models.

Compared with the volumetric dissection-based ap-
proaches, there are relatively few results on the construc-
tion of 3D puzzles on non-planar surfaces. Lo et al. [20]
considered the construction of 3D polyomino puzzles on
quadmesh models. The quadmesh structure on a non-
planar surface introduces additional constraints on the pos-
sible topological arrangement of polyomino puzzle pieces.
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Consequently, there is a certain limited class of quadmesh
models that allow the construction of 3D puzzles.

Lo et al. [20] demonstrated the capability of extending
the semiregular patterns (used in the texture mapping of
mesh models [14, 15]) to the construction of 3D puzzle
pieces, where each piece shape corresponds to a component
pattern. In Figure 16, we show the construction of 3D puz-
zle using an M.C. Escher style tiling. For complex trimmed
surface models, possibly after decomposing the trimmed
surface patches into rectangular pieces [22], we can apply
the semiregular patterns to the resulting 3D model. Tesse-
lating the surfaces into meshes, semi-regular quad meshes
can be generated automatically or semi-automatically [3].
The layout of rectangular patches can also be used for the
reparameterization of our surface models into a structure
well suited for the semiregular texture patterns and the
corresponding puzzle pieces.

Assuming the input is a set of trimmed surfaces repre-
senting the freeform geometric models (aka B-reps), in this
work, we present a transparent translation into the con-
struction of 3D jigsaw puzzle pieces that cover the surface
geometry of a given 3D model. The construction algorithm
is based on conventional algebraic and geometric opera-
tions on freeform curves and surfaces, which are usually
provided in contemporary CAD tools for NURBS based
geometric modeling. Though we consider the 3D construc-
tion of jigsaw puzzles on doubly-curved surfaces, it is also
easy to adapt the conventional design techniques for 2D
jigsaw puzzles [18].

3 Algorithms

We are now ready to discuss the algorithms behind the
3D jigsaw puzzles. The input is a B-rep model consisting
of one or more (trimmed) parametric surfaces. Typically,
the model will be closed but it does not have to be. In Sec-
tion 3.1, we discuss the case of a model consisting of a single
tensor product surface. This is extended in Section 3.2 to
handle the case of trimmed surfaces and the stitching of
the puzzle tiles along the trimming curves.

3.1 A Jigsaw Puzzle of a Single Tensor
Product Surface

Let S(u, v), (u, v ∈ [0, 1]), be a parametric surface, typically
represented in a Bézier or a B-spline form. S is assumed to
be regular, namely, ∂S

∂u × ∂S
∂v never vanishes. While the reg-

ularity of the parameterization will help avoiding singular
tiles, the parameterization will directly control the place-
ment and size of tiles, as will be shortly revealed. Because

(a)

T (t)

(b)

S

(c)

Figure 2: Composing one outline curve of tile T (t) in the
domain of S (in (a)), onto S (in (b)), resulting in (c) as
S(T (t)).

the same surface can have completely different parameter-
ization, the parameterization of a surface is another design
degree of freedom of puzzles to consider. With the excep-
tion of Section 3.1.5, the input model will be considered
given “as is” from the CAD system, and this degree of
freedom (surface reparameterization) will not be exploited
in this work.

Let T (t) be a jigsaw puzzle tile shape, represented as
a closed outline curve, in the domain of S. T (t) =
(tx(t), ty(t)) is assumed to be regular as well, or ∥T ′(t)∥ ̸=
0.

Now consider the composition of S(T ) = S(tx(t), ty(t)).
S(T ) is a 3D sub-region of S restricted to the domain in S
that is also in the tile T (t). See Figure 2.

Now consider a planar tiling of the whole domain of S.
All tiles could be mapped, one by one, to the range of S,
yielding a full 3D jigsaw puzzle of the geometry of S. See
Figure 3. Note that the top of the vase, in Figure 3 (b),
is open and hence the corresponding tiles in the domain,
in the top of Figure 3 (a), have no interlocking handles.
Further, the left edge of the domain in Figure 3 (a) extends
beyond the domain and that should be handled with care,
and will be addressed in Section 3.1.3.

While the basic idea is simple, like many other cases,
the devil can be found in the details. In the next sections,
we examine several concerns that must be addressed for a
proper realization of 3D puzzles. Section 3.1.1 discusses the
tile shapes that one can use. In Section 3.1.2, the question
of tile offset in the plane is discussed, and why it is de-
sired. In Section 3.1.3, the process of extracting the 3D tile
shape is portrayed. Then, Section 3.1.4 is handling the ad-
dition of realizable (finite) thicknesses to the tiles. Finally,
in Section 3.1.5, we consider the possibility of making all
tiles a bit different from each other, making it much more
challenging to the end user to assemble.
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(a)

(b)

Figure 3: A tiling of the domain of S by puzzle tiles (in (a)),
is composed onto S (same as in Figure 2 (b)), resulting in
(b). Each tile is uniquely colored.

(a)

(b)

(c) (d)

Figure 4: Several simple possibilities of puzzle tiles that
can be employed. In (a), a smooth rounded tile is shown.
In (b), a more rectangular shape is presented, whereas, in
(c), a macro tile is constructed from four tiles of similar
shapes. Finally, (d) presents a general tile of M.C. Escher-
style, that can also be employed as a puzzle tile.

3.1.1 Selecting the Shape of the Tile

Tilings of the plane by regular, semi-regular shape, isohe-
dral shapes and others is a major topic of research. Herein,
we need to add the restriction that adjacent tiles must be
interlocking with each other. That said, any tiles that fol-
low this additional restriction can be employed. Possible
examples are shown in Figure 4.

The tiles are typically translates of each other. However,
in Figure 4 (c), rotations are used to create a macro-tile
consisting of four elements. This macro element can now
be used as an atomic tile undergoing translations only. The
same holds for the tile-element in Figure 4 (a), for each four
such (rotated) tile-elements can create a translation-only
macro-tile. Finally, in Figure 4 (d), an M.C. Escher-style
tile is shown that can also be employed in this context. In
summary, the tiling of the domains of the surfaces can be
established in many possible ways, while we will demon-
strate a few such tilings throughout this work.

One concern to handle is proper boundary conditions for
S. It is typically undesired that the interlocking handles
will terminate on the boundary. However, if S is closed
and/or periodic, these interlocking handles must properly
cross the periodic boundary to the other side. In other
words, the composition of the tiles must properly handle
periodic/closed cases. We will return to this concern and
show how we manage these handles, in Section 3.1.3. These
interlocking handles are clearly seen in Figure 3 (a), leaving
the boundary on the left, with the matching holes, on the
right. This boundary is the periodic boundary of the sur-
face of revolution of the vase shown in Figure 3 (b). Note
that no interlocking handles are at the top nor at the bot-
tom boundaries, in Figure 3 (a), as these are mapped to
the top edge and to the bottom (center point) of the vase
in Figure 3 (b).

3.1.2 Adding a Planar Offset to the Tile Shape

The tiles are likely to be perfectly aligned in the plane with
zero clearance. This precision can be detrimental when
aiming to fabricate the tiles and assemble them into a tan-
gible model. Some clearance must be allowed depending
on the fabrication process. Two options are available here:

1. The offset of all tiles can be computed in the domain
of S, namely, in a plane, or

2. The offset is computed as a geodesic offset over the 3D
surface.

The latter has the advantage that it is computed over
the actual 3D puzzle tiles. However, computing offsets
over surfaces (i.e., the parallel curves on non-Euclidean
2-manifolds) is one of the most challenging problems in
geometric modeling [23, 34]. See Elber and Kim [8], for
a recent approach to this problem. The first alternative,
to compute these offsets in the domain, assumes that the
stretch in the mapping of S (magnitudes of the coefficients
of the first fundamental form) is bounded. In this work and
for simplicity, we chose the former solution of computing
the offsets in the domain of S. Figure 5 shows a zoom-in
on Figure 3, exposing the offsets employed.

3.1.3 Extracting the Shape of the Puzzle Tile, in
3-space

Given a surface S and the closed planar outline curve of the
puzzle tile, T (t), we seek the region of S, in the Euclidean
space, that is restricted to S(T ). Fortunately, many geo-
metric modeling environments support the construction of
trimmed surfaces from a tensor product surface S and a
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Figure 5: A zoom-in on the interior of Figure 3 (a), exposes
that we offset the tiles a tad, in the domain of S, to allow
for some slack once the tiles are fabricated and the puzzle
is assembled.

closed curve in the domain of S. Hence, the region in 3-
space of S(T ), can be simply created as a trimmed surface
ST , denoting S restricted to the domain inside T . This
construction scheme of the 3D representation of the tiles
is employed throughout this work, including in Figures 2
and 3.
If the surface S(u, v) is periodic and tiles cross out of the

domain of S, the surface S must be extended. Consider a
closed/periodic (in u) surface S(u, v), (u, v ∈ [0, 1]). Let
surface Ŝu be the extended-in-u surface of S:

Ŝu(u, v) =

 S(u+ 1, v), u ∈ [−1, 0],
S(u, v), u ∈ [0, 1],
S(u− 1, v), u ∈ [1, 2].

(1)

A similar extension can be applied in v. But now we can
compose T (t) even if its interlocking handles exceed beyond
the domain of S, making sure all created tiles are properly
constructed.

3.1.4 Adding Realizable Thickness to the Tile
Shape

So far the created tiles have zero thickness. Another com-
mon operation in geometric modeling systems is making a
shell model out of a single surface S. The surface S is off-
setted (along the normal field of S) by the desired thickness
amount, into another surface So, only to skin the sides of
the created shell model by adding the side faces between S
and So.
Of special care are the cases where the tiles are crossing

a C1 discontinuity in the geometry. The offset can be com-
puted as a rounded offset around this C1 discontinuity or

Figure 6: Two views of a puzzle tile that crosses a C1

discontinuity, in the surface S. This tile is from the bottom
of the vase surface in Figure 3 (b).

a miter joint, etc. For example, moving from the base of
the vase in Figure 2 (b) to the rounded lateral side of the
vase, traverses a C1 discontinuity. Figure 6 shows one such
discontinuous tile, with a mitter joint along the C1 discon-
tinuity, from the constructed vase puzzle, in Figure 3 (b).

Remark: There are many well-known algorithms for
computing the offsets of freeform surfaces [11, 21, 24, 25].
These techniques essentially deal with the trimming of off-
set self-intersections that may occur when the offset dis-
tance is relatively larger than the local radius of curvature
or twice the global separation distance between two differ-
ent parts of the surface. In the current work, the thickness
of tiles is usually too small to cause these problems.

3.1.5 Randomizing the Shapes of the Puzzle Tiles

Reexamining Figure 3 (b). Because the vase is a surface of
revolution, all tiles in the same height, are similar to each
other. Practically, this might be undesired as we typically
like individual tiles to fit the 3D puzzle in only one place.
Toward this end, we propose adding an intermediate step
to randomly deform all tiles a bit so each tile will end up
with a unique shape.

Consider a map M : [0, 1]2 → [0, 1]2, that is assumed
to be regular. M can perturb the tiles as shown in Fig-
ure 3 (a) in a random way, and in essence, making every
tile geometrically different. Since M is assumed to be reg-
ular, no singularities and certainly no self-intersections will
result in the deformed tiles, due to M .

Let RM be a B-spline surface, with open end condi-
tions, implementing M . RM (u, v) is initialized as an iden-
tity. That is, RM (u, v) = (u, v). By randomly perturbing
the interior control points of RM (u, v), we can implement
this intermediate randomization composition steps, that
will convert all the identical tiles in the domain of S, to
geometrically somewhat different tiles. Stated differently,
tile T (t) will be mapped by RM to a somewhat different
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tile TRM
(t) = RM (T (t)). Because RM is open-ended and

we only perturbed interior control points, the boundaries
will not be modified and hence preserved. The new set
of deformed mapped tiles {TRM

(t)} will then be composed
again, but this time with the original surface S, as before.
See Figure 7, for one example, and compare with Figure 3.

3.2 A Jigsaw Puzzle of a B-rep Model
Consisting of Several Trimmed Sur-
faces

Extending the 3D puzzle construction scheme to trimmed
surfaces and solid B-rep models consisting of several
trimmed surfaces, requires several steps. Before that, recall
that in a B-rep model, the trimmed surfaces are stitched
to their neighbors, along the trimming curves. Being a 2-
manifold, the B-rep model has exactly two surfaces joining
in along a trimming curve, and this adjacency information
is part of the model’s topology.

As a first step, the puzzle tiles in each surface must be
clipped to the trimmed zone. This clipping process is dis-
cussed in Section 3.2.1. Then, clipped tiles, along a trim-
ming curve, could possibly be stitched to other tile(s) on the
other side of the trimming curve (on the adjacent trimmed
surface). This optional stitching step is presented in Sec-
tion 3.2.2.

3.2.1 Clipping the Tiles to the Trimming Zone

Given a set of outline curves that tile the domain of surface
S, in full, as in Figure 3 (a), the problem of clipping this set
of tiles to the trimmed zone, can be reduced to curve-curve
intersection and Boolean operations between closed curves.
Herein, we need to compute the Boolean curve intersection,
in the plane (the domain of surface S), of the trimming
curves of S and the closed outline curves of the tile, for all
tiles. Boolean operations, and planar Boolean operations in
specific, were investigated by many in the past with known
algorithms for computing these operations, e.g. [4].

One could aim to adjust the shapes of the puzzle tiles
in the domain of trimmed surface S, to follow and match
tiles on the adjacent trimmed surface, along the shared
trimming curves. While possible in simple cases, in gen-
eral, the trimming curves can assume arbitrary shape and
topology and hence such an approach is a major challenge
on its own.

Figure 8 shows one example of a trimmed surface, with
the clipped tiles to the trimmed zone, in the domain of S
and in the Euclidean space.

3.2.2 Stitching Neighboring Tiles along Trimming
Curves

So far, each trimmed surface is processed independently
and one might select to leave it at that. This means that
each trimmed surface will define a sub-puzzle that covers
that trimmed surface and then all these sub-puzzles of all
the individual trimmed surfaces should be glued together,
to form the final model.

An alternative will be to stitch and join adjacent trimmed
puzzle tiles, on both sides of a trimming curve, into one tile.
In other words, if so far, all tiles were located in a single
(trimmed) surface, we will now have tiles that span regions
in two adjacent surfaces.

As stated, the topology is provided as part of the model,
and hence we can find with ease the adjacent trimmed
puzzle tiles, given a trimming curve. The two options of
stitching adjacent tiles along trimming curves, or not, are
depicted in Figure 9, that explodes the intersecting joint
between the spout and the body of the Utah teapot – see
also Figure 15. Note that one clipped tile on one side
can be stitched to more than one tile on the other side.
See also Figure 10. Without the stitching along trimming
curves, the different trimmed surfaces will yield disjoint
puzzle parts that must be glued together. In other words,
this stitching makes a single 3D puzzle of the entire model.
The clipped tiles on both sides of the trimming curve are in-
dependent as the two parametrizations of the two surfaces
sharing the trimming curve are unrelated. Hence, tiles on
one side can overlap with one or more tiles on the other
side of the trimming curve. Further, a tile can only par-
tially overlap with a tile on the other side. The stitching we
employ, of the tiles along trimming curves, is heuristic: a
tile on one side will be stitched with a tile on the other, only
if a minimal fraction of the arc-length of the overlapping
edge is shared, in either side. This fraction value is user
specified, and practically was around 30%, in all presented
models in the next section.

4 Results

In this section, we present some additional results. These
examples include 3D printings of the puzzle models as well
as their assembly. The J55 printer of Stratasys [30] was
employed throughout. We converted the presented models
into polygonal OBJ files that the interface of the J55 printer
can read in.

The surface model of a duck in Figure 11 (a), was used
to create the puzzle shown in Figure 11 (b), with each tile
uniquely colored. Figure 11 (c) shows an exploded view
of (b). Figure 11 (d) shows the 3D printed model after
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(a) (b)M

(c)

Figure 7: A randomized, yet regular, mapping RM : [0, 1]2 → [0, 1]2, in (a), is used as an intermediate composition step
to deform the uniform tiles {T (t)} from Figure 3 (a), into randomly different shapes, {RM (T (t))} as can be seen in (b).
(c) shows the final composed result, over S, the vase from Figure 2 (b).

.

(a)

(b)

Figure 8: A full tiling of the domain of S, is clipped to
the trimmed zone of the trimmed surface in (a). Clipped
tiles are highlighted in red. In (b), the resulting geometry
is shown mapped to 3D. Half the body of the Utah teapot
(see also Figures 9 and 15).

(a) (b)

Figure 9: Across trimming curves, puzzle tiles are clipped
to the trimming curve from both sides. These tiles could
be left as is as shown in (a), exploded, or stitched together,
as shown in (b), exploded. Different tiles are colored differ-
ently. These exploded views are from the joint between the
spout and the body of the Utah teapot (see also Figures 10
and 15).

Figure 10: Tiles stitched along trimming curves in the
model. These examples are from the teapot model in Fig-
ure 15.
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assembling it. Finally, Figure 11 (e) shows a zoom-in view
of (d), on the area of the head of the duck.

This model of the duck puzzle did not employ proper
boundary conditions and at the singular head (where the
Jacobian of the duck is vanishing), the interlocking han-
dles were left unchanged, as can be seen in Figure 12 (b).
Such a singular boundary, that vanishes to a point, better
employs boundary tiles with no interlocking handles, as in
the top of Figure 3 (a) (and also seen, for example, in the
Euclidean space, in Figures 15 (g) and (h)). There are re-
cent developments for handling the smoothness conditions
at the polar singular point by constructing Ck-smooth po-
lar splines for any k ≥ 0 [29, 33]. These techniques may
be used for resolving the computational difficulties near the
polar point by eliminating the singularity in the parametric
representation of freeform surface. Nevertheless, the fab-
rication constraints require other alternatives. A simple
solution would be to replace the polar neighborhood with
a disk-like capstone piece. In this example, we leave this
part open so as to give an idea how the geometric features
get narrower and narrower.

The puzzle of the vase model that was used as an ex-
ample through this work, is shown in full in Figure 13.
Figure 13 (a) shows the 3D printed and assembled tangible
model, while Figurea 13 (b) and 13 (c) show two computer
model views of this model, including one from below. A
reparametrization RM was employed in this model, that
is a surface of revolution, to ensure all tiles are somewhat
different. Going unnoticed, this model is textured with
the map of the earth. Adding textures to these 3D puz-
zles is trivial, employing the inherent parametrization of
the input surface(s) and propagating that to the individual
puzzle tiles.

The model shown in Figure 14, presents an example of a
solid model created using Boolean operations over freeform
surfaces. It consists of four trimmed surfaces stitched to-
gether: the base sweep surface (red in Figure 14 (d)),
the top surface of revolution vertical disk (green in Fig-
ure 14 (d)), the subtracted hyperbolic surface of revolu-
tion, through-hole (cyan in Figure 14 (d)), and the sub-
tracted extruded surface in the middle bottom (yellow in
Figure 14 (d)). This model is one example of a model that
can benefit from randomizing the shapes of the tiles. Being
symmetric in two main planes, this model yields identical
puzzle parts (up to color) in different sides of the model.
Whether this is a desired result or not, is up to the end
user. Also, note the highly bent puzzle tiles near the top,
along the highly curved edge of the surface of the input
model.

Our final example is the Utah teapot that is another
trimmed model. Three tensor product surfaces exist in

Figure Computation time # of tiles
12 0.8 sec. 80
13 0.7 sec. 80
14 20.2 sec. 113
15 3.6 sec. 139
16 1.0 sec. 333

Table 1: Some statistics on the presented examples.

this model – the handle, the spout and the body (that in-
cludes a bottom), three surfaces that are unioned together
to form the teapot. See Figure 15. In Figure 15 (a) and (b),
two computer views are shown of this puzzle. A bilin-
ear reparametrization function RM has been used over the
body surface as it is (almost) a surface of revolution. This
bilinear reparametrization yields tiles that are sometimes
C1 discontinuous. See, for example, the top edge of the
marked-with-arrow tile in Figure 15 (a). While the outline
curves of the tiles are C1 discontinuous, the surfaces of the
tiles assume the smoothness of the surface of the model,
here, he smoothness of the Body of the Utah teapot. In
other words, if the model is smooth, the tiles will remain
smooth as well. Figure 15 (c) shows all the parts of this
puzzle before the assembly and (d) shows a partially as-
sembled result. Finally, Figure 15 (e) and (h) show the
final assembled teapot, the first two in similar views to (a)
and (b). The top edges of the body and the spout are open
and terminate with tiles that have no interlocking handles,
as in Figure 3. Further, the bottom of the body surface is
singular at the center, as the entire bottom edge of the do-
main of the body is mapped to the center point as is shown
in Figure 15 (g) and (h). Reexamine Figure 3 (a). The
entire bottom edge collapses here to a point, while all tiles
around the singularity reduce to a triangular topology.

Table 1 provides some statistics on all the examples pre-
sented in this work. All these puzzles were synthesized (ex-
cluding 3D printing and assembly times!) in a few seconds,
on a relatively modern PC running Windows 10, and using
Intel Core i7-7700K 4.2 GHz CPU and 32GB of memory, in
a single thread. As can be seen, most of the computation
time has been devoted to handling the trimmed geometry,
and specifically, the stitching of adjacent tiles along trim-
ming curves (Figures 14 and 15).

We conclude this section with a few remarks on the em-
ployed assembly process. All the 3D printed puzzle parts,
as can be seen, for example, in Figure 15(c), are 2-3 mm
thick, with the motivation of reducing 3D printing costs,
while still having strong enough puzzle pieces. In many
cases, and in order to strengthen the assembly of the mod-
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(a) (b) (c)

(d)

(e)

Figure 11: A duck Puzzle. The surface model of a duck in (a), is employed to create the 3D puzzle in (b), that is also
shown exploded in (c). Each tile is uniquely colored. In (d), a 3D printed model of the puzzle is presented and (e) shows
a zoom-in on the head. Note the tail of the duck is not fully assembled and some of the puzzle tiles near the tail are
shown on the side in (d).
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(a)

(b)

Figure 12: The head of the puzzle of the duck (a), from Fig-
ure 11, is not using proper boundary condition and hence
the interlocking handles, at the tip of the head, are not
closing the surface properly, as seen in (b).

els that was not very stable due to these thin walls, super-
glue was employed between the puzzle parts. Further, the
parts that are 3D printed by the J55 printer are rigid and
brittle. A careful examination of the different assembled
model, will reveal some broken (and glued) small parts.

5 Conclusions and Future Work

In this work, we have presented algorithms to construct 3D
jigsaw puzzles for parametric surfaces and B-rep models,
possibly consisting of several trimmed surfaces.

The presented scheme can be applied to build 3D jig-
saw puzzles for polygonal meshes as well. Following the
presented paradigm, the polygonal mesh must support the
following operations:

� The polygonal mesh must possess a parametrization P
from the plane.

� Individual puzzle tiles must be clipped to the domain
of P .

� The polygonal mesh should support curve-mesh com-
position. That is, the outline curves of the puzzle tiles
should be mapped from the domain of the parametriza-

tion to 3-space, using P . This computation could be
approximated using point based evaluations.

� Offset mesh operation (to give the tile some thickness)
should be supported as well.

We reemphasize that tiles can be of arbitrary shape. Any
covering of the plane can be used as an initial tiling arrange-
ment for a 3D puzzle, as in, for example [19]. Figure 16 (a)
shows one such example employing an M.C. Escher-style
tiling of the domain of the vase surface, that is shown in
(b) in 3D, and exploded in (c). Note the alternative way we
ensure periodicity here, having the pieces of the lizard tiles
clipped, while they perfectly fit the domain of the surface,
along the closed seam, in (b). This approach can be em-
ployed when a closed, yet non-perodic, B-spline surface is
provided, in which case all tiling geometry must not exceeed
the surface domain, for proper functional composition.
While any covering of the plane can indeed be employed,

practically, tiles that are very small were difficult to assem-
ble and even broke at times. Hence, the designer of the
puzzle should take that into consideration, possibly by ex-
ploiting and controlling the parametrization of the surfaces,
avoiding too-small tiles, especially near trimming curves.
The J55 printer of Stratasys was used here to 3D print

the tiles. Accuracy plays a crucial part in fabricating a
viable puzzle, and here the J55 performed superbly. How-
ever, the 3D printed material is rigid and brittle as already
stated. Commercial 3D puzzles are commonly created from
a soft material that is flexible (e.g., foam), and hence more
suitable to assemblies and puzzles. Further, foam pieces are
typically thicker (close to 7 mm) which makes them bet-
ter at self-supporting the structure without any glue. On
the other hand, some commercial puzzles (as shown in Fig-
ure 1) are made of sturdy plastics and thus thinner (close
to 2 mm). (The shoe puzzle even has a small number of
doubly-curved tiles.) Such concerns should be taken into
considerations, in practical 3D puzzles.
In this work, we randomized the tile while keeping the

boundary intact. Clearly, and using the surface extension
ability discussed in Section 3.1.3, the randomization of RM ,
as discussed in Section 3.1.5 can also be extended to operate
over periodic boundaries. More generally, and as already
stated, the inherent regular parameterization of a surface
can have a significant impact on the shapes and sizes of the
resulting puzzle tiles, over that surface. This is a degree of
freedom that clearly depends on the shape of the surface,
and the stretch properties of the map of the surface, or its
first fundamental form [7], that the designer of the puzzle
should be aware of, and possible exploit.
Finally and as stated, the stitching process, of tiles along

trimming curves, is heuristic. Alternative stitching heuris-
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(a) (b) (c)

Figure 13: The vase Puzzle used throughout this work is shown in full. In (a), a 3D printed example is presented while
(b) and (c) show two different views of the computer model.

(a)
(b) (c) (d)

Figure 14: A model that is the result of several Boolean operations over freeform surfaces (a). The resulting 3D printed
and assembled puzzle (b) has pieces that are stitched along the shared seams (trimming curves) of the surfaces, seams
that are C1 discontinuous. In (c), an exploded view of the puzzle from (a) is presented. Note that some puzzle pieces
are quite tiny. (d) shows the original surfaces used to create this model.
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(a)

��7

(b)

(c)
(d)

(e) (f)

(g) (h)

Figure 15: A puzzle of the Utah Teapot, that is a model consisting of three trimmed surfaces. (a) and (b) show the
computer models, whereas (c) shows the 3D printed parts and (d) the partially assembled model. Finally, in (e) to (h),
views of the assembled teapot are shown, the first two in similar views to (a) and (b), while the last two shows the
bottom of the teapot.
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(a) (b) (c)

Figure 16: M. C. Escher style tiling in (a) that is employed to create the 3D jigsaw puzzle that is shown in (b) and
exploded in (c). Note in (b), the alternative way we ensure periodicity here with lizard tile pieces that perfectly align
along the closed seam.

tics might be helpful and more intuitive.

All the C source code of the implementations of the Jig-
saw algorithms, as presented in this work, is available as
part of the IRIT solid modeling system [13]. Also provided
in [13] are scripts to recreate the Jigsaw examples presented
in this work.
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[3] D. Bommes, B. Lévy, N. Pietroni, E. Puppo, C. Silva,
M. Tarini, D. Zorin: Quad-mesh generation and process-
ing: A survey. Computer Graphics Forum, 32(6):51-76,
2013.

[4] CGAL: 2D Regularized Boolean Set-Operations.
https://doc.cgal.org/latest/Boolean set operations 2/index.html

[5] S. Coffin: Geometric Puzzle Design. A.K. Peters,
Wellesley, MA, 2006.

[6] E. Cohen, R.F. Riesenfeld, G. Elber: Geometric Model-
ing with Splines: An Introduction, AK Peters, Wellesley,
MA, 2001.

[7] M. P. DoCarmo. Differential Geometry of Curves and
Surfaces. Prentice-Hall, 1976.

[8] G, Elber and M.-S. Kim: Euclidean offset and bisector
approximations of curves over freeform surfaces. Com-
puter Aided Geometric Design, 80, Article 101850, 2020.

[9] G. Farin: Curves and Surfaces for CAGD: A Practical
Guide, 5th Ed., Morgan Kaufmann, San Francisco, CA,
2002.

13



[10] S. Golomb: Polyominoes: Puzzles, Patterns, Prob-
lems, and Packings, Revised second edition. Princeton
University Press, Princeton, NJ, 1994.

[11] Q Hong, Y. Park, M.-S. Kim, G. Elber: Trimming
offset surface self-intersections around near-singular re-
gions. Computers & Graphics, 82:84-94, 2019.

[12] J. Hoschek and D. Lasser: Fundamentals of Computer
Aided Geometric Design. AK Peters, Wellesley, MA,
1993.

[13] IRIT 12.0 User’s Manual. The Technion—
IIT, Haifa, Israel, 2021. Available at
http://www.cs.technion.ac.il/~irit .

[14] C.S. Kaplan: Semiregular patterns on surfaces. NPAR
’09: Proc. of the 7th Int’l Symp. on Non-Photorealistic
Animation and Rendering , pp. 35—39, August 2009.

[15] C.S. Kaplan and D.H. Salesin: Escherization. Proc. of
ACM SIGGRAPH 2000 , pp. 499—510.

[16] N. Kita and T. Saito: Computational design of gen-
eralized centrifugal puzzles. Comput. Graph., 90:21-28,
2020.

[17] N. Kita and K. Miyata: Computational design of poly-
omino puzzles. The Visual Computer . 37:777-787, 2021.

[18] C. Lau, Y. Schwartzburg, A. Shaji, Z. Sadeghipoor,
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