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Abstract

The minimum-supported bivariate C2-cubic spline on a 6-directional mesh constructed
in our previous work [2] can be used to extend Loop’s approximation subdivision scheme to
introduce some parameter for controlling surface geometric shapes. This extension is achieved
by considering matrix-valued subdivisions, resulting in subdivision templates of the same 1-ring
template size as Loop’s scheme, but with 2-dimensional matrix-valued weights. Another feature
accomplished by considering such an extension is that the two components of the refinable
vector-valued spline function can be reformulated, by taking certain linear combinations, to
convert the approximation scheme to an interpolatory scheme, but at the expense of an increase
in template size for the edge vertices. To maintain the 1-ring template size with guarantee
of C2 smoothness for interpolatory surface subdivisions, a non-spline solution is needed, by
applying some constructive scheme such as the procedure discussed in our recent work [4]. The
main objective of this paper is to develop the corresponding matrix-valued 1-ring templates for
the extraordinary vertices of arbitrary valences, for all of the three schemes mentioned above:
the extended Loop approximation scheme, its conversion to an interpolatory scheme, and the
non-spline 1-ring interpolatory scheme. The discrete Fourier transform (DFT) is applied to
analyze the spectral properties of the corresponding subdivision matrices, assuring that the
eigenvalues of the subdivision matrices satisfy certain conditions for C1 smoothness at the
extraordinary vertices for all of the three considerations in this paper.

1 . Introduction

Subdivision algorithms provide efficient mathematical tools for curve and surface mod-
elling, rendering, and editing in Computer Graphics (see, for example, [21, 18]). To
construct a smooth surface, the subdivision process is carried out iteratively, starting
from an initial (triangular or quadrilateral) mesh, called control net, to generate some
nested sequence of finer and finer meshes that eventually converge to the desirable lim-
iting surface, called subdivision surface. If all the vertices of each coarser mesh (i.e. the
mesh before the next iteration step is carried out) are among the vertices of the finer
mesh (i.e. the mesh obtained after the next iteration step has been completed), then the
subdivision scheme is called an interpolatory subdivision scheme. Otherwise, it is called
an approximation subdivision scheme.
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2-0003. This author is also with the Department of Statistics, Stanford University, Stanford, CA 94305.
2Research supported by UM Research Board 10/05 and UMSL Research Award 10/06.
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For surface subdivisions, this iterative process is governed by two sets of rules,
namely: the topological rule that dictates the insertion of new vertices and the con-
nection of them to create a finer mesh, and the local averaging rule for computing the
positions in the 3-dimensional space IR3 of the new vertices (and for an approximation
subdivision scheme, new positions of the old ones as well) in terms of certain weighted
averages of the (old) vertices nearby. The most popular topological rule for surface
subdivisions is the “1-to-4 split” (or dyadic) rule, which dictates the split of each trian-
gle or quadrilateral into four triangles or quadrilaterals, respectively. For example, the
Catmull-Clark [1], Doo-Sabin [7], Loop [12], butterfly [8], and mid-edge [13] schemes,
are the most well-known schemes that engage the 1-to-4 split topological rule.

For regular vertices (i.e. those with valence 6 for triangular subdivisions, and valence
4 for quadrilateral subdivisions), the local averaging rule of the iterative process for the
1-to-4 split topological rule is related to some refinement equation

φ(x) =
∑

k∈ZZ2

pkφ(2x− k), x ∈ IR2. (1.1)

Here, φ(x) is called a refinable function with dilation matrix 2I2, and the (finite) sequence
{pk} is called its corresponding refinement sequence or subdivision mask. For a control
net with vertices v0

k, called “control points”, the subdivision mask {pk} provides the
local averaging rule

vm+1
j =

∑

k

vmk pj−2k, m = 0, 1, · · · , (1.2)

where, for each m = 1, 2, · · · , the set vmk denotes the set of vertices obtained after taking
m iterations. The local averaging rule (1.2) is, in general, described and represented in
the plane, called the “parametric domain”, by a set of regular triangles or quadrilaterals
along with a set of subdivision templates. For example, for Loop’s scheme, where the
refinable function φ is the quartic box spline B222 on a 3-directional mesh, the templates
of its local averaging rule for the 1-to-4 split triangular mesh are shown on the left and
in middle among the three templates in Fig.1. On the other hand, to take care of ex-
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Figure 1: Templates of Loop’s scheme for regular vertices, edge vertices, and extraordinary
vertices with valence n, where a = 5
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traordinary vertices (i.e. those with valences different from 6 for triangular subdivisions,
and valences different from 4 for quadrilateral subdivisions), a certain custom-designed
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local averaging rule is required in general. For example, the template for Loop’s scheme
for extraordinary vertices of valence n is shown on the right among the three templates
in Fig.1, where

a =
5

8
− (

3

8
+

1

4
cos

2π

n
)2 (1.3)

is a function of the valence n. Consequently, smoothness of subdivision surfaces at
extraordinary vertices is not determined by that of φ. The interested reader is referred
to [16] and the references therein for detailed discussions on smoothness analysis at
extraordinary vertices, and to [11] and the references therein for estimates of order of
smoothness for non-spline refinable functions φ.

In another development, namely, that of multi-wavelets in Wavelet Analysis, the
refinement equation (1.1) is extended to a matrix-valued refinement (also called two-
scale) relation

Φ(x) =
∑

k∈ZZ2

PkΦ(Ax− k), x ∈ IR2, (1.4)

with dilation matrix A (which could be the matrix 2I2 in (1.1)), an r-dimensional vector-
valued refinable function Φ = [φ0, · · · , φr−1]T (also called refinable function vector), and
refinement (or two-scale) sequence of r-dimensional square matrices {Pk}, which will be
called a subdivision mask in this paper.

For the 1-to-4 split topological rule, we just select 2I2 as the dilation matrix A. But
for other topological rules, such as

√
2,
√

3,
√

5 and
√

7 splits, different appropriate
dilation matrices must be chosen. For example, in the study of

√
3-subdivisions, the

dilation matrix

A1 =

[
2 −1
1 −2

]
(1.5)

is used in our earlier paper [2] to construct a 2-dimensional refinable function vector
with bivariate C2 cubic spline components on a 6-directional mesh. It was also observed
in [2] that this particular spline function vector is also refinable with respect to the
dilation matrix 2I2; and hence, the corresponding subdivision mask provides another
set of templates for generating subdivision surfaces for the 1-to-4 split topological rule,
but with (2-dimensional) matrix-valued weights, instead of scalar-valued weights. For
convenience, we will refer to this matrix-valued subdivision scheme as “S2

3 -subdivision”.
The matrix-valued weights of the S2

3 -subdivision provide a free parameter (called control
parameter in [2]), for adjusting shapes of surface geometry. In particular, when the
control parameters are set to be zero at each iterative step, then the subdivision surface
generated by S2

3 -subdivision is identical to the subdivision surface generated by Loop’s
scheme. For this reason, S2

3 -subdivision can be considered as an extension of Loop’s
scheme. In this paper, subdivision templates with sizes not exceeding those of Loop’s
scheme will be called “1-ring” templates.

Most surface subdivision schemes in the existing literature, including Loop’s scheme
and its extension to S2

3 -subdivision, are not interpolatory, meaning that the control
points (or vertices of the initial mesh) do not lie on the (limiting) subdivision surface.
In certain applications, such as reversed engineering of scattered data and study of
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point clouds, where control points are data points, surface interpolation is an important
requirement. For matrix-valued subdivisions, various versions of interpolatory subdi-
visions were introduced, particularly for the purpose of Hermite interpolation (see, for
example, [9, 2, 3, 6]). These considerations, however, are too restrictive to be useful for
the construction of interpolatory matrix-valued templates in general, particularly when
symmetry is an essential feature. The most general extension of interpolatory surface
subdivisions, from scalar to matrix considerations and without any restriction, for con-
structing symmetric interpolatory matrix-valued templates is formulated in our earlier
paper [4].

The characterization of interpolatory subdivision matrices derived in [4] can be easily
applied to convert the S2

3 -subdivision to interpolatory surface subdivisions, which will
be called “S2

3 -interpolatory-subdivision” in this paper. Hence, extending Loop’s scheme,
by allowing matrix-valued weights to replace scalar-valued weights, has the flexibility to
achieve spline-based surface interpolation of the control points, which are vertices of the
initial control net.

Unfortunately, this spline approach necessarily increases the template size for edge
vertices (if the weights are required to remain 2-dimensional matrices). In order to
maintain 1-ring templates as well as not to increase the matrix dimension, while achieving
C2 interpolatory subdivision, a non-spline solution was obtained in [4]. It will be called
“1-ring-interpolatory-subdivision” in this paper. However, the above discussions of S2

3 -
subdivision, S2

3 -interpolatory-subdivision, and 1-ring-interpolatory-subdivision so far are
only concerned with regular vertices.

The main objective of this paper is to derive 1-ring templates for extraordinary
vertices, with arbitrary valences, for all of these three surface subdivision schemes. After
giving a brief introduction to the prior work on the matrix-valued subdivision in Section
2, we present the results on templates for extraordinary vertices in Sections 3, 4, and
5 for S2

3 -subdivision, S2
3 -interpolatory-subdivision, and 1-ring-interpolatory-subdivision,

respectively. Spectral analysis of the subdivisions matrices by using the discrete Fourier
transform (DFT), as well as discussions on the choice of control parameters for the
1-ring-interpolatory-subdivision scheme, will be presented in the appendix.

To facilitate our discussions, let us first introduce the following notations. We will
use 0 to denote the zero matrix of any dimension, but specifically use 0j and 0j×k to
denote the j × j and j × k zero matrices, respectively. Eigenvalues λj, j = 0, 1, · · · , of a
subdivision matrix are always listed according to multiplicities and indexed in the order
of non-increasing magnitudes, namely:

|λ0| ≥ |λ1| ≥ |λ2| ≥ · · · ,

with the second and third eigenvalues λ1, λ2 to be called subdominant eigenvalues.
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2 . Prior results

When the matrix-valued refinement equation (1.4) is applied to surface subdivisions, the
local averaging rule (1.2) is extended to the matrix setting:

vm+1
k =

∑

j

vmj Pk−Aj, m = 0, 1, · · · , (2.1)

where
vmk =: [vmk , s

m
k,1 · · · , smk,r−1] (2.2)

are “row-vectors” with r components of points vmk , s
m
k,i, i = 1, · · · , r − 1, in IR3. Here,

we use the first components vmk to denote the vertices of the subdivision meshes gen-

erated after the mth iteration, with initial vertices v0
k being the control points of the

surface subdivision. The other components s0
k,1, · · · , s0

k,n−1 of v0
k, can be used to control

the surface geometric shape. Then, as shown in our earlier work [5], under the con-
dition of “generalized partition of unity”, the vertices vmk provide an accurate discrete
approximation of the target subdivision surface, formulated by the series representation:

F (x) =
∑

k

v0
kφ0(x− k) +

∑

k

(
s0

k,1φ1(x− k) + · · ·+ s0
k,n−1φn−1(x− k)

)
.
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Figure 2: Support and Bézier-nets of φb0

The bivariate C2 cubic spline function φb0 with minimum support introduced in our
earlier work [2] is shown in Fig.2, where only the nonzero Bézier coefficients are displayed.
(Actually, φb0(−x, y) is introduced in [2]. The reason for the choice of this φb0 here and in
[5], as opposed to φb0(−x, y) in [2], is to use the same domain of the characteristic map
as that considered in [17].) By introducing another cubic spline

φb1(x) := φb0((A−1
1 )Tx), (2.3)
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with A1 given in (1.5), it is shown in [2] that the function vector Φb = [φb0, φ
b
1]T is refinable

with respect to both dilation matrices 2I2 and AT1 , with corresponding refinement masks
that give rise to 1-to-4 split scheme (referred as S2

3 -subdivision) and
√

3 subdivision
scheme, respectively. The interested reader is referred to [2] for details. On the other
hand, for the 2-dimensional matrix-valued weights of the S2

3 -subdivision (which has a
free control parameter), it was demonstrated in [5] that the control parameter could be
applied to change the geometric shapes of subdivision surfaces quite dramatically.

Other matrix-valued templates with minimal size have also been constructed in our
previous work [2, 3, 6] for different purposes. More precisely, [2] also presents C1 Her-
mite interpolatory schemes both for 1-to-4 split and

√
3 split based on C1 quadratic

Hermite splines; [3] obtains a second-order Hermite basis of the space of C2-quartic
splines on a six-dimensional mesh to yield matrix-valued templates for Hermite inter-
polatory surface subdivision scheme for the 1-to-4 split triangular topological rule; [6]
constructs refinable quartic and quintic spline function vectors on the four-directional
mesh to generate matrix-valued templates for approximation and Hermite interpolatory
surface subdivision schemes, respectively, for both the

√
2 and 1-to-4 split quadrilateral

topological rules.
However, Hermite interploatory schemes lack the desirable symmetry, and they are

too restrictive to be useful when the templates for extraordinary vertices are considered.
A natural extension of interpolatory surface subdivisions from scalar to matrix consid-
erations is introduced in [4]. More precisely, a subdivision scheme with matrix-valued
templates, generated by some subdivision mask {Pk} corresponding to 2I2 dilation, is
called interpolatory in [4], if vm+1

2k = vmk , for all m = 0, 1, · · · ,k ∈ ZZ2, where vm+1
2k and

vmk are the first components of vm+1
2k and vmk , respectively, and vmk are defined as in (2.1).

When we use the first components vmk to denote the vertices of the subdivision meshes

generated after the mth iteration, this definition precisely assures that the control points
lie on the (limiting) subdivision surface, as in the scalar-valued setting. It is also shown
in [4] that the algebraic structure of the interpolatory mask {Pk} is given by

P0,0 =




1 ∗ · · · ∗
0 ∗ · · · ∗
...

... · · · ...
0 ∗ · · · ∗


 , P2j =




0 ∗ · · · ∗
...

... · · · ...
0 ∗ · · · ∗


 , j ∈ ZZ2\{(0, 0)}. (2.4)

We remark that when the matrix dimension r is 1, this property is reduced to the simple
algebraic property

p2j = δ(j), j ∈ ZZ2, (2.5)

of an interpolatory mask {pk} for the scalar-valued setting, where as usual, we use
δ(j) for the Kronecker delta symbol. It was also shown in [4] that under certain mild
conditions that include the generalized partition of unity, the algebraic structure in
(2.4) is equivalent to the following Lagrange-type interpolation property of the refinable
function vector Φ = [φ0, φ1, · · · , φr−1]T , namely:

φ0(k) = δ(k), φj(k) = 0, k ∈ ZZ2, 1 ≤ j ≤ r − 1. (2.6)
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Let φb0 be the minimum support bivariate C2 cubic spline shown in Fig.2, and φb1 be
the spline defined by (2.3). Since φb1(0, 0) = 1 6= 0, and

φb1(· − (1, 0)) = φb1(· − (−1, 1)) = φb1(· − (0, 1))

= φb1(·+ (1, 0)) = φb1(·+ (−1, 1)) = φb1(·+ (0, 1)) =
1

9
6= 0,

it follows that the masks corresponding to the refinable function vectors [c0φ
b
0+c1φ

b
1, c2φ

b
0+

c3φ
b
1] are not interpolatory for all choices of cj, with c0c3− c1c2 6= 0 . However, as in [4],

by introducing

φ̃b1 := φb1 − φb0 −
1

9
{φb0(· − (1, 0)) + φb0(· − (−1, 1)) + φb0(· − (0, 1))

+ φb0(·+ (1, 0)) + φb0(·+ (−1, 1)) + φb0(·+ (0, 1))},
so that φb0, φ̃

b
1 satisfy (2.6) (with φ0, φ1 replaced by φb0, φ̃

b
1, respectively). It is easy to

verify that [φb0, φ̃
b
1]T is also refinable with respect to the dilation matrices 2I2, so that

its refinement mask gives rise to an interpolatory scheme.
In [4], except this spline-based C2 interpolatory scheme, various matrix-valued spline-

based and non-spline-based interpolatory schemes for
√

3,
√

2 subdivisions and 1-to-4
split triangular and quadrilateral subdivisions are constructed.

3 . C2 cubic spline-based approximation schemes

This section is devoted to the construction of 1-ring templates for extraordinary vertices
for the S2

3 -subdivision. In this paper, we only consider the 1-to-4 split topological rule,
and will use {P b

k} to denote the refinement mask of Φb = [φb0, φ
b
1]T corresponding to

the dilation matrix 2I2. Observe that for any non-singular 2 × 2 constant matrix U ,
the function vector UΦb is also refinable with respect to the dilation matrix 2I2, with
corresponding refinement mask given by {UP b

kU
−1}. We are particularly interested in

the choice of

U =

[
1
3

1
−1

3
1

]
,

since the subdivision scheme for this choice provides a matrix extension of Loop’s scheme,
with some free control (or shape-control) parameter. More precisely, let Φ = U [φb0, φ

b
1]T ,

namely:

Φ := [
1

3
φb0 + φb1,−

1

3
φb0 + φb1]T . (3.1)

Then the nonzero matrices of its subdivision mask {Pk} are given by

P0,0 =

[
5
8

3
8

3
8
−1

8

]
, (3.2)

P1,0 = P−1,0 = P0,1 = P0,−1 = P1,1 = P−1,−1 = X,

P2,1 = P−2,−1 = P1,2 = P−1,−2 = P1,−1 = P−1,1 = Y,

P2,0 = P−2,0 = P0,2 = P0,−2 = P2,2 = P−2,−2 = Z,
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where

X =

[
3
8

0
1
4

1
8

]
, Y =

[
1
8

0
1
8

0

]
, Z =

[
1
16
− 1

16
1
16
− 1

16

]
. (3.3)

The templates for the local averaging rule derived from this subdivision mask are shown
on the left and in middle among the three templates in Fig.3. In this case, the constant
vector y0 for which Φ reproduces all non-zero constants is given by y0 = [1, 0]. This
means that y0 = [1, 0] is the desirable constant vector for which

y0

∑

k∈ZZ2

Φ(x− k) = constant, x ∈ IR2.

The interested reader is referred to [10] and the references therein for some detailed
discussion of polynomial reproduction by Φ. This matrix-valued subdivision scheme
with templates on the left and in middle of Fig.3 is still refereed as “S2

3 -subdivision”.
In the following, we will introduce the corresponding templates for treating extraor-

dinary vertices such that the S2
3 -subdivision scheme will assure the eigenvalues λj of the

subdivision matrix satisfying λ0 = 1, λ1 = λ2, |λ3| < |λ1|.

Z

Z

0,0

Z

Z

Z

P

Z

X

Y

X

Y

n
W−

−

−n
W

n

n
W

−n
W

−

n

W −n
W

n

W

W

−n

Figure 3: Templates for S2
3-subdivision for regular vertices (left and middle), and for extraor-

dinary vertices with valence n (right)
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Figure 4: Labeling of the indices

For extraordinary vertices with valence n, we will determine the 2 × 2 matrices Wn

and W (both depending on n) for the 1-ring template as shown on the right in Fig.3.
To construct these matrices, we need to analyze the spectral property of the subdivision
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matrix. Here, an appropriate labeling of the indices of the vertices is important, and
we will follow [19]. Although we need to start with a 3-ring template, it is sufficient to
illustrate the order of the indices by only considering a 2-ring neighborhood of an ex-
traordinary vertex with valence n, as shown in Fig.4. To analyze the surface smoothness
for 1-ring templates, we first consider a subdivision matrix, denoted by SP , on a 3-ring
neighborhood of the extraordinary vertex of valence n. By applying some appropriate
permutations to the DFT of SP , we arrive at a block diagonal matrix (see the first
appendix for the derivation), with n diagonal blocks

M0 =

[
m0 ∗
06×8 06

]
, Mj =

[
m1(zj) ∗

06 06

]
, 1 ≤ j ≤ n− 1, (3.4)

where
z := ei

2π
n , (3.5)

and

m0 =




Wn X Z Y
W X + 2Y P0,0 + 2Z 2X
0 0 Z 0
0 0 2Z Y


 ,

m1(z) =



X + Y (z + 1

z
) P0,0 + Z(z + 1

z
) X(1 + z)

0 Z 0
0 Z(1 + 1

z
) Y


 .

Here, Z only has zero eigenvalues, Y has one non-zero eigenvalue 1
8
, and

X + Y (zj +
1

zj
) =

[
3
8

+ 1
4

cos 2πj
n

0
1
4
(1 + cos 2πj

n
) 1

8

]
.

Thus, the non-zero eigenvalues of SP consist of those of the matrix
[
Wn X
W X + 2Y

]

as well as the values

1

8
(with multiplicity 2n− 1),

3

8
+

1

4
cos

2πj

n
, 1 ≤ j ≤ n− 1.

Set

W = 16aZ =

[
a −a
a −a

]
, Wn =

[
1− a a
x3 x4

]
, (3.6)

where a is the weight used in Loop’s scheme as shown in (1.3), and x3, x4 ∈ IR. For such

W and Wn, the eigenvalues of

[
Wn X
W X + 2Y

]
consist of the values 1, 1

8
, and

λ± =
5

16
+
x4 − a

2
± 1

16

√
64a2 − 176a+ 128ax4 + 25− 80x4 + 64x2

4 + 256ax3.
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Analogous to Loop’s scheme, we set

λ+ = (
3

8
+

1

4
cos

2π

n
)2.

Then we have

x3 =
3

8
, x4 = λ−.

So, by choosing a sufficiently small value of λ−, we can select appropriate values of
x4(= λ−). For example, we may set x4 to be 0, 1

32
, 1

16
, 1

8
or −1

8
, respectively. Here we

would like to remark that for the particular choice of x4 = −1
8
, Wn and W with n = 6

are exactly the same as the weights P0,0 and 6Z for regular vertices, as given in (3.2)
and (3.3), respectively.

For valence n = 4, with the vertices of the octahedron shown on the top-left of
Fig. 5 as the control net (or initial mesh), we apply S2

3 -subdivision. Since the second
component of y0 = [1, 0] for constant reproduction is 0, according to a preliminary study
of the choice of control parameter in [5], we simply choose 0 as the control parameter.
The resulting subdivision surfaces are shown on the top-right and bottom-left of Fig.
5 with x4 = −1

8
and x4 = 1

16
, respectively. In comparison with the limiting surface

obtained by applying Loop’s scheme (shown on the bottom-right of Fig.5), it is clear
that the S2

3 -subdivision is the desirable choice, particularly for such applications as point-
clouds visualization and reverse engineering, where the data points are used as control
vertices.

As discussed above, the leading eigenvalues of the corresponding subdivision matrix
SP satisfy the conditions

λ0 = 1, λ1 = λ2, |λ3| < |λ1|. (3.7)

If the characteristic map for the matrix-valued subdivision is regular and injective, then
the subdivision surface is C1 near extraordinary vertices (see [15, 5]). One may study the
regularity and injectivity of the characteristic map as in [5] by representing the partial
derivatives of the characteristic map in terms of the Bézier-nets. In this regard, we re-
mark that the regularity and injectivity of the characteristic maps, corresponding to the
matrix-valued subdivision scheme based on φb0, φ

b
1, have been verified for extraordinary

vertices with valence 3 and 4 in [5]. See also [14, 17] for detailed discussions in the scalar
setting. Here and in what follows, let us only retreat to visual judgement as discussed
below.

Let U1,U2 be two real-valued (linearly independent) eigenvectors that correspond
to the subdominant eigenvalues λ1, λ2. Note that U1,U2 are 2(6n+ 1)-vectors, namely,

U1 = [u1
1, u

1
2, · · · , u1

2(6n+1)], U2 = [u2
1, u

2
2, · · · , u2

2(6n+1)].

Write
U1 =: [u1

0, · · · ,u1
6n], U2 =: [u2

0, · · · ,u2
6n],

where
u1
` := [u1

2`+1, u
1
2`+2], u2

` := [u2
2`+1, u

2
2`+2], ` = 0, 1, · · · , 6n.
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Figure 5: Initial mesh (top-left), limiting surfaces by S2
3-subdivision scheme with x4 = −1

8

(top-right) and x4 = 1
16 (bottom-left), and limiting surface by Loop’s scheme (bottom-right)

Then the initial control vectors are given by

v0
i :=

[
u1
i

u2
i

]
∈ IR2×2, i = 0, 1, · · · .

Let vmi be the vectors obtained after applying m iterations of the subdivision scheme
(for the regular vertices) to v0

i . Then the first components vmi of vmi would converge to
the characteristic map (see [20] for the scalar setting). In Fig.6, with x4 = 1

16
, we show

the meshes with vertices v3
i (namely, after 3 subdivision iterations), for extraordinary

vertices with valences n = 3, n = 5, n = 4, n = 7. Observe that self-intersection does
not occur. Therefore, these illustrations suggest the regularity and injectivity of the
characteristic maps.

Observe that the (1, 1)-entries of P0,0, X, Y, Z,W,Wn are exactly the same as the
weights of the templates for Loop’s scheme. Therefore, S2

3 -subdivision could be consid-
ered as an extension of Loop’s scheme. To confirm the validity of the extension, let vm

denote the set of vectors after m subdivision iteration steps. If S denotes the subdivision
operator (in the sense that vm+1 = Svm), then by considering the projection operator

Q : {vk = [vk, s1,k]} → {[vk, 0]},
it is easy to see that Q(SQ)m{v0

k} generates the same 3-D surface as Loop’s scheme. By
applying the S2

3 -subdivision, since v0
k = [v0

k, s
0
1,k], where {v0

k} denotes the set of control

11



Figure 6: Control meshes after 3 iterations for “Characteristic maps” of S2
3-subdivision scheme

with valence n = 3, 4, 5, 7

points (or vertices of the control net), we gain a set of control parameters {s0
1,k} for

adaptive application of Loop’s subdivision scheme. In this regard, we remark that it was
illustrated in [5] that the geometry of the subdivision surfaces could change dramatically,
by considering various choices of these parameters. For this reason, a guide to selecting
initial choices of control parameters is provided in [5]. Finally, since S2

3 -subdivision
engages piecewise polynomials of degree 3 as compared with polynomials of degree 4 of
the box-spline B222 for Loop’s scheme, it is perhaps less costly to evaluate exact values of
the limiting S2

3 -subdivision surfaces than the subdivision surfaces obtained by applying
Loop’s scheme.

4 . From Loop’s scheme to interpolatory subdivisions

The extension of Loop’s scheme to S2
3 -subdivision does not achieve the interpolatory

feature. In Section 2, by applying the criterion of interpolatory subdivision matrices
introduced in [4], we manipulate the S2

3 refinement function vector to achieve surface
interpolation for regular vertices. In this section, we will take care of extraordinary
vertices with arbitrary valences, again with the interpolation property.

Let φb0, φ̃
b
1 be the splines defined in Section 2. Then as discussed in Section 2, [φb0, φ̃

b
1]T

is also refinable with respect to the dilation matrices 2I2 and its refinement mask gives
rise to an interpolatory scheme. The constant vector y0 for [φb0, φ̃

b
1]T to preserve all

non-zero constants is [1, 1
2
]. In the following, in order to change y0 to [1, 0], we further

normalize [φb0, φ̃
b
1]T to Φc := [φb0 + 1

2
φ̃b1, φ̃

b
1]T , which is again 2I2-refinable with some

corresponding interpolatory refinement mask. The interpolatory templates generated
by this mask are shown in Fig. 7, where

G0,0 =

[
1 3

8

0 −1
2

]
, J =

[
31
72
− 1

36
13
36

7
36

]
, K =

[
7
72

1
72

7
36

1
36

]
,

L =

[
0 − 1

16

0 −1
8

]
, M =

[ − 1
144

1
288

− 1
72

1
144

]
, N =

[ − 1
72

1
144

− 1
36

1
72

]
.

This interpolatory subdivision scheme is still spline-based (since each component of Φc is
a C2 cubic spline), and will be called “S2

3 -interpolatory-subdivision” in our discussions.

12
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Figure 7: Templates of C2 cubic spline-based interpolatory scheme for regular vertices (left)
and edge vertices (right)

H

−n
H

n−

H
n

−n
H

−n

nH
−n
H

−n
H

−

H

3K

3

K3

J3J

Figure 8: Templates of C2 spline interpolatory scheme for extraordinary vertices of valence n
(left) and for edge vertices adjacent to an extraordinary vertex (right)

For extraordinary vertices with arbitrary valences n, we will construct the matrix-
valued weights for the templates shown in Fig.8, where

J3 =

[
31
72
s 0

1
4

7
36

]
, K3 =

[
1
2
− 31

72
s 0

1
4

1
36

]
,

for some 0 < s ≤ 36
31

, and

Hn =

[
1 α

16

0 x2

]
, H =

[
0 − α

16

0 − 27
8(54−31s)

α

]
,

for some α, x2 ∈ IR. To determine s, x2, and α, we analyze the spectral property of the
subdivision matrix, to be denoted by SG, on a 3-ring neighborhood of an extraordinary
vertex of valence n. With careful labeling as in [19], certain appropriate permutations
are applied to the DFT of SG. Then from the derivation given in the appendix, we
may conclude that SG is similar to a block diagonal matrix with diagonal blocks, Nj,

13



0 ≤ j ≤ n− 1, given by

N0 =




Hn J3 L K N M M
H J3 + 2K3 G0,0 + 2L 2J + 2M J + 2M J +N +K K +N + J
0 0 L 2M J K +M M +K
0 0 2L K + 2N 2K J +M J +M
0 0 0 0 N 0 0
0 0 0 0 M M N
0 0 0 0 M N M




,

(4.1)
and

Nj =




J3 +K3(zj + 1
zj

) G0,0 + L(zj + 1
zj

) J(1 + zj) +M( 1
zj

+ z2j) J +M( 1
zj

+ zj) J + N
zj

+Kzj K +Nz2j + Jzj

0 L M(1 + zj) J K +Mzj M +Kzj

0 L(1 + 1
zj

) K +N(zj + 1
zj

) K(1 + 1
zj

) J + M
zj

J +Mzj

0 0 0 N 0 0
0 0 0 M M N
0 0 0 M

zj
N M


 ,

(4.2)
where 1 ≤ j ≤ n− 1.

Here, by direction calculations, it can be shown that the constant matricesK,L,M,N
satisfy the property that, for each 0 ≤ j ≤ n− 1,



N 0 0
M M N
M
zj

N M




has only zero eigenvalues, and
[

L M(1 + zj)
L(1 + 1

zj
) K +N(zj + 1

zj
)

]

has only two non-zero eigenvalues: 1
8

and −1
8
. Since for 1 ≤ j ≤ n− 1, J3 +K3(zj + 1

zj
)

has eigenvalues 31
72
s + (1 − 31

36
s) cos 2πj

n
and 7

36
+ 1

18
cos 2πj

n
, it follows that the non-zero

eigenvalues of SG are precisely those of the matrix

[
Hn J3

H J3 + 2K3

]
as well as the

values
1

8
(with multiplicity n), −1

8
(with multiplicity n),

31

72
s+ (1− 31

36
s) cos

2πj

n
,

7

36
+

1

18
cos

2πj

n
, 1 ≤ j ≤ n− 1.

Here, the eigenvalues of [
Hn J3

H J3 + 2K3

]

are 1, 1
4

and two more eigenvalues denoted as λ+, λ−. Hence, analogous to Loop’s scheme
and the S2

3 -subdivision scheme, we may choose

λ+ = (
31

72
s+ (1− 31

36
s) cos

2π

n
)2.

14



λ− x2 α

0 31
72
s− 1 + k2 4

81
29791s3−190278s2+69192s2k2+401760s−281232k2s+279936(k2−1)

124s−405

1
32

31
72
s− 31

32
+ k2 31

81
3844s3−24273s2+8928s2k2+50706s−35640sk2+34992(k2−1)

124s−405

1
16

31
72
s− 15

16
+ k2 2

81
59582s3−371907s2+138384s2k2+768366s−542376sk2+524880(k2−1)

124s−405

1
8

31
72
s− 7

8
+ k2 4

81
29791s3−181629s2+69192s2k2+366606s−261144sk2+244944∗(k2−1)

124s−405

Table 1: Possible choices of x2, α, with k2 := (31
72
s+ (1− 31

36
s) cos 2π

n
)2

As to λ−, we may allow it to be sufficiently small to facilitate the selection of x2 and α.
In Table 1, we list four possible choices of λ− and the corresponding values of x2, α.

In this table, we note that s is a free parameter with 0 < s ≤ 36
31

. We may just choose
s = 36

31
. For example with this s and setting λ− = 0, we have

x2 = −1

4
, α =

64

29
.

We may also choose other s smaller than 36
31

. For example, if we set s = 34
31

and λ− = 0,
then

x2 = (
17

36
+

1

18
cos

2π

n
)2 − 19

36
, α =

115520

21789
− 24320

2421
(
17

36
+

1

18
cos

2π

n
)2. (4.3)

For these choices of x2, α, the eigenvalues of SG satisfy the property

λ0 = 1, λ1 = λ2, |λ3| < |λ1|,

from which we can conclude that the subdivision surfaces are at least C1, provided that
their characteristic maps are regular and injective [15, 5]. In Fig. 9, for the scheme
with x2, α given in (4.3), we show the 2-dimensional meshes of v3

i near the extraordinary
vertices with valences n = 3, n = 4, n = 5, n = 7, after this subdivision scheme is
applied to the control vectors v0

i constructed from the eigenvectors of the subdominant
eigenvalues of the subdivision matrix SG as described in Section 3. Observe that these
meshes suggest the desired regularity and injectivity properties of the characteristic
maps.

5 . 1-ring C2 interpolatory schemes

The edge template of the S2
3 -interpolatory-subdivision, based on bivariate C2 cubic

splines, introduced in Section 4 is no longer 1-ring. On the other hand, non-spline 1-ring
C2 interpolatory surface subdivision schemes have been introduced in our recent work
[4]. The subdivision templates for regular vertices from one of these schemes are shown
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Figure 9: Control meshes after 3 iterations for “Characteristic maps” of cubic spline-based
interpolatory scheme with valence n = 3, n = 4, n = 5, n = 7

in the first and second of the three templates in Fig.10, where the matrix-valued weights
are given by

P0 =

[
1 −435

256

0 − 91
256

]
, D =

[
0 145

512

0 − 45
512

]
, B =

[
3
8

0
− 47

512
69
512

]
, C =

[
1
8

0
− 17

512
− 5

512

]
.

(5.1)

B B

C

C

0PD D

DD

D D

n

−
Q
n

−
Q

n

−
Q
n

−
Q

−

−
Q
n

−
Q
n

Q

Q
n

n

Figure 10: Templates of 1-ring C2 interpolatory scheme for regular vertices, edge vertices,
extraordinary vertices of valence n

The objective of this section is to derive the corresponding templates for extraordi-
nary vertices for this particular 1-ring interpolatory scheme, which we will call “1-ring-
interpolatory-subdivision” for later discussions. The templates to be constructed are
shown on the right among the three templates in Fig.10. Here, we write

Q = βD =

[
0 145

512
β

0 − 45
512
β

]
, Qn =

[
1 −145

512
β

0 x1

]
. (5.2)

Analogous to the previous discussions, to determine β, x1, we consider the subdivi-
sion matrix S̃P of this interpolatory scheme on a 3-ring neighborhood of the extraordi-
nary vertex with valence n. Since this scheme has exactly the same template sizes as
those of the S2

3 -subdivision scheme, the formulation of S̃P follows immediately from the
subdivision matrix SP for S2

3 -subdivision scheme, with P0,0, X, Y, Z,Wn,W replaced by
P0, B, C,D,Qn, Q, respectively. Hence, from the discussion on SP in Section 3, we know
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that S̃P is similar to a block diagonal matrix with the diagonal blocks, Oj, 0 ≤ j ≤ n−1,
given by

O0 =

[
o0 ∗

06×8 06

]
, Oj =

[
o1(zj) ∗

06 06

]
, 1 ≤ j ≤ n− 1, (5.3)

where

o0 =




Qn B D C
Q B + 2C P0 + 2C 2B
0 0 D 0
0 0 2D C


 ,

o1(z) =



B + C(z + 1

z
) P0 +D(z + 1

z
) B(1 + z)

0 D 0
0 D(1 + 1

z
) C


 .

Observe that D has only one non-zero eigenvalue − 45
512

and C has two non-zero eigen-
values 1

8
and − 5

512
, and that

B + C(zj +
1

zj
) =

[
3
8

+ 1
4

cos 2πj
n

0
− 47

512
− 17

256
cos 2πj

n
69
512
− 5

256
cos 2πj

n

]
.

Thus, the non-zero eigenvalues of S̃P are consist of the eigenvalues of the matrix

[
Qn B
Q B + 2C

]

as well as the values

− 45

512
(with multiplicty n− 1),

1

8
(with multiplicty n− 1), − 5

512
(with multiplicty n− 1),

3

8
+

1

4
cos

2πj

n
,

69

512
− 5

256
cos

2πj

n
, 1 ≤ j ≤ n− 1.

For the Q and Qn in (5.2), the eigenvalues of

[
Qn B
Q B + 2C

]
are given by 1, 59

512
,

and

λ± =
5

16
+
x1

2
± 1

64

√
400− 1280x1 + 1024x2

1 − 155β.

Analogous to Loop’s scheme and S2
3 -subdivision, we may set

λ+ = (
3

8
+

1

4
cos

2π

n
)2,

and choose a sufficiently small value of λ− to facilitate the selection of x1 and β.
For example, if we set λ− = 0, then we have

x1 = −a, β =
512

31
a,

where the value of a, as given in (1.3), is a function of the valence n.
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If we choose λ− = 5
256

, then we have

x1 = −155

256
+ (

3

8
+

1

4
cos

2π

n
)2, β = 10− 16(

3

8
+

1

4
cos

2π

n
)2.

For this particular choice of λ−(= 5
256

), it is worthwhile to mention that by setting n = 6,
Qn and Q are exactly the same as the weights P0 and 6D for regular vertices, as given
in (5.1), respectively.

In the following, let us consider the simpler case λ− = 0, and choose

Q =
512

31
aD, Qn =

[
1 −145

31
a

0 −a
]
, (5.4)

where D is again the matrix given in (5.1) and the formula of a is given in (1.3). For
this particular choice, the eigenvalues of the corresponding subdivision matrix satisfy
λ0 = 1, λ1 = λ2 with |λ1| < 1 and |λj| < |λ1|, j = 3, 4, · · · . Therefore, if the cor-
responding characteristic map is regular and injective, then the scheme is at least C1

for extraordinary vertices of arbitrary valence n. In Fig.11, we show the 2-dimensional
meshes of v3

i near the extraordinary vertices with valences n = 3, n = 4, n = 5, n = 7,
after this 1-ring interpolatory subdivision scheme is applied to the (initial) control vec-
tors v0

i that are constructed from the eigenvectors of the subdominant eigenvalues of

the subdivision matrix S̃P as described in Section 3. Again, these meshes suggest the
regularity and injectivity properties of the characteristic maps.

Figure 11: Control meshes after 3 iterations for “Characteristic maps” of 1-ring inter-
polatory scheme with valences n = 3, n = 4, n = 5, n = 7

Since the constant vector y0 for reproduction of constants is given by [1, 0], it is
tempting to set s0

k,1 =0. For example, for the initial triangular control net of saddle
shape as shown on the top-left picture of Fig. 12, we obtain the subdivision surface
shown in the top-middle figure by applying the interpolatory scheme in Fig. 10 to
control vectors with control vertices of this net as the first columns, and 0 as the second
columns. This requires 5 iterative steps, with a zoom-in picture shown on the top-right
figure to illustrate the detail of the surface. For comparison, the modified butterfly
scheme [22] is applied, again using 5 iterative steps, to yield the subdivision surface
and its zoom-in picture to the same region, shown on the bottom-left and bottom-right
figures, respectively.
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Figure 12: Control net (top-left), and subdivided surface (top-middle) and zoom-in part (top-
right) by 1-ring interpolatory scheme in Fig. 10, and subdivided surface (bottom-left) and
zoom-in part (bottom-right) by modified butterfly scheme

However, it does not seem to be a good idea to set the shape control parameters to
be 0 in general, particularly when the 1-ring interpolatory scheme is applied to control
vertices that are “corner” vertices of a polyhedron. The reason is that since new vertices
generated from each iterative step always lie on the subdivision surface, the first few
iterative steps are particularly important in determining the geometric shape of the
subdivision surface. In Appendix II, we will explain why shape control parameters

s0
j,1 = −tjv0

j

with tj in (0, 2] could be preferable choices for this type of control vertices v0
j . In

general, however, since surface geometry is very sensitive to the change of shape control
parameters, the choice of these parameters is an important issue. This problem will be
addressed in our future work.

As an example, let us again consider the octahedron with vertices v0
j , 0 ≤ j ≤ 5 shown

on the top-left of Fig. 13 to be put in the first columns of the control vectors. Then
applying the interpolatory scheme in Fig. 10 to the control vectors (v0

j ,−2v0
j ), 0 ≤ j ≤ 5

, namely, by setting tj = 2, we obtain the finer and finer meshes as shown in Fig. 13,
after 1, 2, 3 iterations, respectively. The limiting surface is shown in the bottom-middle
of Fig. 13. With the same octahedron on the top-left of Fig. 13 as the initial control
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net, the modified butterfly scheme [22] is applied to render the limiting surface shown
in the bottom-right picture of Fig. 13 for comparison.

Figure 13: Control net (octahedron, on top-left), finer meshes with 1, 2, 3 iteration steps,
and limiting surface (bottom-middle) by 1-ring interpolatory scheme in Fig. 10, and limiting
surface by modified butterfly scheme (bottom-right)

6 . Appendices

6.1. Appendix I: Spectral analysis

This subsection is devoted to the discussion of the spectral property of the subdivision
matrices. The primary tool is the discrete Fourier transform (DFT). Although DFT
of cyclic (block) matrices has been well studied in the literature, we include a brief
discussion here for the convenience of the interested reader not familiar with the topic
(see also [16]).

Let C

C =




C0 C1 · · · Cn−1

Cn−1 C0 · · · Cn−2

· · · · · · · · · · · ·
C1 C2 · · · C0


 (6.1)

be a cyclic block matrix with r× r sub-matrix Cj blocks. Let z = e
2π
n
i and consider the
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Kroncker product

Un :=
[
zkj
]⊗ Ir =

[
zkjIr

]
k=0,··· ,n−1,j=0,··· ,n−1

;

of
[
zkj
]

with the identity matrix Ir. Then by direct calculations, the DFT of C, defined

by Ĉ := UnCU−1
n , can be written as

Ĉ = diag(Ĉ0, Ĉ1, · · · , Ĉn−1),

with

Ĉj :=
n−1∑

k=0

Ckz
−jk.

Observe that since the matrix C and its DFT Ĉ are similar to each other, they have the
same eigenvalues.

In the following, we apply the DFT to transform the subdivision matrices of the S2
3 -

subdivision and S2
3 -interpolatory-subdivision schemes into block diagonal matrices. The

following notations are needed for our discussion. First, diag(M0) will denote the matrix
C defined in (6.1) with Cj = 0, 1 ≤ j ≤ n − 1; that is, diag(C0) is the diagonal block
matrix with each diagonal block being C0. Clearly, the DFT of diag(C0) is itself. Next,
C(C0, C1;Cn−1) will denote the matrix C defined in (6.1), but with Cj = 0, j 6= 0, 1, n−1.

Then, the DFT Ĉ(C0, C1;Cn−1) of C(C0, C1;Cn−1) is given by

diag(C0 + C1 + Cn−1, C0 + C1
1

z
+ Cn−1z, · · · , C0 + C1

1

zn−1
+ Cn−1z

n−1).

We also use C(C0, C1;Cn−2, Cn−1) to denote the matrix C defined in (6.1) with Cj =
0, j 6= 0, 1, n− 2, n− 1.

(i) Subdivision matrix of S2
3-subdivision

With the order of labeling the indices as illustrated in Fig. 4, the subdivision matrix
SP of S2

3 -subdivision (with templates given in Fig. 3) on a 3-ring neighborhood of an
extraordinary vertex with valence n, is




Wn [X,X, · · · , X] [Z,Z, · · · , Z] [Y, Y, · · · , Y ] 0 0 0

1
n




W
W
...
W


 C(X,Y ;Y ) C(P0,0, Z;Z) C(X,0;X) diag(X) C(X,0;Y ) C(Y,0;X)

0 0 diag(Z) 0 diag(X) diag(Y ) C(0,0;Y )
0 0 C(Z,Z; 0) diag(Y ) C(Y, Y ; 0) diag(X) diag(X)
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




.

Then USPU−1, where
U := diag(I2, Un, Un, · · · , Un)
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is a 7× 7 diagonal block matrix, is given by



Wn [X,0, · · · ,0] [Z,0, · · · ,0] [Y,0, · · · ,0] 0 0 0


W
0
...
0


 Ĉ(X,Y ;Y ) Ĉ(P0,0, Z;Z) Ĉ(X,0;X) diag(X) Ĉ(X,0;Y ) Ĉ(Y,0;X)

0 0 diag(Z) 0 diag(X) diag(Y ) Ĉ(0,0;Y )
0 0 Ĉ(Z,Z; 0) diag(Y ) Ĉ(Y, Y ; 0) diag(X) diag(X)
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




.

Next, let L denote the square matrix (operator) for exchanging kn+ j and (j−2)6+
k + 2 (block matrix) rows, where 0 ≤ k ≤ 5, 2 ≤ j ≤ n + 1. Then following [20] in
exchanging (block matrix) rows, as well as the corresponding (block matrix) columns,
of USPU−1, we arrive at LUSPU−1L−1, which is a block diagonal matrix with diagonal
blocks given by




Wn X Z Y 0 0 0
W X + 2Y P0,0 + 2Z 2X X X + Y Y +X
0 0 Z 0 X Y Y
0 0 2Z Y 2Y X X
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




,

and



X + Y (zj + 1
zj

) P0,0 + Z(zj + 1
zj

) X(1 + zj) X X + Y zj Y +Xzj

0 Z 0 X Y Y zj

0 Z(1 + 1
zj

) Y Y (1 + 1
zj

) X X
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



,

where 1 ≤ j ≤ n−1. Therefore, the subdivision matrix SP is similar to a block diagonal
matrix with diagonal blocks given by (3.4), as desired.

(ii) Subdivision matrix of S2
3-interpolatory-subdivision

By using the same labeling as above, the subdivision matrix SG of the S2
3 -interpolatory-

subdivision, with templates given in Fig.7 and Fig.8, on a 3-ring neighborhood of an
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extraordinary vertex with valence n, is




Hn [J3, J3, · · · , J3] [L,L, · · · , L] [K,K, · · · ,K] [N,N, · · · , N ] [M,M, · · · ,M ] [M,M, · · · ,M ]

1
n




H
H
...
H


 C(J3,K3;K3) C(G0,0, L;L) C(J,M ;M,J) C(J,M ;M) C(J,N ;K) C(K,0;N, J)

0 0 diag(L) C(M,0;M) diag(J) C(K,0;M) C(M,0;K)
0 0 C(L,L; 0) C(K,N ;N) C(K,K; 0) C(J,M ; 0) C(J,0;M)
0 0 0 0 diag(N) 0 0
0 0 0 0 diag(M) diag(M) diag(N)
0 0 0 0 C(0,M ; 0) diag(N) diag(M)




,

where for n = 3, the (2, 4)-block C(J,M ;M,J) in the above block matrix is C(J, 2M ; J).
Withe the same 7× 7 diagonal matrix U defined above, we see that USGU−1 is given by




Hn [J3,0, · · · ,0] [L,0, · · · ,0] [K,0, · · · ,0] [N,0, · · · ,0] [M,0, · · · ,0] [M,0, · · · ,0]


H
0
...
0


 Ĉ(J3,K3;K3) Ĉ(G0,0, L;L) Ĉ(J,M ;M,J) Ĉ(J,M ;M) Ĉ(J,N ;K) Ĉ(K,0;N, J)

0 0 diag(L) Ĉ(M,0;M) diag(J) Ĉ(K,0;M) Ĉ(M,0;K)
0 0 Ĉ(L,L; 0) Ĉ(K,N ;N) Ĉ(K,K; 0) Ĉ(J,M ; 0) Ĉ(J,0;M)
0 0 0 0 diag(N) 0 0
0 0 0 0 diag(M) diag(M) diag(N)
0 0 0 0 C(0,M ; 0) diag(N) diag(M)




.

Again, we exchange both kn + j and (j − 2)6 + k + 2 (block matrix) rows and (block
matrix) columns of USGU−1, 0 ≤ k ≤ 5, 2 ≤ j ≤ n + 1, resulting in the matrix
LUSGU−1L−1, which is a block diagonal matrix with diagonal blocks given by (4.1) and
(4.2). That is, the subdivision matrix SG is similar to a block diagonal matrix with
diagonal blocks given by (4.1) and (4.2), as desired.

6.2. Appendix II: Shape control parameters for 1-ring interpo-
latory subdivision

When the 1-ring-interpolatory-subdivision is applied to such vertices as those in the
control net on the left of Fig. 14, the position of an edge vertex is determined by 4
control vectors, v0

0,v
0
1,v

0
2,v

0
3, say, with first components u0, u1, u2, u3, respectively, which

are among the vertices of the control net. Let s0
0, s

0
1, s

0
2, s

0
3 denote the control parameters

(i.e. second components of the control vectors) and u1 a new vertex, after one iteration,
that corresponds to the mid-point v0 = 1

2
(u0 + u1) (indicated by a ◦ in both pictures in

Fig. 14) of the edge [u0, u1] of the control net. Notice that the (1, 1)-entries of B and
C are 3

8
and 1

8
, respectively. So, if all of the control parameters s0

0, s
0
1, s

0
2, s

0
3 are set to

be [0, 0, 0]T , then the position u1 (indicated by • on the right of Fig. 14) could be a
little too far away from v0, indicated by ◦ in the same picture. But since this scheme is
interpolatory, u1 also lies on the subdivision surface. Therefore, it is almost certain that
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u3

u2

u0

u1

u1

Figure 14: Finer mesh (right picture), after one iteration applied to triangles 4u0u1u3 and
4u0u1u2 (left picture), with vertex u1 (right picture) corresponding to the ◦ on the edge
[u0, u1](left picture)

the limiting surface could be undesirably wavy. For this reason, it is not advisable to
set all control parameters s0

j to be [0, 0, 0]T , in general.
On the other hand, for any upper triangular matrix

U =

[
1 −t
0 1

]
, (6.1)

with t ∈ IR, where the matrix weights

Pv := UP0U
−1, Dv := UDU−1, Bv := UBU−1, (6.2)

Cv := UCU−1, Qn,v := UQnU
−1, Qv := UQU−1,

provide another interpolatory scheme with templates shown in Fig. 15. This scheme
generates subdivision surfaces with the same order of smoothness as that of the surfaces
generated by P0, D,B,C,Qn, Q.

vDv

Dv D

P

vD

v

D Bv Bv

Cv

Cv
vD

v

n
Qv

Qn,v

−n
Qv

−n
Qv

−n
Qv

−n
Qv −n

Qv

−n
Qv

−

Figure 15: Templates of 1-ring interpolatory matrix-valued scheme for regular vertices, edge
vertices, and extraordinary vertices

For the new weights Pv, Dv, Bv, Cv, Qn,v, Qv in (6.2), obtained by a similar transfor-
mation with the matrix U that carries a free parameter t, observe that the (1, 1)-entries
of Bv, Cv are 3

8
+ 47

517
t and 1

8
+ 17

517
t, respectively. Hence, for 3

8
+ 47

517
t, if we choose the

value of t so that 3
8

+ 47
517
t is close to 1

2
, then u1 would be close to v0. On the other hand,
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for positive values of t, 1
8

+ 17
517
t is significantly larger than 0, which implies that u1 is

far away from v0. Fortunately, since the value 47
517

is greater than 17
517

by a factor of 3, it
is still advisable to choose a positive value of t. Indeed, a positive t should imply less
oscillation in the limiting surface. For this reason, we conclude that appropriate values
of t in the interval (0, 2] should be good choices, in general.

For an initial mesh with control points {v0
j}j (i.e. the control net with {v0

j}j as ver-
tices), it can be shown that the subdivision surface generated by the 1-ring-interpolatory-
subdivision scheme, with weights P0, D,B,C,Qn, Q, applied to the control vectors
{(v0

j ,−tv0
j )}j is identical to the subdivision surface generated by the scheme, with weights

Pv, Dv, Bv, Cv, Qn,v, Qv, applied to the control vectors {(v0
j ,0)}j. In other words, for a

suitable choice of t, one could apply the templates in Fig.10 with initial control vec-
tors {(v0

j ,−tv0
j )}j, or equivalently, the templates in Fig.15 with initial control vectors

{(v0
j ,0)}j. Therefore, from this observation and the discussion in the previous para-

graph, shape control parameters s0
j,1 = −tjv0

j with some suitable tj in (0, 2] should be
good choices for control vertices v0

j of the same type as those illustrated on the left of
Fig. 14.
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