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Abstract 

It has been recently proved that rational quadratic circles in standard Bezier form are parameterized by chord-length. If we 
consider that standard circles coincide with the isoparametric curves in a system of bipolar coordinates, this property comes as a 
straightforward consequence. General curves with chord-length parametrization are simply the analogue in bipolar coordinates of 
nonparametric curves. This interpretation furnishes a compact explicit expression for all planar curves with rational chord-length 
parametrization. In addition to straight lines and circles in standard form, they include remarkable curves, such as the equilateral 
hyperbola, Lemniscate of Bernoulli and Limacon of Pascal. The extension to 3D rational curves is also tackled. 
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1. Chord-length parametrization 

Given a parametric curve p(t) over a certain domain t e[a,b], its chord-length at a given point p(7) is defined as 
(Farm, 2001, 2006): 

|p (0 — A| 
chord(0 := I F y A = p( f l), B = p(Z?) (1) 

| p ( 0 - A | + | p ( 0 - B | 

where bars denote the modulus of a vector. The curve is said to be chord-length parameterized if chord(f) = t. Chord-
length parametrization is clearly invariant with respect to linear transformations of the domain. Therefore, we may 
always reparameterize the curve as p(w) on a unit domain u e [0,1], so that A = p(0), B = p ( l ) . 

Chord-length parametrization admits an intuitive physical interpretation (Fig. 1). Suppose you have a rubber band 
of unit length, on which we draw a unit scale representing the unit domain. Then we attach the rubber band to two 
fixed points A, B and trace a curve by holding the band tout, pressing on it using a pencil without friction. As the band 
is submitted to a common tension all along its length, it stretches linearly, and hence condition (1) is satisfied. In fact, 
we could draw any curve using this method, but in general the curve would not be parametrized by a rational function 
of the chord u. The question to solve is precisely finding the curves for which the resulting parametrization is rational 
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Fig. 1. Chord-length versus arc-length parametrization. 

in u. Compare this rubber-band construction with that of arc-length parametrization, where the parameter domain is 
represented by an inextensible rope, which is then bent to draw the curve. 

Chord-length parametrization has recently received attention in CAGD. Resorting to traditional trigonometry 
(Sabin and Dodgson, 2005) or symbolic manipulation (Farin, 2006), it has been recently proved that quadratic cir­
cles in standard rational Bézier form are parameterized precisely by chord-length. By using bipolar coordinates and 
complex analysis, we reinterpret chord-length parametrization and check this property in a more natural way. 

The article is arranged as follows. First, in Section 2, chord-length parametrization is analyzed within its natural 
framework, namely bipolar coordinates. In Section 3 we show that the chord-length property of standard Bézier circles 
admits a very simple proof, since such circles are isoparametric curves in bipolar coordinates. We also determine what 
Bézier representations of a circle share this property. In Sections 4, 5 we investigate on the existence of other planar 
and 3D curves enjoying rational chord-length parametrization. Finally, conclusions are drawn in Section 6. 

2. Chord-length parametrization and bipolar coordinates 

2.1. Interpreting chord-length parametrization 

The chord (1) could be interpreted as a geometric coordinate rather than a property related to a particular curve. 
Consider two fixed points A, B, and define the coordinate u of a generic point p with respect to A, B as: 

u := , u e [0,1],dA = | p — A | , d s = | p — B|. (2) 
dA+dB 

Given a curve p(w) over a unit domain u e [0,1], with A = p(0),B = p(1), the curve is chord-length parameterized 
if its parameter u coincides with the coordinate (2). Therefore, such curves admit a trivial inversion (Sederberg and 
Zheng, 2002): given a point p on the curve, the corresponding value u is given by the explicit expression (2). 

For a fixed value u, the equality (2) defines the locus of points p whose distances from two fixed points A, B are in 
a constant ratio: 

u 
a A 

= — . (3) 
1 — u ds 



u = 1/2 

Fig. 2. Bipolar coordinates (u, <p) and their isoparametric curves. 

Such a locus is a circle (Ogilvy, 1990), a remarkable result due to the Greek geometer Apollonius of Perga. This circle 
of Apollonius has a centre lying on the line AB (Fig. 2). For u = 1/2 the circle degenerates to a straight line, the 
perpendicular bisector of the segment AB. 

The use of complex numbers leads to the interpretation of the chord-length property in terms of complex ratios. 
Given 3 complex points A, B, z, we define their ratio as: 

[A,B,z]:= 
B - z 

which is another complex number, unless the three points are aligned. In consequence, by equality (3), chord-length 
parametrizations are simply those preserving the (modulus) of the ratios: 

[0,1,w] = |[A,B,p(K)]|. (4) 

2.2. Defining bipolar coordinates 

We are now ready to define the bipolar coordinates (u,cp). The second coordinate cp e (—7t, 7t] of a point p is the 
angle between the segments pB and Ap (Fig. 2). Isoparametric curves with constant cp are again circular arcs, the 
locus of points that see a segment AB with constant angle (it — cp). These circular arcs cp = constant form at A an 
angle cp with the segment AB, and cut orthogonally the iso-t/ Apollonian circles. 

Some warnings regarding terminology. Traditionally, bipolar coordinates are defined using the logarithm ln(dA/ds) 
as coordinate instead of u (2), and the angle it — <p, instead of <p (Spiegel and Liu, 1999). However, our customized 



definition proves more convenient to analyze chord-length parametrization. These bipolar coordinates must not be 
confused with the sometimes called two-centre bipolar coordinates (dA,ds), which have been employed in a CAGD 
context by Farouki and Moon (2000). 

The transformation from bipolar to Cartesian coordinates is easily carried out using complex notation. Simply 
consider the geometry of Fig. 2: 

P ~ A
 = d± j v 

B - p dB 

introduce the relationship (3) and isolate p in terms of (u, <p): 

(1 — w)A + «wB j,„ 
P (« ,y )= n , , , w = e T (5) 

(1 — u) + ww 
To construct chord-length parametrized curves p(w), simply choose an arbitrary function <p(u). Such curves can be thus 
regarded as the analogue, in bipolar coordinates (u,<p), of nonparametric curves (u, f(u)) in Cartesian coordinates 
(x, y), where one coordinate is explicitly expressed as a function of the other one. 

2.3. Complex inversion 

Complex inversion deserves our attention, since it provides us with a powerful tool to derive new curves from 
existing ones. Inversion of centre at the midpoint O of the segment AB turns out to be a straightforward operation in 
bipolar coordinates, if we choose A = - l , B = l , s o that O lies at the origin z = 0. Flipping over the quotient (5), we 
get a similar expression where w is replaced by —w. In compact form: 

1 
=p(u,cp-7t), A = - l , B = l . (6) 

p(u,(p) 

In consequence, the inverse l/p(w) of a chord-length parametrized curve p(w) has also chord-length parametrization. 
Formally speaking, the set of chord-length parametrized curves is closed with respect to inversions of centre O. This 
property certainly applies to iso-cp lines: the arc for a constant <p transforms via inversion to the complementary one 
(<p - it). In other words, the automorphism (6) maps the complete circle to itself. 

3. Circles and chord-length parametrization 

3.1. Quadratic circles 

Setting a constant <p, the quotient (5) furnishes a chord-length parametrization p(w), u e [0,1], for the correspond­
ing isoparametric curves, namely circular arcs with endpoints A = p(0), B = p(l). What kind of a parametrization 
is it? Nothing else than a Mobius transformation, i.e., a complex rational linear map (Needham, 1997), which conse­
quently maps the real line to a circle. After multiplying numerator and denominator by the conjugate denominator, we 
get indeed a rational quadratic parametrization (with real denominator). Such a parametrization must be the standard 
one (Bezier endpoints po, P2 with unit weights), since the shoulder S = p(l/2) is precisely the arc midpoint (Fig. 3). 
We have thus easily checked that standard Bezier arcs are chord-length parameterized. 

Note the particular case <p = 0: the denominator in (5) becomes the unit function, and the circle degenerates to a 
straight line segment connecting A, B. This segment is endowed with a linear parametrization, which clearly enjoys 
the arc-length property as well. 

All quadratic arcs c(v) stem from the standard arc p(w) by rational linear reparametrization u(v). As a result, 
the shoulder point c(l/2) no longer lies on the midpoint of the arc, and chord-length parametrization is destroyed. 
For completeness, we give the explicit expression for such non-standard arcs. Consider again that a Mobius map 
transforms the real line to a circle, and find the specific map c(v) that transforms {0, 1, 1/2} to three distinct complex 
points {a, b, s}. Simply write a rational linear function in Bezier form, of endpoints a, s, and find the weight that results 
from the condition s = c(l/2): 

(1 — v)a + vcob s — a 
c(v) = - —- , oo= . (7) 

(1 — v) + vco b — s 
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Fig. 3. Standard parametrization of a circle via Mobius map. 

3.2. Rational representations of higher degree 

Regarding Bezier representations of higher degree, Berry proved that any Bezier circle other than quadratic is 
degenerate (Berry and Patterson, 1997; Sanchez-Reyes, 1997). There exist two types (Sederberg, 1984) of degenerate 
circles: 

1- Improperly parameterized (Sederberg, 1986), generated from the standard quadratic circle via a nonlinear ratio­
nal parameter substitution. This operation alters the parametrization, which no longer satisfies the chord-length 
condition. 

2- Those with base points, introduced by multiplying the quadratic circle in projective space by an arbitrary polyno­
mial, so that all homogeneous polynomials contain a common factor that can be divided out. Such an operation 
is called generalized degree elevation (Denker and Herron, 1997), since standard degree elevation corresponds to 
the limit case of a base point at infinity (Farin, 1999). This procedure does not alter the parametrization, thereby 
preserving chord-length. 

We conclude that, as Farin (2006) noted, the standard quadratic parametrization is the only rational chord-length 
parametrization of the circle. However, there exist other chord-length Bezier representations, namely those of higher 
degree derived from the standard one by inserting base points. For the cubic and quartic cases, such representations 
are subsumed in the formulae given by Chou (1995). 

4. Planar rational curves with chord-length parametrization 

4.1. Quartics and their shape handles 

We explore now what other planar curves p(w) admit rational chord-length parametrization on u e [0, 1]. Such 
curves must conform to expression (5), where w(w) denotes a rational curve on a unit circle: 

(1 — w)A + HW(H)B I , 

p(«) = n , , H~' w(M) = L (8) 
(1 — u) + »w(«) 
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Fig. 4. Angles a, ft, a defining a chord-length quartic. 

To get complex rational quadratic functions (i. e., quartics), just employ a linear map (7) generating a unit cir­
cle w(w). TO guarantee a unit radius, choose endpoints a = elc\ b = e1^ and shoulder point s = elor of unit modulus. 
Note that a, b, s must be distinct to avoid divisions by zero in the quotients (7), which implies distinct angles a, /3, o. 
In the limiting case of both endpoints, the angle <p(u), such that w(w) = e1*^, becomes the angle between the tangent 
to the curve and the segment AB. We thus control the quartic using the following shape handles (Fig. 4): 

a) Endpoints A, B, and angles a, /3 between the endpoint tangents and the segment AB. 
b) Angle o between chords AS and SB at S = p(l/2). Equivalently, we may choose the position of S on the bisector 

of AB, by setting the height: 

a 1 
h=d\zn-, d=-\B-A\. (9) 

In fact, Fig. 4 is nothing else than the generalization of Fig. 3 for the case of a varying angle cp(u). Finally, note that, 
to construct the inverse curve l/p(w) (6), simply choose angles a — TT,/3 — TT,O — it. 

4.2. Equilateral hyperbola and Lemniscate of Bernoulli 

The denominator in the quotient (8) vanishes only for the singular case o = it, which implies h = oo (9), yielding 
an asymptotic behaviour at S. If /3 = —a, the quotient takes a simple form, where the denominator becomes a real 
function: 

PO): 
A(l - uf + a(B - A)(l - u)u - Bu2 

(10) 
(l-u)2-u2 

This is indeed a quadratic rational curve, i. e., a conic section. A closer inspection of its behaviour, with asymptotic 
directions of angles (a + TT)/2(W -> 1/2) and a/2(u —>• oo) with respect to the line AB, reveals that the conic is 
a (rotated) equilateral hyperbola centred at the midpoint O of the segment AB (Fig. 5). We have thus obtained a 
simple, yet weird Bezier form of the hyperbola, with weights {1, 0, —1}, endpoints A, B and central Bezier point at 
infinity (Farin, 2001), the vector a(B — A)/2. Surprisingly, this parametrization, between two points A, B on different 
branches with parallel tangents, is chord-length. 

More appealing is the inverse curve (6). Swapping numerator and denominator (10) results in the oo-shaped figure 
displayed in Fig. 5, a remarkable quartic known as Lemniscate of Bernoulli (Lawrence, 1972). 

4.3. Limagon of Pascal 

A special family of curves is generated by setting a = — /3 = TT/2, and varying o (Fig. 6). The segment u e [0, 1] 
corresponds to one half of the complete quartic, which is symmetric with respect to the axis AB, and has a double 
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Fig. 5. Equilateral hyperbola and its inverse, the Lemniscate of Bernoulli. 

point D on this line. For a = 0, we have the Lemniscate of Bernoulli, and as o increases, D moves along the axis. 
When a = TT/2, D reaches B and we have a circle, if we set w(w) = e177"/2 = i when computing the quartic (8). For 
o > it/2, D moves further on to the right, eventually to infinity {o =7t), which yields an equilateral hyperbola. 

The particular case o = arccos(—1/3) is worth studying (Fig. 7). Choosing A = — 1, B = 1 for simplicity, after 
some algebraic manipulation the quartic decomposes as: 

9 V2 
p(u) = L + c(u)-Lc2(u), L = — , (11) 

where c(w) denotes a Mobius map (7) defining a non-standard circle, of endpoints a = — 1, b = 1 and shoulder 
s = e

l3jr/4. A linear combination (11) of a circle and its power generates an epitrochoid (Lawrence, 1972), the path 
traced by a point p attached to a moving circle as it roles without sliding on the outside of a fixed circle. In this case, 
the point on the moving circle is at distance L from its centre, and the fixed circle is centred at L. In addition, both 
circles have an equal (unitary) diameter, thereby yielding an instance of a special curve called Limagon of Pascal. 

A rational representation of epitrochoids was previously studied by Sanchez-Reyes (1999). However, it was 
achieved combining standard Bezier circles and, in consequence, the chord-length parametrization (11) for the Li­
magon, involving a non-standard circle, was not encompassed. 
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Fig. 6. One-parameter family of quartics, of constant a = —fi = n/2 and a varying a e [0, TT/2]. 

Fig. 7. Limacon of Pascal as an epitrochoid: a = — ft = n/2, a = arcos(—1/3). 

5. Space curves with chord-length parametrization 

Bipolar coordinates (u, cp) naturally extend to 3D by adding a third coordinate 0, corresponding to a rotation around 
the axis AB. Apollonian circles become spheres u = constant, and circles of constant <p become toroidal isosurfaces. 



We address now the case of 3D curves q(w) with arc-length parametrization. To fix notation, suppose that AB 
defines the x-axis. Clearly, the rotation 9 is immaterial for chord-length, and a 3D curve of Cartesian coordinates 
q(w) = {x(w), y(u), z(u)} is chord-length only if this property is shared by its associated planar curve p(w): 

p(w) =x(w)+ ir(w), r{u)=Jy2{u)+z2{u). (12) 

Equivalently, we construct a 3D curve q(w) from any 2D chord-length parametrized curve p(w) (12), by choosing any 
pair of functions y(u), z(u) such that r, y, z are Pythagorean triples. 

Regarding rational curves, we could easily generate a 3D rational curve q(w) via product of p(w) with a rational 
unit circle c(w): 

q(w) = {x(w), r(u)Y(u), r(w)Z(w)}, c(w) = {Y(u), Z(W)}. 

Geometrically, we rotate each point p(w) around the x-axis the angle indicated by c(w) and obtain q(w). For the simple 
case of both p(w), c(w) quadratic circles, we get a quartic q(w) that lies on a toroidal isosurface of constant <p. The 
special instances <p = ±JT/2 of a semicircle p(w) yield a curve on a sphere connecting two poles A, B. 

6. Conclusions 

We have elucidated the intimate connection between bipolar coordinates and curves with chord-length parame­
trization. Such curves are simply those whose parameter coincides with one of the coordinates, so that chord-length 
parametrized curves can be regarded as the analogue of nonparametric curves. Remarkably, they have a trivial inver­
sion algorithm since the parameter corresponding to a given point is given by a simple explicit expression. 

Whereas the straight line is the only curve admitting a parametrization of rational functions of its arc length 
(Farouki and Sakkalis, 1991, 2007), the variety of rational chord-length parametrized curves is much higher. In addi­
tion to the straight line, circle and equilateral hyperbola, there exist planar and space quartics displaying chord-length 
parametrization, which include the Lemniscate of Bernoulli and an instance of the Limacon of Pascal. Such pla­
nar quartics admit a compact complex parametrization (rational quadratic, with complex denominator), intrinsically 
simpler than the traditional one (quartic with real denominator). 
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