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Abstract

This paper derives strong relations that boundary curves of a smooth

complex of patches have to obey when the patches are computed by local

averaging. These relations restrict the choice of reparameterizations for

geometric continuity.

In particular, when one bicubic tensor-product B-spline patch is asso-

ciated with each facet of a quadrilateral mesh with n-valent vertices and

we do not want segments of the boundary curves forced to be linear, then

the relations dictate the minimal number and multiplicity of knots: For

general data, the tensor-product spline patches must have at least two in-

ternal double knots per edge to be able to model a G
1-conneced complex

of C1 splines. This lower bound on the complexity of any construction is

proven to be sharp by suitably interpreting an existing surface construc-

tion. That is, we have a tight bound on the complexity of smoothing quad

meshes with bicubic tensor-product B-spline patches.

1 Introduction

Even though every newly proposed smooth surface construction seeks to be op-
timal in some aspect, the overall theory of smooth surface constructions offers
few sharp lower bounds, i.e. proofs that no polynomial construction of lower
degree is possible and that a construction of this least degree exists so that up-
per bound and lower bound match. One well-appreciated bound is the degree-6
bound for C2 subdivision surfaces derived by Reif and Prautzsch [Pra97] and
shown to be sharp, for example by [Rei98, PR99]. Such sharp bounds allow us
to
— understand the fundamental difficulty of the task, and to
— guide future research by showing where research is futile
— and what assumptions must be side-stepped to derive substantially new re-
sults.

We are motivated by a standard task of geometric design: to determine G1-
connected tensor-product B-spline patches approximating a quadrilateral mesh
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whose vertices can have any fixed valence. While this challenge can be met
by recursive subdivision [CC78], representing the surface with a finite small
number of patches defined by the quad and its neighbors is often preferable, for
example to parallelize the construction (see e.g. [LS08, MYP08]). This raises
the question: (Q) what is the simplest structure (in distribution and number
of knots) of degree bi-3 spline patches that allow a quad mesh to be converted
by localized operations into a smooth surface with one spline patch per quad?
Surprisingly, this basic question at the heart of a classical task of geometric
design has not been settled to date.

To frame the question, Section 2 takes a more general view. We do not con-
strain the domain to be a collection of quadrilaterals or the functions to be poly-
nomial splines. Also, the relations in Lemmas 1, 2 and 3 do not depend on local-
ity of the construction but apply to any collection of sufficiently smooth patches
coming together with a logically symmetric G1 join: ∂2b

k(u, 0)+∂1b
k−1(0, u) =

αk(u)∂1b
k(u, 0) (see Definition 1, page 4). Adding locality of operations as a

requirement in Section 2.1 then rules out everywhere (piecewise) linear αk, still
in the very general setting.

In Section 3, we specialize the setting to polynomial tensor-product splines of
degree bi-3. For these, we obtain a lower bound on the number and multiplicity
of knots. We prove that at least two internal double knots are required per edge
to admit a local construction. This lower bound is tight, because the recently-
published construction for smooth surfaces [FP08] can be re-interpreted as a
spline construction with exactly two internal double knots. Together, the lower
and upper bound conclusively settle the question Q.

1.1 Bi-3 constructions in the literature

Creating C1 surfaces with a finite number of patches of degree bi-3, i.e. general-
izing standard tensor-product B-splines to smooth surfaces from arbitrary mani-
fold quad meshes, is a classic challenge of CAGD (see e.g. [Bez77, vW86, Pet91]).
The assumption that a simple construction with a finite number of patches
is not possible motivates the classic Catmull-Clark subdivision (Fig. 1, left).
PCCM [Pet00] is a finite construction that approximates Catmull-Clark limit
surfaces with smoothly connected bi-3 patches. PCCM requires up to two steps
of Catmull-Clark subdivision to separate non-4-valent vertices. This proves that
a 4 × 4 arrangement of polynomial patches per quad suffices in principle, cor-
responding to two double interior knots and one single knot (Fig. 1, middle),
However, PCCM can have poor shape for certain higher-order saddles (Fig. 5,
[URL, Pet01, LS08]). More recently, a number of papers appeared that are also
predicated on the assumption that a simple construction with a finite number
of patches is not possible. Shi et al. [SWWL04, SLW06] propose a subdivision-
like refinement approach with bi-3 tensor-product patches to obtain C0 surfaces
where ever more single knots are inserted. They correctly surmise that, in gen-
eral, no finite C1 construction with C2 tensor-product splines of degree bi-3 is
possible (see Theorem 1 of our paper). At the other extreme, using a single
patch per quad, Loop and Schaefer [LS08] propose a bi-3 C0 surface construc-
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PSfrag replacements

Catmull-Clark PCCM [FP08]

Figure 1: Knot distribution. A quadrilateral piece generated by Catmull-
Clark subdivision has (infinitely many) single knots, a piece of PCCM requires
two double and at least one more single knot, and the construction [FP08] has
two double interior knots (which this paper shows to be the minimal number of
knots).

tion with separate tangent patches to convey an impression of smoothness as
in [VPBM01], while Myles et al. [MYP08] perturb a bi-3 base patch near non-
4-valent vertices to obtain a C1 surface of degree bi-5 for CAD applications.
Hahmann et al. [HBC08] propose a 2 × 2 macro-patch per quad; and Fan and
Peters [FP08] present an algorithm that constructs smoothly connected Bézier
patches of degree bi-3 whose internal transitions allow re-interpretion as one
tensor-product spline patch per quad with two internal double knots (Fig. 1,
right, Corollary 4). We will see that this is indeed the minimal number and
multiplicity of knots for the standard Catmull-Clark layout of patches. The
structurally different polar layout allows collapsed bi-3 spline patches with sin-
gle internal knots to complete a C1 surface [MKP07].

2 Unbiased G1 constraints

We consider n parameterically C1 patches

bk : � ( R2 → R3, k = 1, . . . , n (1)

meeting at a central point bk(0, 0) = p such that bk(u, 0) = bk−1(0, u) (see
Fig. 2). We do not (yet) assume that � is the unit square but just that the origin
is a corner of the domain � and that two edges emanate from it in independent
directions. We also assume that the patches are not singular at the origin in
the sense that ∂2b

k(0, 0)× ∂1b
k(0, 0) 6= 0 where ∂ℓ denotes differentiation with

respect to the ℓth argument.
To make the n patches form a C1 surface, we want to enforce logically sym-

metric (unbiased) G1 constraints. (We will discuss the general case in Section
4.)

Definition 1 (Unbiased G1 constraints) With αk : R → R a sufficiently
smooth, univariate scalar-valued function, the unbiased G1 constraints between
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bk(u, 0) = bk−1(0, u)

bk−1

bk

p

Figure 2: Indexing and parameterization of adjacent patches at a vertex
of valence n (if k = 1 then bk−1 = bn), illustrating the G1 constraints (2) .

consecutive patches are

∂2b
k(u, 0) + ∂1b

k−1(0, u) = αk(u)∂1b
k(u, 0). (2)

If αk ≡ 0, the constraints enforce parametric C1 continuity.
We abbreviate

akℓ ∈ R, the ℓth derivative of αk evaluated at 0 (3)

and
tk := ∂1b

k(0, 0) ∈ R3 (4)

so that relation (2) becomes at (0, 0)

tk+1 + tk−1 = ak0t
k. (2)u=0

PSfrag replacements

ak0

tk+1

tk

tk−1

That is, superscripts count sectors (modulo n) surrounding (0, 0) while sub-
scripts indicate derivatives. Later, starting with (21), we will use a second
subscript (and remove the superscript) to denote pieces of αk.

We now add the assumption that each bk is twice continuously differentiable
at (0, 0) (as are the polynomial pieces of a spline patch). In reference to the
main application, we will call such smooth functions generalized splines.

Definition 2 (Knot lines and generalized splines) A Cs generalized spline
patch is a map bk : � ( R2 → R3 that is s times continuously differentiable.
The set of knot lines of bk is a finite collection of lines in � such that at most

4



two distinct lines cross. Boundary edges of � are knot lines. An intersection of
a boundary edge minus its end points with a non-parallel knot line is called an
edge knot. At every edge knot, on either side of its knot line,

∂i
1∂

j
2b

k is well-defined for i+ j ≤ s+ 1 and ∂2b
k × ∂1b

k 6= 0. (5)

The generalized spline definition is intentionally broader than its subclass of
polynomial tensor-product splines that motivates it. It includes, for example,
trigonometric splines or subdivision constructions.

For C1 generalized splines, we can then differentiate relation (2) along (the
respective domain edge of) the common boundary bk(u, 0) = bk−1(0, u):

(∂1∂2b
k)(u, 0) + (∂2∂1b

k−1)(0, u)

= αk(u)∂2
1b

k(u, 0) + (αk)′(u)∂1b
k(u, 0). (6)

When we evaluate at u = 0 then

at (0, 0), ∂1∂2b
k + ∂2∂1b

k−1 = ak0∂
2
1b

k + ak1∂1b
k. (7)

If n is even then the alternating sum of the left hand sides vanishes

at (0, 0),

n∑

k=1

(−1)k
(
∂1∂2b

k + ∂2∂1b
k−1

)
= 0 (8)

and therefore so must the right hand side

at (0, 0), 0 =
n∑

k=1

(−1)kak0∂
2
1b

k +
n∑

k=1

(−1)kak1∂1b
k. (9)

In particular, if the patches join smoothly and therefore have a unique normal
n ∈ R3 at p then, with · denoting the scalar product,

if n is even, at (0,0) 0 =

n∑

k=1

(−1)kak0 n · ∂2
1b

k. (10)

This is the vertex-enclosure constraint (see e.g. [Pet02, p.205]).
We briefly focus on the important generic case where n = 4 patches meet.

Definition 3 (tangent X) If n = 4, ∂1b
1(0, 0) = −∂1b

3(0, 0) and ∂1b
2(0, 0) =

−∂1b
4(0, 0) then the tangents form an X.

Lemma 1 (X tangent) If the tangents form an X, then
a11 = a31 and a21 = a41.

5



Proof If the tangents form an X then n = 4 and ak0 = 0, k = 1, 2, 3, 4 so that
(9) simplifies to

at (0,0), 0 = (a11 − a31)∂1b
1 − (a21 − a41)∂1b

2. (11)

Since the patches are regular at corners, both summands have to vanish, imply-
ing the claim. |||

We now consider the unbiased G1 transition between two C1 generalized
spline patches. We focus on an edge vertex, the image of an edge knot on the
common boundary. By definition, an edge vertex is not an end point of the
boundary. That is, we consider a point where four polynomial pieces meet
such that b1 and b2 belong to one generalized spline patch and b3 and b4 are
adjacent pieces of the edge-adjacent generalized spline patch (Figure 3). Since
each generalized spline patch is internally parameterically C1, by Definition 1

α2 ≡ 0 ≡ α4. (12)

PSfrag replacements

b1b2

b3

b4

α1

α2

α3 1

2

Figure 3: Join across an edge knot on the boundary (solid) between two
generalized splines. The first generalized spline has polynomial pieces b1 and
b2.

Lemma 2 (C1 generalized spline, edge knot) Let (0, 0) be the parameter
associated with an edge knot on the boundary common to two C1 generalized
splines that are joined by unbiased G1 constraints. Then

a10 = −a30, (13)

at (0, 0) : 0 = a10(∂
2
1b

1 − ∂2
1b

3) + (a11 − a31)t
1. (14)

Proof Since n = 4, a10t
1 = t2 + t4 = a30t

3 and the parametric C1 constraints
imply t1 := −t3 so that (13) follows. By (12), (9) specializes to

at (0, 0), 0 = a10∂
2
1b

1 + a30∂
2
1b

3 + a11∂1b
1 + a31∂1b

3

= a10(∂
2
1b

1 − ∂2
1b

3) + (a11 − a31)t
1
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as claimed. |||
So, remarkably, when two generalized spline patches meet along a common
boundary, unbiased G1 constraints across this boundary imply the constraint
(14) exclusively in terms of derivatives along the boundary.

Lemma 3 (C2 generalized spline, edge knot) Let (0, 0) be the parameter
associated with an edge knot of the boundary common to two C2 generalized
splines joined by unbiased G1 constraints. Then, in addition to (13), at (0, 0),

a11 = a31, (15)

0 = a10(∂
3
1b

1 − ∂3
1b

3) + 4a11∂
2
1b

1 + (a12 − a32)t
1. (16)

Proof Since the generalized splines are C2, ∂2
1b

1(0, 0) = ∂2
1b

3(0, 0). Then (14)
implies (15).

Parametric C2 continuity across the spline-internal boundaries (see dashed
lines in Fig. 3) implies

for k = 2, 4, at (0, 0), ∂2∂1∂2b
k + ∂1∂2∂1b

k−1 = 0. (17)

Differentiating (6) once more along the (direction corresponding to the) common
boundary of the two generalized splines, we obtain for k = 1, 3, at (0, 0),

∂1∂1∂2b
k + ∂2∂2∂1b

k−1 = ak0∂
3
1b

k + 2ak1∂
2
1b

k + ak2∂1b
k. (18)

Summing the two instances of (18) and subtracting the two instances of (17)
eliminates the mixed derivatives of the left hand side and yields at (0, 0)

0 = a10∂
3
1b

1 + 2a11∂
2
1b

1 + a12∂1b
1 (19)

+ a30∂
3
1b

3 + 2a31∂
2
1b

3 + a32∂1b
3.

Parametric C2 continuity then implies (16). |||

2.1 Linear α and vertex-localized constructions

The Taylor expansions up to order two of the patches joining at a point are
strongly intermeshed by Equation (7). To avoid solving large, global systems, a
vertex should not depend on the expansions at its neighbors.

Definition 4 (vertex-localized construction) A construction is G1 vertex-
localized if we can solve at every vertex (with local parameters (u, v) = (0, 0)) the
unbiased G1 constraints (2)u=0 and (6) on the second-order Taylor expansion
∂i
1∂

j
2b

k, 0 ≤ i, j, i+ j ≤ 2 independent of the expansions at its neighbors.

Note that a vertex-localized construction can use a priori known input, for
example the local connectivity and the valence of the neighbors. Nevertheless,

7



the unbiased G1 constraints imply a local, unbiased choice of the tangent direc-
tions, namely such that

αk(0) := 2 cos
2π

n
. (20)

(For a proof that logical symmetry implies (20) see e.g. [Pet94, Prop 3].)

Corollary 1 (valence symmetry for n = 4 and linear α) Let n = 4 and
let nk denote the valence of the kth neighbor vertex, k = 1, . . . , n. Then a
local, unbiased choice of the tangent directions and αk linear are compatible
with unbiased G1 constraints only when the valences of opposite neighbors agree:
nk = nk+2.

Proof The claim follows from Lemma 1 since by the unbiased choice αk(0) := 0
and αk(1) := 2 cos 2π

nk . |||
Corollary 1 is a remarkably strong restriction since vertices of valence n = 4

are common. Choosing linear α can therefore be problematic. For example, the
construction [HBC08] can therefore not succeed in general.

In the most challenging case, the vertex enclosure constraint (10) applies
at each vertex. While the vertex-enclosure constraint only restricts the normal
component of the second derivatives along the curves at each vertex, indepen-
dence of the normals at endpoints means that in general all three coordinates are
constrained. So for vertex-localized constructions, we should assume that the
second-order Taylor expansion has to be set independently at each vertex. It is
this scenario with unrestricted choice of geometric instantiation of the second-
order Taylor expansion that we take into account when, in the following, we
prefix a statement with ‘in general’.

PSfrag replacements

a0,0 = 0 a0,q = 0

a0,j = 0a0,−j = 0 a0,−1 = 0 a0,1 = 0

Figure 4: Propagation of a0,j = 0 in Lemma 4.

Along a boundary curve, each scalar function αk can consist of pieces that
correspond to the knot segments of the two generalized splines meeting along
the curve. Since, in this context, we only deal with one k at a time, we drop
this k superscript and define

aℓ,j ∈ R to be the ℓth derivative of the jth piece αj at 0. (21)

8



For example, α3 and α1 in Fig. 3, can be relabeled αj := α3 and αj+1 := α1.

Lemma 4 (everywhere piecewise linear α ruled out) In general, a vertex-
localized construction of unbiased G1 transitions between C1 generalized spline
patches with everywhere at most linear α is not possible.

Proof Consider a vertex surrounded by vertices of valence n = 4. Then vertex-
localized construction implies that a0,0 = 0. Assume for now that edge knots
exist. Then local construction implies also a0,−1 = 0 (and a0,1 = 0) for the
immediate neighbor edge vertexes since all neighbor vertices are of valence 4 (by
definition at most two knot lines intersect within a generalized spline). Shifting
the focus to one such an edge vertex, say the one corresponding to a0,−1 = 0,
we observe that its tangents form an X since the two generalized splines, one at
either side, are internally parametrically C1 (across each dashed line in Fig. 3).
So Lemma 1 and a0,0 = 0 imply a0,−2 = 0 and again this edge vertex’s tangents
form an X. In this manner, X configurations and a0,−j = 0 propagate, also
across vertices of valence n = 4 whose neighbors are not all of valence n = 4
(see the arrows in Figure 4 for illustration). Once the propagation meets an
original vertex with valence n 6= 4 (whether or not we had edge knots to start
with), vertex-localized construction clashes with Lemma 1. |||

Lastly, we characterize a known source of poor shape of smooth surface
constructions due to restricted boundary curves [Pet01]. This limited flexibility
is undesirable and constructions that cause it will later be excluded.

Figure 5: Shape defect (star shape) due to embedded straight line segments
at a higher order saddle from [URL].

Lemma 5 (Flatness at saddle points) Let c be a curve segment emanating
from a higher-order saddle point p := c(0). If the derivative c′ of c factors into
a linear vector-valued polynomial and a scalar factor:

c′ := ℓℓℓγ, (22)

ℓℓℓ : R → R3, deg(ℓℓℓ) ≤ 1, γ : R → R, deg(γ) ≤ 1

then c is a planar curve segment. If the saddle is symmetric then c is a straight
line segment.

9



Proof Let n be the normal at p and, without loss of generality, γ(u) := 1+γ1u

for some γ1 ∈ R. Then c′(0) = ℓℓℓ(0), c′′(0) = ℓℓℓ′(0) + ℓℓℓ(0)γ1 and c′′′(0) =
2ℓℓℓ′(0)γ1. At a higher-order saddle point, the normal curvature is zero, and
therefore n · c′′(0) = 0. This implies n · ℓℓℓ′(0) = 0 and n · c′′′(0) = 0 establishing
planarity. If the saddle is symmetric then c′(0) and c′′(0) are collinear and so
is c′′′(0) = 2ℓℓℓ′(0)γ1. |||

A higher-order saddle, such as the monkey saddle of Fig. 5, should have
non-zero Gauss curvature apart from the central saddle point. Therefore, we
will in the following disqualify constructions that force straight segments on the
boundary for non-flat geometry.

To summarize, we showed that vertex-localized unbiased G1 constructions
with generalized splines are subject to strong restrictions on the reparametriza-
tion α (Lemma 1, 2 and 3) or the allowable valence of the vertices (Corollary 1).
In the next section, we apply these general restrictions to polynomial splines.

3 Lower bounds for degree bi-3

We now argue that, in general, vertex-localized enforcement of unbiased G1

constraints with polynomial tensor-product splines of degree bi-3 (bicubic) is
possible only if the spline patches have at least two internal double knots per
edge.

Since we specialize to polynomials bk of degree bi-3, equality in the G1

constraints implies that α is a rational function, α =: β
γ
. In fact, we have a low

bound on the degrees of the numerator β and the denominator γ.

Lemma 6 (α degree restricted) If the two bi-3 patches bk and bk−1 satisfy
an unbiased G1 constraint (2) then either

αk :=
β

γ
is rational with (23)

(deg(β), deg(γ)) ∈ {(2, 1), (2, 0), (1, 1), (1, 0), (0, 1), (0, 0)}

and ∂1b
k(u, 0) = ℓℓℓ(u)γ(u), deg(ℓℓℓ) ≤ 2− deg(γ) (24)

or the boundary bk(u, 0) is forced to have a straight segment.

Proof We may assume that β and γ are relatively coprime. Since the left
hand side ∂2b

k(u, 0)+∂1b
k−1(0, u) of the G1 constraint (2) is polynomial, γ(u)

must be a (scalar) factor of ∂1b
k(u, 0) ∈ R3, the (vector-valued) derivative of

the boundary curve. Unless bk(u, 0) is a line segment, 0 < deg(∂1b
k(u, 0)) ≤ 2.

Consequently deg(γ) ≤ 2 and since deg(γ) = 2 implies that ∂1b
k(u, 0) = vγ for

a constant v ∈ R3, deg(γ) ≤ 1 must hold to avoid that bk(u, 0) is a straight
segment. Since deg(∂2b

k(u, 0) + ∂1b
k−1(0, u)) ≤ 3, also deg(∂1b

k(u, 0)β) ≤ 3
and therefore deg(β) ≤ 2. |||

After scaling numerator and denominator, we may assume that γ(u) :=
1 + γ1u. Not linear α then forces a particular boundary curve.

10



Corollary 2 (α not linear restricts boundary curves) If (deg(β), deg(γ)) ∈
{(2, 1), (2, 0), (1, 1), (0, 1)} then the corresponding degree 3 boundary curve seg-
ment is of the form (22).

Proof The derivative of the curve segment either has a linear factor γ or it is
linear because deg(β) = 2. |||

Lemma 5 and Corollary 2 together imply that in general, at end points, α
must be linear or constant if we require more flexibility than forced straight line
segments.

Corollary 3 (α not linear at higher-order saddle) If bk(u, 0) emanates from
a symmetric higher-order saddle point then αk in the unbiased G1 constraints
(2) must be linear or constant for bk(u, 0) not to be a straight segment.

PSfrag replacements
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Figure 6: (Figure 3 repeated) Join across an edge knot on the boundary
(solid) between two splines. The first spline has polynomial pieces b1 and b2.

The next lemma shows that at edge knots, neighboring pieces of α constrain
one another more than just by (14) and (16).

Lemma 7 (α not linear at single knot) Let the segments be arranged as in
Figure 6 (the same as Figure 3), the edge knot single and the left boundary
segment (b3(u, 0) shared by the two bi-3 splines) fixed but general (in the sense
that the control points cannot be assumed to be in a particular relation). Then
α1 can only be not linear if

a30 = 0, a31 = 0, and a32 = a12 6= 0. (25)

In particular, α3 must also be not linear.

Proof If α := α1 is not linear then Lemma 6 implies (deg(β), deg(γ)) ∈
{(2, 1), (2, 0), (1, 1), (0, 1)} and therefore ∂1b

1(u, 0) := ℓℓℓ(u)γ(u), a linear vector-
valued polynomial times the scalar (possibly constant) factor γ(u) := 1 + γ1u.
By (13) and (15) and the C2 constraints for the boundary curve, constraint (16)
becomes

at (0, 0), 0 = a30(∂
3
1b

3 − 2γ1ℓℓℓ
′(0)

︸ ︷︷ ︸

=:v

) + 4a31∂
2
1b

3 + (a32 − a12)t
3. (26)

11



By C1 continuity ℓℓℓ(0)γ(0) = ℓℓℓ(0) = −t3 and hence the C2 constraint ∂2
1b

3 =
ℓℓℓ(0)γ1 + ℓℓℓ′(0) = −t3γ1 + ℓℓℓ′(0) implies

ℓℓℓ′(0) = t3γ1 + ∂2
1b

3(0, 0). (27)

Therefore, at (0, 0), v = ∂3
1b

3 − 2γ1(t
3γ1 + ∂2

1b
3). Since, in general, ∂3

1b
3(0, 0),

∂2
1b

3(0, 0) and t3 are linearly independent, the scalar γ1 can not force v = 0
(recall that b3 is fixed), and since v, ∂2

1b
3(0, 0) and t3 are linearly independent,

we must have a30 = 0 and a31 = 0 and a12 = a32 in order for (26) to hold.

If α3 is linear then a32 = 0 and since α′′(0) =
(

β
γ

)
′′

(0) = β′′(0) when

α(0) = α′(0) = 0 (note that γ(0) = 1 and hence β(0) = β′(0) = 0), we have
α1 ≡ 0 contradicting the assumption that α1 is not linear. |||

We now have all the pieces in place to prove the main theorem of smooth
surface construction with bi-3 splines.

Theorem 1 (two double edge knots needed) In general, using splines of
degree bi-3 for a vertex-localized unbiased G1 construction without forced linear
boundary segments requires the splines to have at least two internal double knots.

Proof In general, if the boundary curve has only a single 1-fold knot (hence
two C2-connected segments) there are not enough degrees of freedom to en-
force C2 continuity of the piecewise curve. If there are two 1-fold knots (three
C2-connected segments), C2 continuity uniquely determines all boundary coef-
ficients. If there is one 2-fold knot (two C1-connected segments), C1 continuity
uniquely determines all boundary coefficients. However, in these last two cases,
(16) is unresolved at the (two, respectively one) edge knots {τi} and therefore,
in general, these base cases allow for constructing a C2 boundary curve but not
for enforcing (2).

Inserting one additional edge knot that is 1-fold creates one additional bound-
ary curve segment j of degree 3 constrained by four vector-valued constraints:
the parametric C0, C1 and C2 constraints plus (16) or, equivalently, one free
spline control point subject to (16). If αj is linear, its two coefficients are deter-
mined via (13) and (15) by those of the neighbor segment, and therefore the free
(B-spline) control point must be used to resolve (16). That is, if αj is linear,
we do not gain degrees of freedom that would enable enforcing (16) at the edge
knots {τi} of the base case.

By Corollary 3, the starting segment’s α0 can be assumed to be linear. Let
αj be not linear while αl, l = 0, . . . , j − 1, j ≥ 1, are linear. By the reasoning
of the previous paragraph all bl(u, 0), l = 0, . . . , j − 1 are determined so that
Lemma 7 applies: that is, αj can only be not linear if there is at least by one
double knot between some segment bl−1(u, 0) and bl(u, 0).

The symmetric argument at the other end implies the claim. |||
The proof of Theorem 1 reveals slightly more than its claim: the interior

segment with αj not linear must be separated by double knots from either end
segment. The simplest such construction is then based on three segments with
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the middle segment bracketed by two double knots, and such that α0 and α2

are linear and α1 quadratic (see Fig. 3, right).

Corollary 4 (lower bound is sharp) The construction in [FP08] uses the
fewest knots when creating a smooth surface without forced linear segments with
one bi-3 spline associated with each quad of a general quad mesh.

Proof By covering each quad with a 3 × 3 arrangement of parametrically C1-
connected bi-3 patches in Bernstein-Bézier-form, the construction in [FP08] uses
exactly two edge knots, both 2-fold. By its choice of quadratic α1 just for the
G1 constraints across the middle segment and linear α0 and α2 for the end
segments, it does not have the shape problem characterized by Lemma 5. |||

Figure 7: No Shape defect (no forced straight line segments) in a higher
order saddle (cf. Figure 5).

4 Discussion and Conclusion

Remarkably, the results in Section 2 do not depend on the degree or even the
polynomial nature of splines, but assume only sufficiently smooth functions that
are piecewise with smooth transitions between the pieces. In particular, the
results apply to finite refinement by subdivision which creates parametrically
smooth transitions within each generalized spline. The extension to generalized
splines mapping to Rd, d > 3 is straightforward.

For bi-3 splines these general constraints imply a lower bound on the number
and distribution of knots. The construction in [FP08] shows the lower bound
to be tight.

The results extend to constructions based on G1 transitions of the form
βk(u)∂2b

k(u, 0) + γk(u)∂1b
k−1(0, u) = αk(u)∂1b

k(u, 0) for which there is a
sufficiently rich set of input data that imply β = γ. For example, if (αk, βk, γk)
reflect the local geometric distribution of the input data, any locally symmetric
input yields β = γ and the results of the paper hold.

13



The bounds provide a checklist for constructions. Theorem 1 implies for
example that there is a subtle error in the proof of the non-trivial construction
[HBC08] which uses one double edge knot only: the construction falls foul of
Corollary 1. Such a 2 × 2 split construction can only succeed in special cases.
Choosing generic input data and n1 = n2 = n3 = 4 but n4 = 3 shows the
problem. As a second example, Lemma 4 prevents a vertex-localized solution
with all αj linear. When this lemma is specialized by fixing the degree to be 3,
by increasing the patch continuity to C2 and by choosing α0j :=

q−j
q

α00+
j
q
α0q

then it yields a proof of the claim [SWWL04, Thm 3.1]. (In light of (16),
we might adjust the titles of [SWWL04] and[SLW06] since we cannot have G1

surfaces when adding single knots.)

When we restrict connectivity, i.e. drop the assumption made at the outset
that the construction applies to general input and uses one tensor-product spline
per quad, then constructions with fewer edge knots are possible. For restricted
connectivity, it is well known that if all valences are odd or tangents are in an
X configuration, then vertex-enclosure does not impose constraints and simple
Bézier constructions are possible (e.g. [vW86, Pet91, GZ94]). If n0 = n1 always
holds, say when smoothing a cube, then we can choose linear α1 and α3 with
a11 = a31 and a10 = 0 to enforce (14). That is, a construction with one double edge
knot is possible. Such a construction, covering a quad by 2 × 2 bi-3 patches,
is proposed in [HBC08]. A similar but dual, spline-like construction appears
in [ZT95]. Global constructions, singular parameterization, or control of the
valence, for example by splitting patches, can allow for structurally or degree-
wise simpler constructions, e.g. [Rei95], [PBP02, 9.11], [Pet91, Pet95b].

If we allow higher degree, then general constructions of smooth surfaces with
one patch per quad are shown possible for degree bi-5, for example [MYP08].
For degree bi-4, a single knot (a 2x2-split) must be introduced (see e.g. [Pet95a]).

The case of several G1-connected patches per quad still awaits full investi-
gation, as does the case of rational bi-3 patches and the generalization of the
problem to unbiased Gk transitions for k > 1.
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