
Selective knot insertion for symmetric, non-uniform refine and smooth

B-spline subdivision

Thomas J. Cashmana, Neil A. Dodgsona, Malcolm A. Sabinb

aComputer Laboratory, University of Cambridge, CB3 0FD, England, UK
bNumerical Geometry Ltd, 19 John Amner Close, Ely, Cambridge CB6 1DT, England, UK

Abstract

NURBS surfaces can be non-uniform and defined for any degree, but existing subdivision surfaces are either
uniform or of fixed degree. The resulting incompatibility forms a barrier to the adoption of subdivision
for CAD applications. Motivated by the search for NURBS-compatible subdivision schemes, we present
a non-uniform subdivision algorithm for B-splines in the spirit of the uniform Lane-Riesenfeld ‘refine and
smooth’ algorithm. In contrast to previous approaches, our algorithm is independent of index direction
(symmetric), and also allows a selection of knot intervals to remain unaltered by the subdivision process.
B-splines containing multiple knots, an important non-uniform design tool, can therefore be subdivided
without increasing knot multiplicity.

Key words: Non-uniform, Subdivision, NURBS, Smoothing, Lane-Riesenfeld, Knot insertion

1. Introduction and prior work

Notice: this is the author’s version of a work that was accepted for publication in Computer Aided
Geometric Design. Changes resulting from the publishing process, such as peer review, editing, correc-
tions, structural formatting, and other quality control mechanisms may not be reflected in this document.
Changes may have been made to this work since it was submitted for publication. A definitive version was
subsequently published in Computer Aided Geometric Design, [26, 4, 2009] doi:10.1016/j.cagd.2008.11.002

Freeform surfaces are largely designed using one of two representations. The first is NURBS, a set
of closed forms offering fine-grained control, which are restricted to a rigid rectangular control grid. The
second is subdivision, invented at about the same time as NURBS but with a more recent rise to prominence.
Subdivision frees the designer from a rectangular control grid, granting a flexibility which has made it the
de facto standard for character animation, among other applications. Designers continue to work with the
restrictions of NURBS, however, in applications such as CAD/CAM where designers need the expressive
power of non-uniform parameterizations such as multiple knots.

While NURBS surfaces can be non-uniform and defined for any degree, existing subdivision surfaces are
either uniform or of fixed degree. The resulting incompatibility forms a barrier to the adoption of subdivision
for CAD applications. Motivated by the search for subdivision schemes without these limitations, we present
a non-uniform subdivision algorithm for B-splines in the spirit of the uniform Lane-Riesenfeld ‘refine and
smooth’ algorithm. This is a general form of our earlier work (Cashman et al., 2009), which required a knot
to be inserted in every existing knot interval. This more general form removes that constraint.

Subdivision works in a series of steps, each of which creates a denser control polygon (or mesh) from a
sparser one. Lane and Riesenfeld (1980) observe that a single subdivision step for uniform B-splines can
be factorised into a refine stage, followed by a sequence of local smoothing stages. Prautzsch (1998), in
work developed further by Stam (2001), Zorin and Schröder (2001) and Warren and Weimer (2001), uses

Email addresses: tc270@cam.ac.uk (Thomas J. Cashman), nad@cl.cam.ac.uk (Neil A. Dodgson),
malcolm@geometry.demon.co.uk (Malcolm A. Sabin)

Preprint submitted to Computer Aided Geometric Design April 2, 2009

?

?

Figure 1: An asymmetric algorithm requires a consistent orientation for mesh edges, but this is impossible
to achieve for some vertex valencies. In this example, no orientation for the bold edge is consistent with its
parallel edges.

this factorisation to create subdivision schemes for surfaces generalising arbitrary degree uniform B-splines.
The refine and smooth mechanism is essential for handling high degrees (above cubic). Without it there are
too many special cases to consider for positions of an extraordinary point within a subdivision mask (rising
exponentially with degree) and too much computation (rising quadratically for the unfactorised method but
linearly for refine and smooth).

Working on a different type of generalisation, Sederberg et al. (1998) consider subdivision schemes ex-
tending non-uniform quadratic and cubic B-spline surfaces. These schemes can produce low-degree NURBS
in regular regions while also including extraordinary regions where the control mesh is not regular. If the
schemes could be extended to general degree, they would be NURBS-compatible – able to represent exactly
any existing NURBS patch, but also handle extraordinary points. These surfaces might allow the advantages
of subdivision to impact on Computer-Aided Design, where NURBS have largely held sway. Unfortunately
there was, until recently, no non-uniform analogue of the Lane-Riesenfeld result. Goldman and Warren
(1993) present an extension to knots in geometric progression, but do not handle the general case. Gregory
and Qu (1996) consider a generalised “corner cutting” procedure, but only look at one such smoothing stage
per subdivision step, and do not use their results to generate non-uniform B-splines.

As a step towards a NURBS-compatible scheme, we previously demonstrated (Cashman et al., 2009) a
univariate algorithm which uses a refine and smooth factorisation, like Lane-Riesenfeld, but handles non-
uniform knot intervals. Schaefer’s univariate algorithm (Schaefer and Goldman, 2009) also fits these criteria,
but is asymmetric; smoothing stages are dependent on the direction in which control points are indexed. To
operate directly on a bivariate mesh, Schaefer’s algorithm therefore requires each edge to have an orientation
which is consistent with parallel edges. Figure 1 shows this is not possible to achieve for a mesh with general
connectivity. Our algorithm, however, is symmetric (independent of orientation), and is therefore unaffected
by the orientation problem.

Both algorithms, like Lane-Riesenfeld before them, require a new knot to be inserted in every existing knot
interval. Unfortunately where knots are multiple, the subdivision process therefore increases multiplicity,
which is undesirable. The algorithm described in this paper, in contrast, allows a selection of knot intervals
to remain unchanged in the subdivided B-spline. In the special case where one knot is inserted in every
interval, the new algorithm reduces to our earlier formulation (Cashman et al., 2009).

2. Problem statement

Subdivision is knot insertion, which has a standard theory. The new element here is a local refine and
smooth factorisation of one of the existing knot insertion operations (for example, Boehm’s (1980) or the
Oslo (Cohen et al., 1980) algorithm).

2

u
i

u
i−1

u
i+1

u
i−2

u
i+2

u
i−3

u
i+3

u
i−4

u
i+4

13 35 57 79 9
.

u
i−

1
2

u
i−

3
2

u
i−

5
2

u
i−

7
2

u
i+1

2

u
i+3

2

u
i+5

2

u
i+7

2

22 44 66 88
.

Figure 2: As λ increases, the polar arguments of a point Pλ
i include all the knots in an increasing region of

u. This is summarised above for d odd (top) and d even (bottom). Boxes represent knots uk, where a new
knot (k /∈ Y) is inserted when λ is the value above box k. Figure 5 shows this process for an example where
d is odd.

We have a B-spline B, of degree d that we wish to subdivide. The B-spline is defined by its knot vector,
t, and its control points. We must specify a new knot vector for the subdivided version. The knot insertion
algorithm then determines the location of the new control points.

u = (uj), j ∈ Z, is a non-decreasing sequence that contains the knot vector for the subdivided B-spline
plus any extra knots at each end required to handle end conditions. For convenience, we index it using Z, an
uninterrupted interval on Z. The original knot vector, t, is a subset of u: all of the original knots also appear
in u. We want the freedom to insert either zero or one new knot between adjacent original knots. There
is therefore no way to index the original knots other than to explicitly list them. Thus we define Y , the
indexing set for t, where Y ⊂ Z and, since t is a subsequence of u; t = (uj), j ∈ Y . For example, if we have
five knots and wish to insert knots in every interval, then Z = {1, 2, 3, 4, 5, 6, 7, 8, 9} and Y = {1, 3, 5, 7, 9}.
If, however, we did not want a new knot in the third of the four intervals, then Z = {1, 2, 3, 4, 5, 6, 7, 8} and
Y = {1, 3, 5, 6, 8}.

This allows us to subdivide B with multiple knots in t without increasing knot multiplicity. There are,
however, restrictions on Y in order to ensure that this works correctly, and there are end conditions to
consider, discussion of which we defer to Section 7.

The restrictions on Y are:

• Y has the same bounds as Z (i.e. Y and Z are either unbounded below, or share a common minimum,
and likewise for the upper bound),

• at most one new knot is inserted between adjacent old knots (i.e. ∀j ∈ Z \Y , j +1 ∈ Y and j−1 ∈ Y).

This general setup allows for several specific scenarios:

• to insert a knot into every non-zero knot interval, j, j + 1 ∈ Y if and only if uj = uj+1,

• to increase multiplicity, uj = uk where j ∈ Y and k /∈ Y ,

• to retain a non-zero knot interval, j, j + 1 ∈ Y for uj 6= uj+1.

We can insert more than one knot in an interval by using more than one complete subdivision step.

3. The algorithm

Our algorithm is best expressed in terms of blossoming (Ramshaw, 1987) or, equivalently, the mathe-
matics of polar forms (Ramshaw, 1989). The key idea is a recipe for the polar arguments to the blossom of
a B-spline at every control point Pλ

i of every level λ of a refine and smooth algorithm. λ grows by steps of 2,
so for a degree d algorithm there will be ⌈d/2⌉ levels. The recipe states that the arguments should include
only the new knots that fall in a region of u of size λ, centred at i (see Figure 2). The polar arguments
outside this region must belong to t. As λ grows to d, this region grows to include d consecutive values
in the new knot vector, and so the points Pd

i are control points on the subdivided B-spline. For example,

3

for even degree, at λ = 0, all knots are in t, the original knot vector. At each level, zero, one or two new
knots are added by the process described below, until at the final level (λ = d), all polar arguments are
uninterrupted sequences on the new knot vector, u.

We can formalise this recipe by defining cenλ
i (Z) to contain the λ indices in Z centred around i. Note

that there are two cases here: either d is odd, λ is odd, and i is an element of Z. Or else d is even and
λ is even, in which case i must lie between two elements of Z, because the control points of even degree
B-splines align with knot intervals, not with knots themselves. In either case, we now have that the polar
arguments of Pλ

i are
uj , where j ∈ cend

i (Y ∪ cenλ
i (Z)) (1)

We now expand on this definition to show how the algorithm can be implemented. In Section 6, we show
that (1) is a self-consistent strategy which shares data along a polygon in the correct way.

3.1. Refine

The refine stage operates on the original control points Q and builds the sequence of points P0
i (for even

d) or P1
i (for odd d). The two cases must be handled separately so that subsequent smoothing stages can

symmetrically examine two knots at a time.

Even d. When λ = 0, cenλ
i (Z) = ∅ and so from (1), the polar arguments of P0

i are uj for j ∈ cend
i (Y).

But these knots are consecutive in t, and so each point in P0 is a control point on the original B-spline.
Specifically, P0

i is equal to the point in Q corresponding to the knot interval which contains the interval
indexed by i. After the refine stage, P0 therefore contains two copies of any control points which correspond
to knot intervals where knots are inserted.

Odd d. From (1) when λ = 1 we have that the polar arguments of each point P1
i are the d knots from t

centred around i, but including ui even if i /∈ Y . That is, the polar arguments of P1
i are

uj, where j ∈ cend
i (Y ∪ {i}) (2)

There are two cases: either i ∈ Y , or i /∈ Y . If i ∈ Y , then (2) is again a collection of d consecutive knots
from t. For convenience, we can index the points Q using the value in Y such that ui is the corresponding
knot. Then we directly obtain P1

i = Qi.
If i /∈ Y , we need an affine combination of the two points Qi−1 and Qi+1 (note that i − 1, i + 1 ∈ Y

because of our restrictions on Y). If α = min(cend
i−1(Y)) and δ = max(cend

i+1(Y)), then

P1
i =

uδ − ui

uδ − uα

Qi−1 +
ui − uα

uδ − uα

Qi+1. (3)

From the multiaffine property of the blossom, and the fact that Qi−1 and Qi+1 share d− 1 polar arguments,
we have that (3) inserts the knot ui as a polar argument for P1

i , as required by (2).
After the refine stage, P1 contains an additional point on every edge which corresponds to a knot interval

where a knot is inserted.

3.2. Smooth

Each smoothing stage produces the points Pλ from the sequence of points Pλ−2, where the polar argu-
ments of each point P

λ−2

i include the λ− 2 knots surrounding i. In order for each Pλ
i to contain the correct

set of polar arguments, we must take affine combinations of points in Pλ−2 to insert 0, 1, or 2 new knots.
We distinguish between four possible actions, shown in Figure 3, where

β = min(cenλ
i (Z)),

γ = max(cenλ
i (Z)).

(4)

Where α and δ appear, they are, respectively, the least and greatest indices of the polar arguments for a
point. In an implementation, these values can either be stored for each i, or calculated on-the-fly. The four
cases are:

4

P
λ−2
i

P
λ

i

Φ

Φ

(a) |Φ| = d

P
λ−2
i

P
λ−2
i+1

P
λ

i

tδ − uβ

tδ − tα

uβ − tα

tδ − tα

tα Φ Φ tδ

uβ Φ

(b) |Φ| = d − 1

P
λ−2
i−1 P

λ−2
i

P
λ

i

tδ − uγ

tδ − tα

uγ − tα

tδ − tα

tα Φ Φ tδ

Φ uγ

(c) |Φ| = d − 1

P
λ−2
i−1 P

λ−2
i

P
λ−2
i+1

P
λ

i

tδ − uγ

tδ − tα

uγ − uβ

tδ − tα

uβ − tα

tδ − tα

tα uβ Φ tα Φ tδ Φ uγ tδ

uβ Φ uγ

(d) |Φ| = d − 2

Figure 3: The four smoothing actions that form a point Pλ
i ; points are shown with their polar arguments.

β, γ /∈ Y , and tα and tδ indicate knots uα and uδ with α, δ ∈ Y . Within each diagram, Φ denotes the same
collection of (not necessarily consecutive) knots; typically uβ and uγ will be placed somewhere in the interior
of the knots Φ.

(a) No new knots. This action is illustrated in Figure 3a. If β, γ ∈ Y , then P
λ−2
i already contains all the

polar arguments in a λ-sized region of u. We can therefore directly copy P
λ−2

i to Pλ
i .

(b) New knot with index less than i. In this scenario we have γ ∈ Y but β /∈ Y . The polar arguments for
P

λ−2

i therefore already contain uγ , but we need an affine combination to insert the knot uβ. The coefficients
that multiply P

λ−2

i and P
λ−2

i+1 are shown in Figure 3b.

Note that in moving from P
λ−2

i to Pλ
i , the knot that is displaced from the polar arguments is tα – the

knot with the least index. This property holds for each action in Figure 3; where a knot is inserted, it
replaces a knot from t on the same side of i. The replaced knot is also always further from i than the new
knot. From this, we can conclude that inserting all the new knots in a d-sized region of u (when λ = d)
results in polar arguments that are consecutive in u, which is the condition for Pd to be the control points
after subdivision.

(c) New knot with index greater than i. This action is illustrated in Figure 3c, and is completely symmetrical
to the previous case. Here we have β ∈ Y but γ /∈ Y , and an affine combination of P

λ−2

i−1 and P
λ−2

i inserts
the knot uγ .

(d) New knots on both sides of i. Here we have β and γ /∈ Y , and so the smoothing action must introduce
both uβ and uγ into the polar arguments for Pλ

i . The required affine combination is shown in Figure 3d.
We can factorise action (d) into three affine combinations of two points in order to keep smoothing as

local as possible. Instead of

Pλ
i =

tδ − uγ

tδ − tα
P

λ−2
i−1 +

uγ − uβ

tδ − tα
P

λ−2
i +

uβ − tα
tδ − tα

P
λ−2
i+1 (5)

we can choose a pivot, x, and instead calculate

D =
tδ − uγ

tδ − x
P

λ−2

i−1 +
uγ − x

tδ − x
P

λ−2

i (6)

E =
x − uβ

x − tα
P

λ−2

i +
uβ − tα
x − tα

P
λ−2

i+1 (7)

P
λ
i =

tδ − x

tδ − tα
D +

x − tα
tδ − tα

E. (8)

The factorisation is kept as balanced as possible by setting x equal to
5

(a) Refine stage (b) Two smoothing stages (c) Subdivided B-spline

Figure 4: The example from Section 3.3 applied to the control polygon of a non-uniform quintic B-spline
with multiple knots. Points marked with stars are passed to the next stage. A knot is inserted in every
non-zero interval: before subdivision, the knot vector is [0, 0, 4, 4, 4, 12, 16, 18, 18, 20] and afterwards, it
is [0, 2, 4, 4, 4, 8, 12, 14, 16, 17, 18] (the truncation is explained in Section 7).

∂ t4u5t6t7t8 u5t6t7t8u9 t6t7t8u9t10 t7t8u9t10u11 t8u9t10u11t12 u9t10u11t12u13 t10u11t12u13t14 ∂ ∂ ∂

∂ t4u5t6t7t8 t4t6t7t8t10 t6t7t8u9t10 t7t8u9t10t12 t8u9t10u11t12 t8t10u11t12t14 t10u11t12u13t14 t10t12u13t14t15 ∂ ∂

∂ t3t4t6t7t8 t4t6t7t8t10 t6t7t8t10t12 t7t8u9t10t12 t7t8t10t12t14 t8t10u11t12t14 t8t10t12t14t15 t10t12u13t14t15 t10t12t14t15t17 ∂

Q6 Q7 Q8 Q10 Q12 Q14

Figure 5: The example from Section 3.3 in full; see Figure 4 for an example application. At the bottom are
the input points Q, above which are P1, P3, and finally the output P5. Points are represented as a list of
arguments to the polar form b of B.

• the mean of the knot interval indexed by i, when d is even,

• ui, when d is odd.

The latter is the pivot used in our previous paper (Cashman et al., 2009) to insert a knot in every interval,
since in this case β and γ /∈ Y never occurs for even degree.

3.3. An example

To illustrate the above algorithm, consider the example shown in Figure 4, where d = 5. We write b(·)
for the polar form of B, and use Z = {3, . . . , 17}, with

Y = 3 4 6 7 8 10 12 14 15 17
Z \ Y = 5 9 11 13 16

u = 0 0 2 4 4 4 8 12 14 16 17 18 18 19 20

Since d is odd, the refine stage produces P1. Figure 5 shows the algorithm in full, and we consider two
example points. 8 ∈ Y , so P1

8 = Q8 = b(u6, u7, u8, u10, u12). On the other hand, 11 /∈ Y , so P1
11 is an affine

combination of Q10 and Q12:

P1
11 =

u15 − u11

u15 − u7

Q10 +
u11 − u7

u15 − u7

Q12

= b(u8, u10, u11, u12, u14)
(9)

6

As these two points progress through the smoothing stages, we find that P3
8 = b(u6, u7, u8, u9, u10),

inserting u9 using the affine combination in Figure 3c. Since P3
8 has polar arguments consecutive in Z, we

know that it is already a control point on the subdivided B-spline, and so inevitably P5
8 = P3

8 (as in Figure 3a).
For the point centred on u11, we have P3

11 = P1
11 = b(u8, u10, u11, u12, u14) since 10, 12 ∈ Y (also using the

action from Figure 3a). For P5
11, however, we find that both 9 and 13 /∈ Y , so P5

11 = b(u9, u10, u11, u12, u13)
using the action in Figure 3d. This also results in polar arguments with indices that are consecutive in Z,
as required.

4. Efficiency

Boehm (1985) shows that inserting n knots into a degree d B-spline uses, at best, dn affine combinations
of two points. It is interesting that our algorithm, when d is even and a knot is inserted in every interval,
calculates points Pλ

i at 2n values of i and d/2 values of λ. The total number of affine combinations for this
case is therefore 2n(d/2) = dn (ignoring end conditions). The odd degree case has the complication of affine
combinations of three points, but is comparable in efficiency.

On the other hand, consider inserting just one new knot. Every point Pλ
i will be a copy of P

λ−2

i , except
in the region of the new knot. Here, there will be d affine combinations of two points (one of which is used to
form P1 if d is odd). So here, too, the algorithm achieves Boehm’s lower bound. There is a hidden cost here,
of course, of establishing that every other point should be copied, but this observation is still interesting
from a theoretical point of view.

Goldman (1990) shows that the Oslo algorithm (Cohen et al., 1980) can also achieve this lower bound,
by overlapping the pyramids used to construct new points as much as possible. Goldman treats the Oslo
algorithm as a local knot insertion algorithm (inserting into only one interval at a time), while refine and
smooth algorithms are global (acting on all knot intervals at once). There may be a parallel result, however,
showing in a similar way that the refine and smooth structure of this algorithm overlaps computations as
much as possible. We consider that this algorithm’s limit of at most one knot per interval is likely to be
important in this sort of result, since Goldman provides a strong argument for the maximum amount of
overlap that is possible in the general case. A search for such a result is left to future work.

5. Variants

There are various ways we can modify the algorithm from its description in Section 3. We have imple-
mented variants that

• use a constant amount of memory by storing Pλ
i in the same location for every value of λ.

• have a unified refine stage, producing points in P0 for both odd and even degree, accompanied by a
special first smoothing stage when d is odd.

• use extra memory to improve efficiency, by storing the values of α and δ discussed in Section 3.2 for
each index.

• use the factorisation of Figure 3d discussed in Section 3.2.

• use a different, ‘eager’ knot insertion process. If β ∈ Y and γ ∈ Y , this variant searches outwards for a
knot to insert by finding a λ ≤ d such that min(cenλ

i (Z)) /∈ Y or max(cenλ
i (Z)) /∈ Y (or both). At the

following level, the search resumes from the value of λ that was used for the last affine combination.
There is one special case; when both min(cenλ

i (Z)) /∈ Y and max(cenλ
i (Z)) /∈ Y , the algorithm must

first copy (as in Figure 3a) before inserting both knots (as in Figure 3d) at the next level. If there is
no suitable λ ≤ d, then the point is already a control point on the subdivided B-spline, and therefore
is also simply copied to the next level. This variant inserts knots ‘as soon as possible’, and should have
a similar proof to the algorithm described in Section 3. If an application needs the points surrounding
unchanged knot intervals to stabilise as early as possible, this variant might be a good candidate. We
have no reason here, however, to prefer the eager variant to the conceptually simpler version in Section
3, and so we do not consider it any further.

7

6. Proofs of correctness

In Section 3, we considered a point Pλ
i as λ increases to d, and showed that the refine and smooth

stages result in a control point on the subdivided B-spline. So far, however, we have not justified the polar
arguments for P

λ−2

i−1 and P
λ−2

i+1 shown in Figure 3. In this section we address the omission, thereby proving
that the actions described in Section 3 mesh together correctly as i varies along a polygon.

To do so, we assume that the polar arguments of all points P
λ−2

i contain the λ − 2 knots surrounding
i. Section 3 showed that this property holds for Pλ, with a region of size λ, as long as we can show that
the polar arguments take the form shown in Figure 3. There is nothing to prove for Figure 3a, and we will
consider just the cases in Figure 3b and 3d. The proof for Figure 3c is completely symmetrical to that for
3b.

6.1. New knot with index less than i

First, note that the polar arguments for P
λ−2
i contain all the knots with indices in the range cenλ−2

i (Z).
The equivalent range for P

λ−2

i+1 is cenλ−2

i+1 (Z). These ranges overlap on λ−3 values, and the polar arguments of

both points must contain the knots indexed by the overlap. At the ends of these ranges are min(cenλ−2

i (Z))
and max(cenλ−2

i+1 (Z)), and if either of these indices is not in Y (i.e. indexes a new knot), then that knot will

not appear in the polar arguments of one of the points. On the other hand, if both min(cenλ−2

i (Z)) and
max(cenλ−2

i+1
(Z)) ∈ Y , then the knots indexed by these values will appear in both sets of polar arguments.

Now note that, since we are performing the action in Figure 3b, we already know that γ ∈ Y and
γ = max(cenλ

i (Z)) = max(cenλ−2

i+1 (Z)). We also know that β = min(cenλ
i (Z)) /∈ Y and so our restrictions

on Y enforce that β +1 ∈ Y and β +1 = min(cenλ−2

i (Z)). Therefore the polar arguments of P
λ−2

i and P
λ−2

i+1

overlap on d − 1 knots Φ, differing only in the knot with lowest index tα, and the knot with the highest
index tδ. So the polar arguments do, in fact, take the form shown in Figure 3b.

6.2. New knots on both sides of i

Here we have that β /∈ Y and γ /∈ Y . β = min(cenλ
i (Z)) ∈ cenλ−2

i−1 (Z), so uβ is certainly one of the polar

arguments for P
λ−2
i−1 . The same argument shows that uγ is a polar argument for P

λ−2
i+1 . If we can show that

the polar argument with minimum index is the same for P
λ−2

i−1
and P

λ−2

i , and that the polar argument with

maximum index is the same for P
λ−2

i and P
λ−2

i+1 , then it will necessarily follow that all three sets of polar
arguments share d − 2 knots Φ.

We know from (1) that we can find the index of the smallest polar argument in P
λ−2

i by selecting the
1+(d−λ)/2 largest value in Y which is smaller than min(cenλ−2

i (Z)). Furthermore, β = min(cenλ−2

i−1 (Z)) /∈
Y . So the sets {y ∈ Y : y < β + 1} and {y ∈ Y : y < β} are identical. Therefore the 1 + (d − λ)/2 largest
value smaller than min(cenλ−2

i−1 (Z)) is the same as that less than min(cenλ−2

i (Z)). The polar arguments for

P
λ−2

i−1 and P
λ−2

i therefore share a minimum-index knot tα. Naturally, we can apply a symmetrical argument

to show a common maximum-index knot tδ for P
λ−2
i and P

λ−2
i+1 .

We can therefore justify the polar arguments in Figure 3, which validates the affine combinations we use
in Section 3 and proves that the algorithm works correctly if we are far enough from any bounds of Z. It
remains to show that the algorithm handles end conditions correctly, which we address in Section 7.

7. End conditions

The bounds on the domain of the B-spline (where they exist) are ua and ub, where a is the dth smallest
index in Y and b is the dth largest. Therefore any point that has polar arguments with indices entirely
below a, or above b, should be discarded so that the limit curve remains invariant. The knot vector of B
after subdivision can therefore be shorter than u. With u as in Section 3.3, for example, we have a = 8 and
b = 10, with the knot vector after subdivision {u4, . . . , u14} ⊂ u.

The domain of the B-spline also allows us to specify the number of points which must be computed in
the refine stage. For even degree, the refine stage builds P0

i , where i starts by indexing the interval which

8

begins at the value d/2 smallest in Y . Similarly, the final i indexes the interval which ends at the value d/2
largest in Y . This is the largest possible range which maintains a polar argument with index in [a b] for all
points in P0. In the same way, when d is odd, i ranges from the ⌈d/2⌉th smallest index in Y to the ⌈d/2⌉th
largest.

Although these definitions guarantee that points are valid in P1 or P0, we now need to establish which
points are discarded after smoothing. Each smoothing stage may, potentially, result in another point at each
end with polar arguments indexed outside of the valid range. Fortunately there is a simple implementation
which handles this complication automatically. We start by defining a boundary marker point, ∂, and
append it to the results of the refine stage. For the example from Section 3.3, the result of the refine stage
is then

{∂ P1
6 P1

7 . . . P1
13 P1

14 ∂}.

Now we simply define an affine combination of points, (1−µ)P1 +µP2 to be equal to ∂ whenever P1 = ∂
or P2 = ∂. For our running example, P3

14 = ∂ (see Figure 5), because the affine combination used to form
P3

14 takes a contribution from P1
15 = ∂. Note that this action (shown in Figure 3b) would otherwise displace

t10 from this point’s polar arguments, which would subsequently be indexed entirely above b = 10 and so
P3

14 cannot be a control point on the subdivided B-spline. After the next smoothing stage, we similarly have
P5

13 = ∂, and also note that P5
13 is not one of the required control points.

In fact this implementation works because the actions in Figure 3 take a contribution from P
λ−2

i+1
whenever

the minimum index is increased (potentially above b). If Pλ
i would have polar arguments indexed entirely

above b, then the same must be true of P
λ−2

i+1 , and so P
λ−2

i+1 = ∂ gives Pλ
i = ∂. In the same way, the actions

take a contribution from P
λ−2
i−1 whenever the maximum index in the polar arguments of Pλ

i potentially drops
below a.

Multiple knots are therefore neatly handled by a single framework without any special cases. In particu-
lar, this includes Bézier end conditions (where there are knots of multiplicity d terminating t and u), which
are widely used for the boundary of B-spline curves and surfaces.

8. Conclusion

Our algorithm provides the univariate foundations for a NURBS-compatible subdivision scheme. We
believe it is the first appearance of a non-uniform, general degree, symmetric refine and smooth process that
handles multiple knots without increasing multiplicity.

Unlike the Lane-Riesenfeld algorithm, the affine combinations used by smoothing stages depend on the
knot values and may therefore vary both along a polygon and between stages. Like Schaefer’s algorithm and
our symmetric variant (Cashman et al., 2009), this algorithm also does not produce the control polygons for
lower degree B-splines as the result of intermediate smoothing stages. We previously showed (Cashman et al.,
2007) that this property limits the possible knot vectors, whereas this new algorithm does not constrain the
choice of knots. New knots may be placed at the midpoints of existing intervals, such that the knot vector
tends towards uniformity, or using any other criteria. Furthermore, the intervals for insertion may be chosen
as well as new knot values.

Since affine combinations overlap as much as possible, the algorithm is efficient. At any time, at most
d additional rounds of subdivision can bring every knot up to multiplicity d and hence yield points on the
limit curve. The algorithm is trivially extended to a tensor product form that can be applied to meshes.
We are working on a generalisation of this tensor product form to meshes containing extraordinary points.

References

Boehm, W., 1980. Inserting new knots into B-spline curves. Computer-Aided Design 12 (4), 199–201.
Boehm, W., 1985. On the efficiency of knot insertion algorithms. Computer Aided Geometric Design 2 (3), 141–143.
Cashman, T. J., Dodgson, N. A., Sabin, M. A., 2007. Non-uniform B-Spline Subdivision Using Refine and Smooth. In: Martin,

R. R., Sabin, M. A., Winkler, J. R. (Eds.), 12th IMA Conference on the Mathematics of Surfaces. Vol. 4647 of Lecture Notes
in Computer Science. Springer, pp. 121–137.

9

Cashman, T. J., Dodgson, N. A., Sabin, M. A., 2009. A Symmetric, Non-uniform, Refine and Smooth Subdivision Algorithm
for General Degree B-splines. Computer Aided Geometric Design 26 (1), 94–104.

Cohen, E., Lyche, T., Riesenfeld, R., 1980. Discrete B-splines and Subdivision Techniques in Computer-Aided Geometric
Design and Computer Graphics. Computer Graphics and Image Processing 14 (2), 87–111.

Goldman, R., Warren, J., 1993. An extension of Chaiken’s algorithm to B-spline curves with knots in geometric progression.
CVGIP: Graphical Models and Image Processing 55 (1), 58–62.

Goldman, R. N., 1990. Blossoming and knot insertion algorithms for B-spline curves. Computer Aided Geometric Design 7 (1-4),
69–81.

Gregory, J. A., Qu, R., 1996. Nonuniform corner cutting. Computer Aided Geometric Design 13 (8), 763–772.
Lane, J. M., Riesenfeld, R. F., 1980. A Theoretical Development for the Computer Generation and Display of Piecewise

Polynomial Surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 2 (1), 35–46.
Prautzsch, H., 1998. Smoothness of subdivision surfaces at extraordinary points. Advances in Computational Mathematics

9 (3), 377–389.
Ramshaw, L., 1987. Blossoming: A Connect-the-Dots Approach to Splines. Tech. Rep. 19, Digital Systems Research Center.
Ramshaw, L., 1989. Blossoms are polar forms. Computer Aided Geometric Design 6 (4), 323–358.
Schaefer, S., Goldman, R., 2009. Non-uniform Subdivision for B-splines of Arbitrary Degree. Computer Aided Geometric Design

26 (1), 75–81.
Sederberg, T. W., Zheng, J., Sewell, D., Sabin, M., 1998. Non-Uniform Recursive Subdivision Surfaces. Proceedings of SIG-

GRAPH 98, 387–394.
Stam, J., 2001. On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree. Computer Aided Geometric

Design 18 (5), 383–396.
Warren, J., Weimer, H., 2001. Subdivision Methods for Geometric Design. Morgan Kaufmann.
Zorin, D., Schröder, P., 2001. A unified framework for primal/dual quadrilateral subdivision schemes. Computer Aided Geo-

metric Design 18 (5), 429–454.

10

