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A B S T R A C T

Skeleton creation is an important phase in the character animation pipeline. However,
handcrafting skeleton takes extensive labor time and domain knowledge. Automatic
skeletonization provides a solution. However, most of the current approaches are far
from real-time and lack the flexibility to control the skeleton complexity. In this pa-
per, we present an efficient skeletonization method, which can be seamlessly integrated
into the sketch-based modeling process in real-time. The method contains three steps:
local sub-skeleton extraction; sub-skeleton connection; and global skeleton refinement.
Firstly, the local skeleton is extracted from the processed polygon stroke and forms a
subpart along with the sub-mesh. Then, local sub-skeletons are connected according to
the intersecting relationships and the modeling sequence of subparts. Lastly, a global
refinement method is proposed to give users coarse-to-fine control on the connected
skeleton. We demonstrate the effectiveness of our method on a variety of examples cre-
ated from both novices and professionals.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

There is an increasing need for ready-to-animate models,
which takes designers lots of time in shape modeling, skele-
ton creation, and weight painting. However, manually creating
the skeleton is labor-intensive, and requires professional train-
ing. Sketch-based tools [1] liberate users from the troublesome
of shape modeling, making 3D modeling accessible to novices.
There are also lots of work focusing on automatic skeletoniza-
tion [2][3][4][5][6][7]. However, they are computation expen-
sive and far from real-time. The skeleton is extracted only after
the entire mesh model is constructed and processed by the al-
gorithm.

In this paper, we present a real-time skeletonization method
for sketch-based modeling, which enables simultaneous shape
modeling and skeleton creation. A local skeleton and corre-
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sponding mesh are automatically created as soon as the polygon
stroke is captured, then the subpart is connected to the exist-
ing subpart, finally a coarse-to-fine refinement strategy is pro-
vided to the user to control the skeleton complexity, see Fig. 1.
Extracting an animatable skeleton in real-time is difficult with
three major challenges: (i) how to extract the local skeleton
efficiently from an underlying shape; (ii) how to establish the
relationship among local skeletons in real-time; and (iii) how to
find the optimal skeleton structure suitable for animation.

To solve the first challenge, we construct a straight skeleton
[8] structure directly from the input polyline and fully utilize
Douglas Peucker (DP) simplification [9] to accelerate the pro-
cess. The straight skeleton is extracted by offsetting the polygon
edges inward and recording the trace of vertices. We employ
straight skeleton as our base skeletonization technique because
the computation cost is almost negligible compared with other
methods based on binary image [10], voxels [11][2][12], point
clouds [4], and meshes [3][5][7]. The simplicity of polygon
data structure makes the algorithm a perfect candidate for im-
mediate skeleton extraction. Our innovation is the full-fledged
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(a) (b) (c)

Sketch Sketch simplification & interpolation

Inflation
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Inflation

Skeletonization

Initial connection Re-connection

Draw another part Move a part Refine Global Skeleton

Blue: Interactive Step

Red: Automatic Step

Fig. 1. An illustration of creating animatable skeleton using our system: (a) Draw a sketch, a polygon contour is approximated, and a skeleton is extracted
from the simplified polygon, meanwhile, the 3D mesh is created through inflation. (b) Draw/move a part, the hierarchical relationship is deducted by fast
shape intersection test and modeling sequence, and the precise connecting position from child part to parent part is calculated. (c) Refine the skeleton by
multi-level control operations.

use of DP technique for speeding up animatable skeleton ex-
traction. As shown in Fig. 1a, we simplify the dense sketch
points (red) with DP, the simplified contour not only approx-
imates the shape well but also generates the most concise in-
put for the straight skeleton extraction algorithm. We further
propose an efficient BoundedDP algorithm for extracting joints
from the axis line of the straight skeleton. Both the axis curva-
ture and silhouette shape are considered, which yields a good
result of key joints.

To solve the second challenge, we reuse the skeleton axis and
joints extracted from the first step and develop a general cylin-
der around the axis as well as an inscribed ball around the joint
to approximate the 3D shape. This approximation enables the
real-time intersection test in the interactive modeling process.
Once two 3D shapes are found intersecting with each other,
we attach one skeleton to the other according to the modeling
sequence. We set the independent subparts as roots, and all
follow-up subparts are attached hierarchically according to the
intersection relationship and the modeling order. The attached
position is calculated from Euclidean distance between parent-
skeleton bones and child-skeleton joints.

To solve the third challenge, we equip users with four opera-
tions under three level-of-detail controls. As pointed by [7], an-
imators need multi-level controls for skeleton complexity, and
the fixed number of joints extracted solely from shape topology
is not enough to capture user intention. For example, a hand
may be represented by a single medial bone or a finer reso-
lution of hierarchical finger joints. Our four operations provide
users flexible control over skeleton complexity. Instead of man-
ually inserting, deleting, and connecting bones, users only need
to adjust four parameters to change the skeleton structure. The
branch-level operation is based on DP algorithm, which allows
users to tune the joints number for a single axis, such as the axis
on a finger. For the subpart level and global level, we take inspi-
ration from polygon mesh processing [13][14][15] and skeleton
pruning [16][17] since a skeleton can be regarded as an acyclic

graph structure (tree). The three operations are joints merging,
branch pruning, and edge collapsing. Each operation corre-
sponds to a control threshold that is calculated from the current
geometric state of the skeleton. Users can explore different de-
sign ideas simply by playing around with these parameters.

In summary, our contributions are four folds: (i) a real-time
skeletonization algorithm for immediately constructing an ani-
matable skeleton from user sketch; (ii) an efficient method for
fast intersection test and sub-skeletons connection; (iii) a flex-
ible solution for multi-level of details skeleton control; (iv) an
easy-to-use sketch system to create animatable models.

2. Related Work

2.1. Skeletonization

There are plenty of works for skeletonization. Based on in-
put data types, they can be classified into: binary image and
planar curve in 2d; voxels, point cloud, and mesh in 3d [18].
According to the skeletonization technique, they can be classi-
fied into propagation-based, and geometric-property-based. In
the following, we shall discuss these approaches according to
the latter categorization.

Propagation-based methods. The propagation-based methods
mimid the grassfire or wavefront transformation moving along
the boundary, and the skeleton is the quench where two or
more fires/wavefronts meet. In the 2D binary domain, the most
representative work is Zhang-Suen Thinning [10], which itera-
tively removes pixels along object borders until no more pixels
could be removed. A large body of follow-up works extend
this method to 3D voxel domain [11][19][20][21][22][23][24].
These methods are not geometric robust and have the risk of
removing important features. Despite the additional processing
method [25] is proposed to handle excessive removal, the bi-
nary propagation approach is generally computation intensive.
The computation cost is greatly reduced in the 2D geometric
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domain, namely, the shape represented by 2D lines or curves.
Aichholzer introduces a straight skeleton structure [8] for the
polygon. The structure is progressively constructed by shrink-
ing the polygon and recording the trace of moving vertices.
Felkel presents a practical implementation for this algorithm us-
ing a doubly-linked list and a priority queue, and the time com-
plexity only subjects to the number of polygon vertices. The
3D counterpart of this algorithm is proposed by [3]. Similar
to shrinking the polygon into zero-area, Au’s algorithm guides
the triangular mesh shrinking to zero volume by constrained
implicit Laplacian smoothing [26] and defines an edge cost to
simplify the collapsed mesh into the curve skeleton. Tagliasac-
chi et al. [5] further improve Au’s algorithm through a detailed
analysis of Mean Curvature Flow (MCF) during mesh contrac-
tion, and introduce a local remeshing schema to enhance nu-
meric stability. The mesh-based methods are time-consuming
incurred by the implicit linear system solving in each contrac-
tion iteration, and the generated curve skeleton needs post-
processings to be animatable. Compared with a curve skeleton,
the straight skeleton structure [8] conforms more to an animat-
able skeleton. Our skeletonization algorithm benefits from such
conformance and the simpleness of the planar polygon. Mean-
while, it does not need an expensive mesh contraction process
to create the 3D skeleton.

Geometric property-based methods. The geometric methods
strive to find the shape centers by analyzing the translation
and rotation property of the inner region towards the boundary.
One popular choice is Medial Axis Transformation (MAT). The
MAT skeleton is defined as the locus of the centers of all maxi-
mally inscribed circles (in the 2D domain) or spheres (in the 3D
domain). Plenty of MAT literature exist for different geometric
entities: the 2D/3D binary ones [27][28][29][30][2], the planar
curve [31], the point clouds [32], and the mesh [6]. These meth-
ods are computationally intensive, numerically unstable except-
ing the work for planar curve [31], and are sensitive to bound-
ary perturbations. In addition to the distance transformation
property, rotation traits are used in [4]. The curve skeleton is
discovered by finding a rotational symmetry axis (ROSA) for
an oriented point cloud. They propose an iterative planar cuts
method to find the optimal ROSA plane. This method is ex-
tended by [33] to the mesh. They use the ROSA method to
find a general cylinder decomposition and partial curve skele-
ton given a polygon mesh. However, these methods are also
time-consuming, and the extracted curve skeleton is not ready
for animation.

2.2. Automatic Rigging

Automatic rigging creates a ready-to-animate bone skeleton
[3] and binds the skeleton to the mesh. The pioneering work
of automatic rigging is proposed by [34], which fits a prede-
fined skeleton template to the mesh, and calculates the skin-
ning weight through heat diffusion. However, their method is
limited by the skeleton template and fails to cope with various
shapes. On the contrary, our work is highly adaptable to various
shapes in a creating-on-the-go fashion. It is closely related to

RigMesh proposed by [35], in which shape modeling and skele-
ton creating are handled simultaneously. RigMesh uses Con-
strained Delaunay Triangulation to decompose the silhouette
into needle-like triangles and constructs the skeleton by con-
necting triangle centers. It defines three strategies for skeleton
connection: splitting, snapping, and connecting. When a user
drags one part close to the other, a connecting suggestion from
these three cases is made. The underlying meshes are merged
immediately after the user accepts the recommendation. This
strategy is unintuitive and inaccurate, leading to the attached
mesh deviating from its original position. In contrast, our algo-
rithm can calculate the exact attach position conforming to the
user’s original intention. With the rapid development of deep
learning techniques, the recent work uses a deep neural network
to solve the automatic rigging problem [7], however, their ap-
proach is limited to the training set and does not work well for
arbitrary shapes, and the method also has a high requirement
for devices. Our algorithm works for the novel shapes that a
network is never trained before, and it is also practical to be
deployed in low-end devices.

2.3. Sketch Modeling

Sketch-based system pioneered by Igarashi et al. [1] greatly
reduces the workload of shape modeling. Users only need to
draw few strokes to create a 3D shape. And the subsequent
works [36][37][38][39][40][41][42][43] make sketch modeling
more complete, with the power of creating complex shapes. The
recent work of MonsterMash [44] propose a framework for ca-
sual sketch modeling and animation prototyping under single-
view, the work provides lots of fun to novice users, however, the
strength of simple interaction is also a weakness of the system,
especially for professional users who want an accurate model.
Our system allows users to create accurate shapes under differ-
ent views without losing the interaction simplicity.

3. Our Method

3.1. Local Sub-Skeleton Extraction

Previous works extract skeleton from the merged mesh
[3][5], which is slow in interactive scenarios. To achieve real-
time performance, we generate the local sub-skeleton directly
from stroke-input. The local method contains three sub-steps:
(i) simple polygon acquisition; (ii) straight-skeleton extraction;
(iii) and straight-skeleton simplification, shown in Fig. 2. In
this section, we first introduce the definition of simple polygon
and straight skeleton. Then, we describe the details of three
sub-steps.

Definition 1 (Simple Polygon). A simple polygon is a polygon
that does not intersect itself and has no holes. See Fig. 3 for an
illustration.

Definition 2 (Straight Skeleton). A straight skeleton is a spe-
cial partitioning of a polygon into monotone regions traced by
a continuous inward offsetting of the contour edges [8]. See
Fig. 4 for an illustration.
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(a) (b) (c) (d) （e) (f) (g)

Fig. 2. Local sub-skeleton extraction. (a) Processed sketch line. (b) Simplified polygon. (c) Straight skeleton traced by propagating polygon edges inward.
(d) Animatable clean skeleton by removing redudant vertices and edges. (e) Spline interpolated by long polyline branch. (f) Slice uniformly along the
spline to capture contour variation. (e) Simplified skeleton by bounded DP simplification.

Fig. 3. Simple
polygon

Simple polygon acquisition. To acquire valid
and concise input for the local skeletoniza-
tion algorithm, the raw sketch line needs to be
processed. The sketch line is usually smooth
but sometimes may contain noises, shown in
Fig. 19. We smooth out these noises by uni-
formly discretizing the raw line by a small
length, which yields a smooth input for our al-
gorithm, shown in Fig. 2a. Then we apply
Douglas-Peucker (DP) algorithm [9] to find
a simplified polygon best approximating the
shape, shown in Fig. 2b, details of DP are introduced in Section
Straight-skeleton simplification. Lastly, we arrange the polygon
vertices as counter-clockwise oriented to be ready for the next
step. We denote the simple polygon as P(V,E) consisting a set
of verticesV = {vi} and edges E = {ei}.

Straight skeleton extraction. Then a straight skeleton S(P) is
extracted from the simple polygonP(V,E). The basic idea is to
propagate edges inward like setting fire around the border, and
the straight skeleton is traced by bisectors of polygon edges.
The polygons here refer to the initial silhouette polygon and
intermediate offsetting polygons generated by propagation, see
Fig. 4. In a formal description, all edges move at the same speed
along their respective perpendicular direction. During propaga-
tion, two types of events may changes polygon’s topology: (i)
the edges ei and ek (adjacent to the edge e j) collide, and e j van-
ishes; (ii) an edge ek collides with two consecutive edges ei and
e j, splitting ek into two edges on collision position. We define
the former as Edge Event and the latter as Split Event following
the same convention from [45] and [46], see Fig. 4. The method
is summarized in Algorithm 3.

Straight-skeleton simplification. The straight skeleton from the
previous step contains many unnecessary vertices and edges as
shown in Fig. 2c and Fig. 6. Skeleton vertices traced from high
curvature borderline are clustering together. Neither the periph-
eral edges nor the very short skeleton edges are wanted for con-
structing an animatable skeleton. Thus, we remove all periph-
eral edges, and collapse short skeleton edges less than a given
threshold, shown in Fig. 2d. In our experiment, we set the col-
lapse threshold as 0.5 ∗ average(skeleton edge length), which
produces a clean animatable skeleton in most cases. Still, this
skeleton is not concise enough. Designers may find that nodes
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Fig. 4. Black: the initial silhouette polygon. Green: the intermediate off-
setting polygons. Red: the traced straight skeleton. (a) Edge Event: non-
consecutive edges ei and ek collide, and e j collapses. (b) Split Event: con-
secutive edges ei and e j collide simultaneously with opposite edge ek , and
ek splits. The polygon P(t) at the time t splits into two smaller polygons
Pl(t + 1) and Pr(t + 1) at the next time t + 1.

along the long axis are superfluous. The Douglas Peucker al-
gorithm [9] is a good option to do the simplification. However,
only considering the axis curve while ignoring the shape will
lead to an over-simplified or even out-of-shape skeleton, see
Fig. 5. To address this problem, we propose a BoundedDP al-
gorithm considering both the axis and the shape. Details of this
algorithm will be introduced in the following.

A spline curve is interpolated for each long polyline, shown
in Fig. 2e. We observe that the region enclosing a long branch
usually forms a general cylinder, which could be used as bound-
ary restriction during simplification. To extract the general
cylinder, we first generate a set of uniformly sampled points {pi}

along the axis curve, and compute a segment si at each pi by in-
tersecting the polygon with an infinite line perpendicular to the
central axis at pi, see Fig. 2f. Meanwhile, the intersected edges
on the polygon are also recorded, forming two nearly parallel
lines on the left and the right side of the central axis. By clos-
ing open holes at the end of these two lines, we get the general
cylinder region Ω, see shadow area in Fig. 2f. Then pi and Ω
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Fig. 6. Straight skeleton. A straight skeleton contains two types of vertices:
border vertices (red circle) and skeleton vertices (blue cirlce), and three
types of edges: border edges (black segment), peripheral edges (green seg-
ment), and skeleton edges (red segment).

are used as input for BoundedDP to get the simplified polyline
l({pi}, {ei}) with each polyline edge ei lying inside the bounded
region Ω.

Fig. 5. Over
simplification

The original Douglas Peucker algorithm
works in a recursive greedy manner: at each
step, it selects a point pi with maximum dis-
tance to the line ps pe. If the distance d⊥i is
larger than a threshold ε, pi is regarded as
important for fitting the original line, and is
added to the output, see the first row of Fig. 7.
The algorithm then recursively calls itself on
the split line, ps pi and pi pe, finding the fur-
thest point in each range. The recursion termi-
nates until no point can be found with its dis-
tance larger than the threshold ε. Two essen-
tial ingredients contribute to a good approxi-
mation: (i) the criteria to select the important
point; (ii) the threshold to balance between
simplicity and approximation quality. For the criteria, instead
of only considering the variation of axis curve, our algorithm
also takes shape variation into account, which leads us to the
following formula:

Ei = Epi + αsEsi (1)
= d⊥i + αs(d+

i + d−i ) (2)

where Epi measures the axis variation, namely, the perpendic-
ular distance d⊥i from current point pi to the straight line con-
necting two endpoints, see the first row of Fig. 7. To capture
the shape variation, we add the second term Esi to the formula,
measuring the distances d+

i and d−i from two endpoints of seg-
ment si to the two sides of the trapezoid, which is bounded by
two end segments ss and se, see the dotted line (distances) and
the shaded area (trapezoid) of the second row in Fig. 7. Notice
we rearrange the segments {si} parallelly by stretching the axis
curve to a horizontal straight line, filtering the axis variation out
of the second term. In each step, we choose the point maximiz-
ing the error Ei, which is a summation of axis variation and a
weighted (αs) shape variation. The point selection procedure
is summarized in Algorithm 1. For threshold, the larger the
value is, the more simplified result we get, sometimes inducing
undesirable skeleton, see Fig. 5. To select a proper ε, we ini-
tialize the threshold with a fairly large value ε0, and try to find

Input: p = {pi}, s = {si}, start index ist, end index ien,
threshold ε

Output: Array of booleans b = {bi} marking which pi to be
retained.

1 if ien ≤ ist + 1 then return;
// Find point with max error

2 imax ← ist;
3 Emax ← 0;
4 for i← ist + 1 to ien do
5 Epi ← PerpendicularDistance(pi, Line(pist , pien ));
6 Esi ← d+

i + d−i ; // shape variation, see Fig.7
7 Ei ← Epi + Esi ;
8 if Ei > Emax then
9 imax ← i;

10 Emax ← Ei

11 end
12 end
13 b[imax]← true;

// Recursive selection
14 if Emax > ε then
15 BoundedDP(p, s, ist, imax, b);
16 BoundedDP(p, s, imax, ien, b);
17 end

ALGORITHM 1: BoundedDP: point selection.

Input: n points p = {pi} and perpendicular segments s = {si}

uniformally sampled along axis curve, bounded
region Ω, a relatively large initial threshold ε0,
adaptive ratio α ∈ (0, 1)

Output: Simplified polyline l({pi}, {ei})

1 ε ← ε0 ; // initial threshold
2 while not IsInsideShape(l, Ω) do
3 b← { f alse};
4 BoundedDP(p, s, 1, n, b);
5 clear previous l, add pi to l if bi is true;
6 ε ← α ∗ ε ; // reduce threshold
7 end

ALGORITHM 2: BoundedDP: threshold tuning.

an approximate polyline l({pi}, {ei}). Then we check whether
all edges ei of the simplified polyline are inside the shape Ω. If
there exist intersections between ei and the shape boundary ∂Ω,
we tune down the current threshold ε by a factor of 0.8. This
procedure is summarized in Algorithm 2.

3.2. Sub-Skeleton Connection
Before starting this section, we give the following definition:

Definition 3 (Junction joint). Joint adjacent to three or or
more bones.

Definition 4 (Sleeve joint). Joint adjacent to two bones.

Definition 5 (Terminal joint). Joint only adjacent to one
bone.

Definition 6 (Branch). A branch begins with either a junction
joint or terminal joint, and ends with a junction joint or termi-
nal joint, probably with sleeve joints between two ends.
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1d ⊥ sp
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Fig. 7. BoundedDP simplification (red branch in Fig. 2f). The upper part of the first column shows an axis curve and its enclosing general cylinder. The
lower part of the first column shows a parallel arrangement of intersected segments, which are acquired by uniformly slicing along the axis. The next three
columns show the first three steps of BoundedDP. Better approximations are found for both the line and the shape as the algorithm progresses.

We connect sub-skeletons in an interactive pairwise fashion.
This conforms to the real scenarios in which users interactively
create 3D models part by part. The new subpart is connected to
the existing subpart, meanwhile, the new sub-skeleton is con-
nected to the corresponding sub-skeleton. When the user cre-
ates a new subpart or moves an existing subpart, see Fig. 1b,
we instantly check whether the current subpart intersects with
other subparts. If the current subpart intersects with another
subpart, we connect the skeleton in the current subpart to the
skeleton in the intersected subpart. To make intersection test
real-time, we reuse the local skeleton extracted from the pre-
vious step. Specifically, we find a cylinder-ball approximation
for the mesh shape, see Fig. 9. Each skeleton edge serves as
the medial axis of the general cylinder, and each bone serves as
the center of the inscribed ball. The ball’s radius is the average
distance from the joint to the cross-section contour, which is
precomputed by slicing the mesh along the bone’s perpendicu-
lar direction. Once the radius of the two end joints is computed,
the radius for the general cylinder can be calculated by linear
interpolation of the two end radius. We denote sub-skeleton on
the current subpart as child-skeleton and sub-skeleton on the
previous intersected subpart as parent-skeleton. Initially, we
set the first subpart as the root. If a subpart does not intersect
with any previous subpart, we also add it to the roots set. All
subparts created after and intersected with a root becomes the
root’s child. All subparts created after the child and intersected
with the child become the child’s child (one of the root’s de-
scendants), so on and so forth, formulating a tree hierarchy. If
the terminal joints or junction joints of the child skeleton lies
inside the cylinder-ball region of the parent, we regard that the
two parts intersect with each other and start locating a more pre-
cise position from the child-skeleton to the parent-skeleton for
attaching.

On child-skeleton, terminal joints and junction joints are se-
lected as the candidates to be connected to the parent bones.We
then tries to find an optimal position on the parent-skeleton
where the child’s candidate joints could be connected to, the
one minimizing the distance between the child joint and the
parent-skeleton. Firstly, we search for the best bone/joint from

iv

kv
iv

kv
 jv

iv

kv
 jv iv jv

kv
iv jv

kv
d d

( )a ( )b

Fig. 8. Distance from child joint (yellow) to parent bone (purple).

the parent skeleton. We compute the shortest distance from the
child candidate joint to each parent bone. The bone with mini-
mum distance is selected as the best spot for connection, see the
purple segment in Fig. 9. Given a parent bone with start joint
vi and end joint v j, the shortest distance from parent’s bone to
child’s joint vk is calculated as:

d =

|−−→vkvi| sin θ if −−→viv j ·
−−→vivk ≥ 0 and −−→v jvk ·

−−→v jvi ≥ 0,
min{|−−→vkvi|, |

−−→vkv j|} otherwise
(3)

where −−→viv j ·
−−→vivk ≥ 0 and −−→v jvk ·

−−→v jvi ≥ 0 defines an influence
region for each bone, see shadowed area in Fig. 8 and Fig. 9.
The influence region is bounded by two planes perpendicular to
the bone. Only when the child joint lies inside the two planes,
the perpendicular point-to-line distance is used Fig. 8a. If child
joint vk is outside the bone’s influence region, we calculate the
Euclidean Distance from the joint to the bone’s two end joints
respectively, and choose the smaller one as the shortest distance
Fig. 8b.

Then, we connect child-skeleton to parent-skeleton by choos-
ing the closest joint-joint or joint-bone pair. Two types of events
occur: bone split event and joint connect event, see Fig. 9. Bone
split event occurs when the child‘s joint lies inside the parent
bone’s influence region. We create a new joint on the parent
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( )a ( )b

Fig. 9. Sub-skeleton connection: connecting child-leg-skeleton to parent-
torso-skeleton. The shadowed area shows the cylinder-ball approximation
of the shape, which enables real-time intersection test. The dotted line
shows the shortest distance from the candidate child joint to each parent
bone. (a) Bone Split Event. (b) Joint Connect Event.

bone, green circle in Fig. 9a, and split the bone into two. Then
a new bone is created between the new joint and the child joint.
Notice if the child’s joint is close to the parent bone’s end, one
of the split bones will be very short. We address this problem
in Sec3.3. Joint connect event occurs when the child’s joint lies
outside the parent bone’s influence region. We create a new
bone connecting the child joint and the nearest parent joint.

3.3. Global Skeleton Refinement

Our global refinement method aims to generate a clean skele-
ton suitable for animation. Specifically, it solves two prob-
lems. Firstly, sub-skeleton connection usually induces redun-
dant short bones, especially when two or more child-skeletons
connect to similar positions on the parent-skeleton. Secondly,
users need more control for skeleton complexity on different
parts of the model, for example, users may expect a more com-
plex skeleton for the hand than for the torso. To equip users with
interaction easiness and flexibility. We introduce four opera-
tions and a multi-level strategy. The four operations are curve
simplification, joints merging, branch pruning, and edge col-
lapsing. The multi-level complexity control contains three tiers:
branch level, subpart level, and global level. Simplifying works
on branch level, whereas merging, pruning and collapsing work
on subpart level and global level.

Branch level operation. We control branch complexity using
BoundedDP of Section 3.1. Specifically, we map the subpart-
shape and the branch from 3D space into 2D space by rotat-
ing the 3D plane (Fig. 1b, Fig. 12 1st row) back to XY plane,
run the BoundedDP algorithm in 2D space, and then remap the
simplified branch back to its original 3D position. The distance
threshold for DP simplification is εs, and the default value in our
experiment is εs = 5.0. Fig. 10 (green boxes) shows simplifying
the wing skeleton by increasing εs.

Subpart and global level operation. (i) Joints Merging: We ob-
serve that junction joints usually cluster together after the user
connects the child sub-skeleton to the parent sub-skeleton. The
distance between any two junction nodes inside the cluster is
small, thus it is reasonable to merge these junction nodes into
one, see Fig. 11. We perform a breadth-first search to find junc-
tion clusters constrained by a distance threshold, it is similar to

the algorithm that finds a connected component of graph [47].
The distance threshold for merging is εm, and we set its de-
fault value as εm = 30.0. (ii) Branch Pruning: When a JT-
branch (the branch ending with a junction joint and a termi-
nal joint) is shorter than a certain length, we remove it since it
is insignificant to the overall structure. The distance threshold
for trimming a JT-branch is εt, and we set the default value as
εt = 30.0. Yellow boxes of Fig. 10 show such an example. (iii)
Edge Collapsing: Junction joints and sleeve joints are internal
joints. When a bone connecting two internal joints is short, it
brings redundancy for an animatable skeleton, thus we collapse
the two joints into one. The distance threshold for collapsing
is εc, and we set the default value as εc = 10.0. Black boxes
of Fig. 10(b)-(c) show acquiring a more concise skeleton by in-
creasing collapsing threshold εc.

Multi-level complexity control. We provide the user the option
to control the skeleton structure by adjusting the above four
parameters εs, εm, εt, and εc. Since a smaller threshold yields
a more complex structure, the skeleton topology changes in a
coarse-to-fine manner when users adjust the threshold. For ex-
ample, a more complex hand skeleton can be acquired by set-
ting a smaller value of εs, more knuckles appear on the finger
branch, shown in red boxes of Fig. 10a-b. If the user needs the
coarse representation, they can adjust the threshold to a higher
value. Besides, users can select a single branch, a subpart-
skeleton, or the global skeleton, and apply these operations on
them. They can explore different skeleton structures simply by
playing with these parameters.

4. Results

We implement our approach using C++, libIGL1, and Qt.
The current implementation, available at https://github.
com/jingma-git/RealSkel, is tested on a AMD Ryzen 7
3700X 8-Core Processor 3.6GHz with 62GB RAM under
Ubuntu20.04 LTS system. Our program runs at an interactive
rate (see the accompanying video). Fig. 12 shows a gallery of
created models using our system.

4.1. Implementation Details

We use CGAL’s implementation to extract the straight skele-
ton [46], which runs in O(nm + n log n) time, where n denotes
the number of polygon vertices and m denotes the reflex ones.
For mesh creation, we first triangulate the polygon to get a 2D
mesh [48], and generate the 3D mesh by an inflation algorithm
[44]. The height field of internal vertices is calculated by Pois-
son equation subject to the Dirichlet boundary condition and a
constant height parameter c. We provide the user the option to
change the model’s thickness by adjusting the height parameter
c. The sparse linear system is solved by LLT Cholesky factor-
ization, which takes O(n3) time, where n denotes the number of
vertices in the 2D mesh. We also provide the user some utility
functions such as sketch symmetry line, create symmetry part,

1https://libigl.github.io/

https://github.com/jingma-git/RealSkel
https://github.com/jingma-git/RealSkel
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(b)(a) (c)

Fig. 10. Refine a bird skeleton. (a) The initial skeleton under default parameters, constructed by our system automatically. Green boxes (a)-(b): simplify
branches on wings by increasing threshold εs. Red boxes (a)-(b): acquire more complex structure on claw by reducing threshold εs. Yellow boxes (a)-(b):
trim short JT branch by increasing threshold εt . Black boxes (b)-(c): collapse short internal bones by increasing threshold εc.

.

(b)(a)

Fig. 11. Merging. (a) Before merging. (b)After merging.

rotation, translation, and scaling, etc. After all subparts and the
global skeleton are constructed, we merge all parts into a water-
tight mesh based on the method from [49]. To make our system
fully automatic, we use the method from [50] to compute the
skinning weights for deformation, see Fig. 12 3rd row.

4.2. Comparisons
We compare our system with MonsterMash2 and RigMesh3

to evaluate the interactive part of our system. Twelve users par-
ticipate in the user study, three with modeling experience are
assigned to the professional group, six without any modeling
experience are assigned to the novice group, and the rest three
are assigned to the jury group to judge the model accuracy (the
quality of the mesh and the skeleton). We ask the first two
groups to use MonserMash, RigMesh, and our system to cre-
ate 3D models, and then show the models to the third group and
ask them to fill a questionnaire regarding model accuracy. Dur-
ing the experiment, we give the participant a user manual, and
record the time they take to be familiar with the system. On av-
erage, it takes eight minutes, twenty minutes, and twelve min-
utes to train the participants on MonsterMash, RigMesh, and
our system respectively. After the user finishes training, they

2https://monstermash.zone/
3https://cragl.cs.gmu.edu/rigmesh/

are allowed to proceed to the modeling stage. The modeling
time is shown in columns 2-7 of Table. 1. Models created by
professionals and novices using our system are shown in Fig. 12
and Fig. 13 respectively. Models created by professionals using
MonsterMash are shown in Fig. 14. Models created by profes-
sionals using RigMesh are shown in Fig. 15. The model ac-
curacy given by the jury group is shown in columns 8-13 of
Table. 1 (MonsterMash models are accessed by mesh quality,
RigMesh and our system are accessed by both mesh quality
and skeleton quality). Compared with the other two systems,
our system takes less time for users to create accurate models.

We compare with other skeletonization methods to evaluate
the algorithm part of our system. Our algorithm extracts skele-
ton from 2D polygon (sub-skeleton extraction), and then trans-
forms the skeleton to the 3D space to construct the 3D skeleton
(sub-skeleton connection and global refinement). Therefore,
we compare our method with both 2D and 3D skeletonization
methods. For 3D skeletonization algorithms, we choose Mean-
Curvature [5] and GeneralCylinder [33] to compare. MeanCur-
vature is based on mesh contraction, while GeneralCylinder ex-
tracts skeleton by slicing mesh to find ROSA [4]. The merged
mesh of Fig. 12 is used as input to the 3D skeletonization algo-
rithms. For 2D skeletonization algorithms, we choose Zhang-
Suen’s Thinning [10] and ChordalAxisTransform of RigMesh
[35] to compare. Zhang-Suen’s algorithm is based on binary
image thinning while ChordalAxisTransform extracts chordal
axis from the constrained Delaunay triangulated polygon. We
use the subpart contour of Fig. 12 (1st row) as the input to the
2D skeletonization algorithms. All experiments are conducted
in the same machine. Table 2 compares the execution time
of our algorithm with others. Our algorithm is significantly
faster than MeanCurvature, GeneralCyliner, and ZhangSuen’s
Thinning. We also make qualitative comparisons. The skele-
ton quality of our algorithm is on par with MeanCurvature of
Fig. 17, and is better than RigMesh of Fig. 15 and General-
Cylinder of Fig. 18.
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Fig. 12. A gallery of models created by professionals using our system (zoom out the PDF to see the details). The first row shows the initial sketches from
input image (right corner) and the silhouette polygons (drawn in 2D, then transformed to 3D). The second row shows the refined global skeleton along with
the inflated 3D mesh. The third row shows the skinning weights (right corner) and the deformed models.

Models
Modeling Time(min) Model Accuracy(1-5 stars)

MonsterMash RigMesh Ours. MonsterMash RigMesh Ours.
Nov Pro Nov Pro Nov Pro Nov Pro Nov Pro Nov Pro

bird 10 6 40 32 18 14 2.5 3.0 3.5 3.5 4.5 4.5
cat 7 4 29 23 12 10 3.0 3.0 3.5 3.5 4.5 5.0

crab 5.5 5 33 28 17 15 2.0 2.0 3.0 3.0 4.5 4.5
deer 5 3.5 42 39 16 13 2.5 3.0 3.0 3.5 4.5 4.5
tree 8 6 28 21 18 12 3.0 3.5 3.5 3.5 4.0 4.5

panda 5 3 30 27 16 11 1.5 1.5 2.5 3.5 4.5 4.5
lorax 3 2.5 21 19 10 8 3.5 3.5 3.0 3.5 4.5 5.0

octopus 6.5 5 30 22 19 13 1.5 2.0 3.0 3.0 4.5 4.5
pokemon 4 2 32 24 14 10 2.0 2.0 3.0 3.5 4.5 4.5
Average 6 4.1 31.7 26.1 15.6 11.8 2.4 2.6 3.1 3.4 4.4 4.6

Table 1. Compare our system with MonsterMash and RigMesh. Nov: novices. Pro: professionals. Our system is easy for users to create high-quality
models. The easiness is revealed by Modeling Time and the quality is revealed by Model Accuracy. The shorter the time is, the easier for the user to interact
with the system. The more stars are given, the more accurate the model is. The modeling time of our system is half of the RigMesh, while the model
accuracy of our system is higher than both MonsterMash and RigMesh.
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Models #vertices 3D Skeletonization 2D Skeletonization
MeanCurvature GeneralCylinder Zhang-Suen ChordalAxisTransform Ours.

bird 10808 582 22052 331 6 13
cat 6980 598 18088 167 4 4

crab 19079 860 26382 412 6 10
deer 10091 745 39587 217 4 10
tree 11920 681 43986 141 4 7

panda 5939 406 14057 254 6 5
lorax 8750 719 18135 212 6 9

octopus 17004 1052 21941 560 5 14
pokemon 10487 672 13195 345 6 7
Average * 701.8 24158.7 293.2 5.2 8.8

Table 2. Execution time(ms) of our algorithm compared with other algorithms. #vertices represents the number of vertices for merged mesh of Fig. 12.
Columns 3-4 show the execution time of MeanCurvature and GeneralCylinder respectively. Columns 4-6 show the execution time of Zhang-Suen’s thinning
[10], RigMesh ChordalAxisTransform [35], and our algorithm. In general, 2D skeletonization is faster than the 3D counterparts. Our method is signifi-
cantly faster than MeanCurvature, GeneralCylinder and Zhang-Suen’s Thinning, and it is slightly slower than ChordalAxisTransform. The relationship
between #vertices and the algorithm’s time complexity is revealed in Fig. 16.

Fig. 13. Models created by novices using our system. Models take an aver-
age 15 minutes to create.

Fig. 14. Models created using MonsterMash [44]. Models take an average 4
minutes to create. No skeleton is automatically generated. It only supports
single-view modeling, which accelerates the modeling time but reduces the
shape accuracy, see bird wings, cat ears, and crab body.

Fig. 15. Models created using RigMesh [35]. Models take an average 26
minutes to create. The skeleton joints are redundant and inaccurate, see
cat butt, panda torso, and lorax shoulder.

Fig. 16. The execution time is proportional to #vertices.



J. Ma, J. Wang, J. Li, D. Zhang / Computers & Graphics (2021) 11

Fig. 17. The curve skeleton extracted by MeanCurvature [5]. The skeleton
is smooth and medially centered.

Fig. 18. The disconnected curve skeleton extracted by GeneralCylinder
[33]. A color patch represents a general cylinder. The skeleton is sensi-
tive to the general cylinder decomposition, see bird wing, lorax head, and
octopus body.

5. Conclusion and future work

In this paper, we present an efficient framework to create
the animatable skeleton in real-time for sketch modeling. We
divide the big problem into three smaller ones: (i) local sub-
skeleton extraction; (ii) sub-skeleton connection; (iii) global
skeleton refinement; and we conquer the problem one by one.
To solve the first problem, we extract a straight skeleton by
propagating the silhouette polygon inward, and we acceler-
ate the algorithm by finding a concise shape approximation
through DP simplification, a novel BoundedDP algorithm is
then used to transfer the straight skeleton into the animatable
bone skeleton. To solve the second problem of skeleton con-
nection, we abstract the shape with general cylinders for bone
and inscribed balls for joints, which enables a real-time inter-
section test among parts. And the precise attaching position is
located by measuring Euclidean distance between parent bones
and candidate child joints. To solve the third problem of cre-
ating different resolutions of skeletons, we propose four oper-
ations under three tiers of control. The branch-level operation
allows users to control the bone complexity of a single axis.
The subpart level and global level operation provide users with
joints merging, branch pruning, and edge collapsing operations
to control the overall structure. The implemented system is
demonstrated to be easy to use and enables complex shape &
rig creation.

In the future, we intend to provide users more options to
create shapes and skeletons by reusing existing 3d models.
Specifically, our pipeline will not be limited to the immedi-

ately sketched shapes, users can also import 3D models created
before and connect them to the newly sketched ones, and our
system will automatically create an animatable skeleton for the
model consisting of old and new shapes.
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[34] Baran, I, Popović, J. Automatic rigging and animation of 3d characters.
ACM Transactions on graphics (TOG) 2007;26(3):72–es.

[35] Borosán, P, Jin, M, DeCarlo, D, Gingold, Y, Nealen, A. Rigmesh:
automatic rigging for part-based shape modeling and deformation. ACM
Transactions on Graphics (TOG) 2012;31(6):1–9.

[36] Tai, CL, Zhang, H, Fong, JCK. Prototype modeling from sketched
silhouettes based on convolution surfaces. In: Computer graphics forum;
vol. 23. Wiley Online Library; 2004, p. 71–83.

[37] Cherlin, JJ, Samavati, F, Sousa, MC, Jorge, JA. Sketch-based model-
ing with few strokes. In: Proceedings of the 21st spring conference on
Computer graphics. 2005, p. 137–145.

[38] Nealen, A, Sorkine, O, Alexa, M, Cohen-Or, D. A sketch-based in-
terface for detail-preserving mesh editing. In: ACM SIGGRAPH 2005
Papers. 2005, p. 1142–1147.

[39] Schmidt, R, Wyvill, B, Sousa, MC, Jorge, JA. Shapeshop: Sketch-based
solid modeling with blobtrees. In: ACM SIGGRAPH 2007 courses. 2007,
p. 43–es.

[40] Alexe, A, Barthe, L, Cani, MP, Gaildrat, V. Shape modeling by sketch-
ing using convolution surfaces. In: ACM SIGGRAPH 2007 courses.
2007, p. 39–es.

[41] Nealen, A, Igarashi, T, Sorkine, O, Alexa, M. Fibermesh: designing
freeform surfaces with 3d curves. In: ACM SIGGRAPH 2007 papers.
2007, p. 41–es.

[42] Sugihara, M, De Groot, E, Wyvill, B, Schmidt, R. A sketch-based
method to control deformation in a skeletal implicit surface modeler. In:
SBM. 2008, p. 65–72.

[43] Cordier, F, Seo, H, Park, J, Noh, JY. Sketching of mirror-symmetric
shapes. IEEE Transactions on Visualization and Computer Graphics
2011;17(11):1650–1662.
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Supplementary

Fig. 19. Unsteady stroke. In our system, the perimeter of the stroke is
1972.28, and the step size for uniform discretization is 10.

Input: A simple polygon P(V,E) with vertices {vi} and
edges {ei} oriented counter-clockwise.

Output: The straight skeleton S(P).

// Initialization
1 L = InitDLAV(V,E) ; // doubly linked active

vertices
2 foreach vi in L do
3 bi = CalBisector(ei−1, ei);
4 update straight skeleton S(P) by bi;
5 end
/* Compute initial events, place them in a

priority queue PQ ordered by offsetting
time */

6 foreach vi in L do
7 if vi is convex then
8 tisect = CalIntersectTime(bi, bi+1);
9 pisect = CalIntersectPoint(bi, bi+1);

10 Add EdgeEvent(bi, bi+1, pisect, tisect) to PQ;
11 else
12 eopp = FindOppositeEdgeInDLAV(vi);
13 tsplit = CalSplitTime(vi, eopp);
14 psplit = CalSplitPoint(vi, eopp);
15 Add S plitEvent(vi, eopp, psplit, tsplit) to PQ;
16 end
17 end

// Propagation
18 while PQ is not empty do
19 pop top event from PQ;
20 if event is an EdgeEvent then

// collapse edge
21 vnew = CreateIntersectNode(EdgeEvent);
22 bnew = CalBisector(EdgeEvent);
23 else

// split polygon
24 vnew1, vnew2 = CreateSplitNodes(S plitEvent);
25 bnew1, bnew2 = CalBisectors(S plitEvent);
26 end
27 update DLAV L, straight skeleton S(P), and PQ by new

vertices and bisectors, see Line1∼17;
28 end

ALGORITHM 3: Straight skeleton extraction
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