
Approximate parametrization of plane algebraic curves by linear systems 
of curves 
Sonia Pérez-Díaza , J. Rafael Sendra3, Sonia L Ruedab, Juana Sendrac 

1 Dpto. de Matemáticas, Universidad de Alcalá, E-28871 Madrid, Spain 
b Dpto. de Matemática Aplicada, E.T.S. Arquitectura, Universidad Politécnica de Madrid, E-28040 Madrid, Spain 
c Dpto. de Matemática Aplicada a la ¡1. de Telecomunicación, E.U1T. Telecomunicación, Universidad Politécnica de Madrid, E-28031 Madrid, Spain 

A B S T R A C T 

It is well known that an irreducible algebraic curve is rational (i.e. parametric) if and only 
if its genus is zero. In this paper, given a tolerance e > 0 and an e -irreducible algebraic 
affine plane curve C of proper degree d, we introduce the notion of e -rationality, and we 
provide an algorithm to parametrize approximately affine e-rational plane curves by means 
of linear systems of (d — 2)-degree curves. The algorithm outputs a rational parametrization 
of a rational curve C of degree d which has the same points at infinity as C. Moreover, 
although we do not provide a theoretical analysis, our empirical analysis shows that C 
and C are close in practice. 

Introduction 

Let £)* be an algebraic or geometric object that satisfies a property *p that implies the existence of certain associated 
objects £)*; for instance, £)* might be a polynomial, *p the fact of being reducible and £)* the irreducible factors. Computer 
algebra techniques provide, for a wide class of situations, algorithms to check *p, and to compute exactly the associated 
objects £)*. However, in many practical applications, we receive a perturbation £) of £)*, where *p does not hold anymore 
neither the associated objects £)* exist. The problem, then, consists in computing a new object £), close to £) and satisfy­
ing *p, as well as the associated objects £)¡ to £). We call approximate to an algorithm solving a problem of the above type. 
Here, the notion of "closeness" depends in general on the particular problem that one is solving. 

One can find in the literature approximate algorithms for computing gcds (see Corless et al., 1995; Emiris et al., 1997; 
Pan, 1996), factoring polynomials (see Corless et al., 2001; Galligo and Rupprech, 2002; Pan, 2001; Sasaki, 2001), etc. For 
algebraic varieties there also exist approximate solutions: see Corless et al. (2000), Dokken (2001) for the implicitization 
problem, in Farouki and Rajan (1988) the numerical condition of implicitly given algebraic curves and surfaces has been 
analyzed, and see Bajaj and Royappa (2000), Gahleitner et al. (2002), Hartmann (2000), Pérez-Díaz et al. (2004, 2005) where 
the parametrization questions are treated. 

In this paper we consider the approximate parametrization problem for affine plane algebraic curves. That is, with the 
above terminology, £)* is an affine plane curve, *p is the fact of being rational, and £)* is a rational parametrization of £)*. 
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So, the problem is stated as follows: we are given an affine curve (say that it is a perturbation of a rational curve) and we 
want to compute a rational parametrization of a rational affine curve near it. 

In Pérez-Díaz et al. (2004, 2005) the approximate parametrization problem is solved for the special case of affine plane 
curves and affine surfaces being a perturbation of a monomial curve and surface, respectively. In both papers, the basic tool 
is the use of e-points (see also Pérez-Díaz et al., 2006). More precisely, given a tolerance e > 0, in Pérez-Díaz et al. (2004), 
the parametrization problem is solved for the case of affine plane curves having an e-singularity of maximum multiplicity, 
and in Pérez-Díaz et al. (2005) the problem is solved for affine surfaces having also an e-singularity of maximum multiplic­
ity. The basic idea was to use a pencil of lines through the e-singularity and, hence, it was solved working as in the exact 
case for monomial varieties. 

In this paper, we generalize the ideas of Pérez-Díaz et al. (2004) to the case of d-degree affine plane curves with d 
different points at infinity. For this purpose, the first obstacle is to associate suitably the different e-singularities. This leads 
to the notion of cluster. Then, we introduce the notion of (affine) e-rationality, and we provide an algorithm to parametrize 
approximately e-rational. The idea of the algorithm is to work with linear systems of curves of degree d — 2. This system 
plays the role of the linear system of adjoint curves in the exact parametrization algorithm. In addition, we prove that the 
degree of the output rational curve is the degree of the input one, and that both curves have the same points at infinity, 
and hence with the same real asymptotes. 

This type of approximated problems is applicable by itself since it faces symbolic computation to real world problems. 
In addition, providing parametric representations of algebraic geometric objects helps with achieving computations and 
further manipulations of the object. This is of special interest in the field of CAGD. For instance when considering surface-
surface intersection or, in particular, when performing planar sections. In Example 5.3, for a given surface, we show how 
our algorithm detects planar intersections that, although are not rational, are e-rational. Therefore we provide rational 
parametrizations to deal with these (non-rational) planar curve intersections. 

Associated to this type of problems appears, as a natural question, the closeness analysis between the input and output 
curves of the algorithm. In our case, this closeness notion is given by the Hausdorff distance (see Section 6). That is, we 
say that the input and output curves are close if their Haussdorf distance (as real curves) is small related to the tolerance. 
As we have stated above, both curves have the same points at infinity. This property, jointly with the hypothesis that the 
input curve has d different points at infinity, ensures that the Hausdorff distance between them is finite (see Lemma 6.1). In 
addition to the distance measure between input and output curves, one can go an step further and consider an additional 
question, namely whether the algorithm returns the best (in the sense of the closest to the input) solution. For instance, in 
our case, we can identify every projective plane curve, by means of its coefficients, with a point on a projective space. Then, 
for d sufficiently big, the rational curves form a sub-variety W of this projective space. Therefore, one can consider the 
computation of an element in W minimizing the (Hausdorff) distance to the input curve. Unfortunately we have not been 
able to complete a theoretical analysis of the distance, nor on the minimization of the solution. We believe that, although 
interesting, both problems are very hard and we leave them as future research. Instead, we analyze two particular examples 
(a bounded and a non-bounded curve), where we describe a theoretical method to deal with the problem and where we 
estimate the distance. Every example we have tried shows that the curves are close, and it allows us to think about a 
theoretical treatment of this fact as a future project. 

The paper is structured as follows. In Section 1 we recall the main notions and properties on e-singularities. Section 2 
is devoted to recall the main ideas of the exact parametrization algorithm for curves. In Section 3 we develop the idea 
of cluster and we introduce the notion of e-rationality. In Section 4 we derive the approximate algorithm, as well as the 
main properties of the output curve. In Section 5 we illustrate the algorithm through several examples, and in Section 6 we 
empirically analyze the error. 

Throughout this paper, we use the following terminology. || • || and || • ||2 denote the polynomial oo-norm and the 
usual unitary norm in C2, respectively. | • | denotes the module in C. The partial derivatives of a polynomial g e C[x, y] 
are denoted by gv := ¡ f where v = (¡, j) e N2; we assume that g° = g. Moreover, for v = (¡, j) e N2, | v| = i + j . Also, 

e i = ( l , 0 ) , and e2 = (0,1). 
In addition, we use the following general assumptions. A tolerance e is fixed such that 0 < e < 1. C is an affine real 

plane algebraic curve over C of proper degree d > 0 (see Definition 1.1), with d different points at infinity, not passing 
through (1 : 0 : 0), (0 : 1 : 0), and defined by an e-irreducible polynomial f(x, y) e R[x, y]; that is / can not be expressed 
as f{x, y) = g(x, y)h(x, y) + £(x, y) where h, g,£ e C[x, y] and ||<S(x, y)|| < e\\f(x, y)\\ (see Corless et al., 2001; Kaltofen et 
al., 2008). We denote by Ch the projective closure of C. Let us mention that the condition (1 : 0 : 0), (0 : 1 : 0) ^ Ch can be 
avoided by performing a suitable affine orthogonal linear change of coordinates. 

1. Preliminaries one-points 

Our fundamental technique to deal with the approximate parametrization problem is the use of e-points. The notion of 
e-point of an algebraic variety was introduced by the authors (see Pérez-Díaz et al., 2004, 2005, 2006) as a generalization 
of the notion of approximate root of a univariate polynomial. In this section, we briefly summarize some previous notions 
introduced in Pérez-Díaz et al. (2004, 2005), and geometric properties obtained in Pérez-Díaz et al. (2006). We start with 
the notion of proper degree. 



Deflnition 1.1. We say that a polynomial g e C[x, y] has proper degree I if the total degree of g is I, and 3v e N2, with 
|v| =£, such that |g ? |>c | |g | | . 

We say that an algebraic plane curve has proper degree I if its defining polynomial has proper degree I. 

The notion of e-point is as follows. 

Deflnition 1.2. P e C2 is an e-(affine) point of C if | / (P) | < e| |/ | | . 

In this situation, we introduce the notion of e-singularity, pure e-singularity, and e-ramification point. 

Deflnition 1.3. Let P e C2 be an e-point of C: 

(i) The e-multiplicity of P on C (we denote it by mult,= (P, C)) is the smallest natural number r e N satisfying that 
(1) VveN2 , such that 0 < | v | < r - l , it holds that | / 5 (P ) | < e||/ | | , 
(2) 3 v e N 2 , with | v |= r , such that \f(P)\ > e| |/ | | . 

(ii) P is an e-(affine) simple point of C if mult,c(P, C) = 1; otherwise, P is an e-(affine) singularity of C. 
(iii) P isafc-pure e-singularity of C, with k e {1, 2}, if multe(P, C) > 1 and |/muitf(P,C) 4(p) | > e j | / | | . 
(iv) P is an e-(affine) ramification point of C if multe(P, C) = 1, and either \f^(P)\ <e|l/ll °r | / e 2(P) | < e | | / | | . 

Note that, since C has proper degree, 0 < mult(P,C) < mult,c(P,C) < deg(C), where mult(P,C) denotes the "exact" 
multiplicity of P on C. For instance, the origin has exact multiplicity 1, and e-multiplicity 2, on the curve defined by 
jx + x3 + y2. In the exact case, if C is irreducible, mult(P, C) < deg(C). Thus one may expect that in the approximate case, if 
C is e-irreducible, then mult,c(P, C) < deg(C). Although this is the case in all the examples we have tried, we have not been 
able to prove it. So in this paper, when computing e-multiplicities, we also consider the possibility mult,= (P,C) = deg(C). 

Deflnition 1.4. Let P be an e-point of C and r = multe(P, C). If P is fc-pure, with k e {1, 2}, we define the k-weight of P as 

weightt(P) = max { \. 

i=0 r-1 I /!• freK(P) J 
We define the weight of P, denoted by weight(P), as max{weightj(P), weight2(P)}, if P is pure in both directions, and as 
the corresponding /<:-weight otherwise. 

The following rational function, introduced in Sasaki and Terui (2002), will be used in this development: 7?.out(x) = 
1 _ x(l-9x) _ 32x2 

2 2(l+3x) (1+3X)3 ' 

2. Preliminaries on symbolic parametrization 

In this section, we briefly recall the symbolic parametrization algorithm for rational plane algebraic curves of degree 
d > 2 (note that lines and conies can be trivially parametrized by lines) based on (d — 2) adjoint curves; for further details 
see Sendra et al. (2007). For this purpose, throughout this section we assume that C is rational (i.e. its genus is zero). 
In addition, taking into account our requirements in Section 4 and for simplicity sake, we assume in this section that all 
singularities are affine and ordinary. Again, for a complete description see Sendra et al. (2007). 

The idea is to use a linear system of curves such that for almost every curve in this system, all its intersections with Ch, 
except one, are predetermined; recall that Ch is the projective closure of C. Moreover, the set of all these intersection points 
is the same one for every curve in the system, and the points in this set are called the "base points". Thus, if one computes 
the intersection points of Ch with a generic representative of the system, the expression of the unknown intersection point 
gives the parametrization of the curve in terms of the parameter defining the linear system. 

More precisely, let Ti.d-2 be the linear system of adjoint curves to Ch of degree d — 2. That is, Ti.d-2 is the linear system 
of curves of degree d — 2 having each r-fold of Ch as a base point of multiplicity r — 1; i.e. as a point of multiplicity at least 
r — 1. In particular it implies that the multiplicity of intersection of a curve in Ti.d-2 and Ch at a base point of multiplicity 
r — 1 is at least r(r — 1). Thus, using that the genus of C is zero, and taking into account Bézout's Theorem, one deduces 
that d — 2 intersections of Ch and a generic element in Tid-2 are not predetermined. In this situation, one may take (d — 3) 
simple points on Ch, and determine the 1-dimensional linear subsystem T~L*d_2 oCHd-2 obtained when these simple points 
are required to be base points of multiplicity 1. In this way, the number of predetermined intersections (counted with 
multiplicity) is (d — l)(d — 2) + (d — 3), i.e. only one intersection point is missing. Thus, computing this free intersection one 
finds a rational parametrization of Ch. Summarizing these ideas one has the following process: 

(1) Compute the singularities of Ch as well as their multiplicities (recall that we have assumed that all singularities are 
affine and ordinary). 



(2) Determine the linear system Ti.d-2 of adjoint curves of degree (d — 2) to Ch. 
(3) Compute d — 3 different simple points on Ch. 
(4) Determine the linear subsystem H*d_2 of 7id-2 by requiring that every simple points in Step (3) is a base point of 

multiplicity one. 
(5) Compute the free intersection point of "H¿_2 and Ch. 

Let us make a comment on how to computationally perform the steps in the above process. Step (1) can be performed, 
for instance, using resultants. In Step (2), one considers a homogeneous polynomial H(x, y, z) of degree (d — 2) with unde­
termined coefficients. Now, for each singular point P of multiplicity r one requires that H and all its partial derivatives till 
order (r — 1) vanish at P. This generates a linear system of equations in the undetermined coefficients of H. Solving it, and 
substituting in H, we get the defining polynomial of 7id-2l let us call it again H. Step (3) may be performed by intersecting 
Ch with lines (see Sendra et al., 2007 for advanced approaches); although it is not necessary, looking for the parallelism 
with the reasoning in Section 4, we take affine simple points. Step (4) can be approached as Step (2), i.e. requiring that 
H vanishes at each simple point, solving the provided linear system and substituting the solution in H; let H*(t,x, y,z) 
be the defining polynomial of T~L*d_2 (note that d\m{Ti*d2) = 1). Finally, let us deal with Step (5). For this purpose, let 
{Qj := (qix : qi2 : 1)}¡=I,...,S be the singularities and r¡ the multiplicity of Q_¡. Also, let {P¡ := (pji : p ¡ 2 : l)h,...,d-3 be the 
simple points determined in Step (3). Then, the free intersection point is obtained by computing the primitive part, w.r.t. t, 
of the resultants of H*(t,x,y, 1) and f(x, y) with respect to x and y, respectively. Indeed, it holds that (see San Segundo 
and Sendra, 2005) 

s d-3 

S1(x,t) = Resy(H*(t,x,y,l),/(x,y)) = f ] (x -g u ) r 'C ' - 1 ) f ] (x -p u ) JVi 1 (x , t ) , 
i=\ i=\ 

s d-3 

S2(y, t) = Resx(H*(t,x, y, 1), f(x, y)) = f ] ( y - gi,2) r ' ( r i_1) H^ ~ Pu )M 2 (y , t), 
i=\ i=\ 

where degx(Mi) = degy(M2) = 1. Therefore, the parametrization is the solution in [x, y] of {M\(x, t) = 0, M2(y, t) = 0}. 

3. e-rational curves 

The main goal of this section is to provide an alternative definition of rational curve for the approximate frame; namely, 
the concept of e-rationality. This notion is related to the e-singularities and their e-multiplicity. As explained in the intro­
duction, we assume that we are given a perturbation of a rational curve. For a given singularity of this rational curve the 
effect of the perturbation would be the "explosion" generating a set of e-singularities, with different e-multiplicities, of the 
curve we work with. Therefore, differently from the exact case, we will have in general more e-singularities than expected, 
and their nature indicates that they need to be associated; we will solve this difficulty introducing a suitable concept of 
cluster. For this purpose, we faced two main difficulties. On one hand, deciding how to associate e-singularities to give an 
appropriate definition of cluster and on the other computing the e-multiplicity of a cluster. 

To determine the e-singularities, we compute numerically the set ST of solutions of the algebraic system T = 
{f°(x, y) = 0, /ei(x> y) = 0, fe2(x, y) = 0}. Note that / is irreducible, and hence T has finitely many solutions. Now, for 
each P e ST, we check whether max{|/°(P)|, |/ei(P)l> l/e2(P)|} ^ e 11/11- Let S\ be the subset of ST satisfying this inequal­
ity. Given P e Si, the computation of multe(P,C). can be obviously done by substituting P at the corresponding partial 
derivatives and checking the conditions in Definition 1.3(1). However, for each e-point P there exists an open disk centered 
at P consisting of e-points of e-multiplicity at least mult^P.C) (see Lemma 3 in Pérez-Díaz et al., 2004). So, an small 
perturbation of P may produce a different answer for the e-multiplicity. We are indeed interested in assigning the maxi­
mum possible e-multiplicity to the e-points we associate in a cluster (as will be defined later). The proof of Lemma 3 in 
Pérez-Díaz et al. (2004) shows how to detect the radius of one of these open disks, so one may try to estimate the max­
imum e-multiplicity at the disk. Nevertheless, in practice, this is unfeasible. Instead, we propose a different strategy that 
for practical purposes increases the chances of assigning the appropriate e-multiplicity to a defined cluster. Unfortunately it 
does not ensure the achievement of the maximum e-multiplicity on the set of e-singularities obtained. 

More precisely, for each k e {2, . . . , d — 1}, we take u\,..., us e N2, with 2 < s < k + 1 (in practice s = 2) such that for 
all i, \ü¡\ = k and gcd( / U l , . . . , fs) = 1, and we solve numerically {/"' = 0 , . . . , fs = 0}. Let Ak be the set of solutions. 
Then, for k e {2,..., d — 1} we consider the set (note that S\ is defined above) 

Sk={Pe Ak/\f^(P)\ < e 11/11 Vw e N2 with \w\ < k}. 

If for a given k and for all s it holds that gcd( / U l , . . . , f"s) ^ 1, we take S^- = 0. Finally we consider the set 

d-\ 

s=\Jsk. 



We explain next how to identify the e-singularities in S, the cluster construction that will lead us to the concept of e-
rationality. In the identification process, having e-singularities in S^, for higher values of k, will increase the chances of 
detecting the e-multiplicity of the cluster. 

Definition 3.1. The set 5, introduced above, is called the e-(affine)-singular locus of C. We denote it by Singe(C). 

Example3.2. Let e = 0.001 and let C be defined by f(x,y) = x3y + y3x + x3 + §x2 + ey-l- §. Then Singe(C) = Si U 5 2 U 5 3 

where 

5! = {Pi = (0.02131893405+ 0.009609927603Í, 0.02442855631 +0.1171004584Í), 

P2 = (0.004713033954 + 0.02355323617i, -0.07491796596 - 0.09032199938Í), 

P3 = (-0.01424770212 + 0.01818884517Í, 0.1084633939 + 0.05315246871 i), 

P4 = (-0.02443272919, -0.1159479025), 

P5 = (-0.01424770212 - 0.01818884517Í, 0.1084633939 - 0.05315246871 i), 

P6 = (0.004713033954 - 0.02355323617i, -0.07491796596 + 0.09032199938Í), 

P7 = (0.02131893405 - 0.009609927603Í, 0.02442855631 - 0.1171004584Í)}, 

52 = {P8 = (-0.0001666666667, 0)}, 

5 3 = 0. 

Moreover, multe (Pi) = • • • = multe (Pi) = 2 but multe(Ps) = 3. Note that considering only S\ we would have not found a 
point with e-multiplicity 3. 

As we could check in the previous example, the difficulty appears when two (in general more than two) e-singularities 
P and Q. are very "close", because somehow we need to identify them. To approach this, first we assign a radius to each 
e-singularity (see Definition 3.3); i.e. the e-singularity is seen as a closed Euclidean disk. Secondly we associate the disks, 
by means of an equivalence relation (see Definition 3.5), yielding the singularity clusters (see Definition 3.6). Finally we 
choose, among the finitely many points in the cluster, a representative that maximizes the e-multiplicity and minimizes in 
module the evaluation of / at the point (see Definition 3.6). 

We start with the notion of radius, which is motivated by its good performance in practice. 

Definition 3.3. Let P be an e-point of C. We define its radius, and we denote it by radius(P), as 7?.0Ut(weight(P)) if P is 
pure and zero otherwise. 

Definition 3.4. Let A be a finite set of e-points of C. We define on A the following binary relation: for P, Q_ e A, we say 
that 

PU*Q_ <^> | | P - Q||2 + | radius(P)-radius(Q) | < ^ o u t ( e ) . 

TV is reflexive and symmetric but it is not in general transitive. In order to have an equivalence relation, we consider its 
transitive closure. 

Definition 3.5. Let A be a finite set of e-points of C. We define on A the following equivalence relation: for P, Q. e A, we 
say that 

pnd ^ ! P 7 r a 

^ l or there exist P i , . . . , P n e ^ such that P-f t*Pi , . . . ,P n %* Q. 

Definition 3.6. Let A be a finite set of e-points of C. For P e A we define the cluster of P w.r.t. A as its equivalence class 
under 7?.. 

We say that J? is a (canonical) representative of a cluster ff if: R e ff, for all R' e € it holds that mult,c(J?, C) > mult,c(J?', C), 
and for all R' e€ such that multe(fl, C) = multe(fl', C) it holds that \f(R)\ < | / ( f l ' ) | . 

We define the e-multiplicity of the cluster as the e-multiplicity of any of its canonical representatives. 
We denote a cluster by €lusterr(R, A), where r is the e-multiplicity and R a canonical representative, and by €lusterr(R) 

when A = Singe (C). 



The notion of cluster is based on the equivalence relation 1Z, that is constructed from 1Z*. In order to motivate 1Z*, take 
into account that two e-singularities are associated if their disks are a small vibration of each other. This might be because 
the centers, or the radios, or both, are a small perturbation of each other. These phenomena are controlled in the definition 
of TV; the first summand in Definition 3.4 measures the vibration of the centers and the second does it for the radios. 

Finally, when we introduce the notion of canonical representative the first requirement is about the multiplicity, while 
the second is about the value of the implicit equation at the point. With this strategy we try to increase the possibilities 
of achieving e-genus zero (see Definition 3.7). Of course, one might consider the contrary criterion (i.e. first the module 
and second the multiplicity). Nevertheless, we do not provide a theoretical analysis of validation for our particular criterion 
election, but in all our examples the results were satisfactory. 

Now, we are ready to introduce the notion of e-rationality. 

Definition 3.7. If {€lusterr¡(P¡)}¡=1 s ¡s the cluster decomposition of Singe(C), we say that C is e-(affine) rational if 
(d - l ) ( d - 2 ) - £ i = i n t a - 1 ) = 0 . " " ' 

Remark3.8. Note that in the previous theoretical development we have not considered singularities (neither e-singularities) 
at infinity. We leave this extension of the concept of e-rationality for further research. 

If we apply the previous ideas to Example 3.2, with e = 0.001, we get that the 8 points of Singe(C) belong to the same 
cluster. So, the cluster decomposition is {€luster3(P¡) = {Pi , . . . , Pg}}. Therefore, C is e-rational; indeed, it is e-monomial, 
and thus parametrizable with the techniques in Pérez-Díaz et al. (2004). We finish the section with a more general example. 

Example 3.9. Let us consider e = 0.005 and the curve C of proper degree 5 defined by the polynomial (see Fig. 1): 

106029 , 10593 , 43461 , , 17919 , 91179 , 99 , 99 , 
/ (x, y) = x x y xr y -I xr y -I xy -I x y 

48200 48200 48200 9640 48200 100 100 
25443 , o 8217 , 99 4 99 4 99 , 9009 s 252351 , 42669 , , 

x y -| y -| x -\ xv -\ v x -\ xy x y 
24100 y 24100^ 100 100^ 100^ 48200 48200 y 24100 y 

69 993 o 6943 25443 s 1 
H Ay xy y -I . 
48 200 48 200 48 200 100 

The e-singular locus is Singe(C) = S\ U S2 U S3, where 

(-0.9956027274 + 0.0004067223817Í, 0.001447687187 + 0.9982777543Í), 

(1-011706789 - 0.1320874194Í, -1.008532436+ 0.06832949372Í), 

(1.007458642, -1.044045331), P4 = (0.9909273695, -0.9540334161), 

(1.011706789 + 0.1320874194Í, -1.008532436 - 0.06832949372Í), 

(-0.9956027274 - 0.0004067223817Í, 0.001447687187 - 0.9982777543Í), 

(0,0)}, 

(1.000000001,-1.)}, 

Moreover, multe (Pi) = multe(P2) =mult e(P7) = 2, and multe(P3) = multe(P4) =mult e(P5) = multe(P6) = multe(P8) = 3 . 
Furthermore, the cluster decomposition is (see Fig. 1): 

5i = 

5 2 = 

5 3 = 

= {Pi 

Pi 

P3 

Ps 

Pe 

Pi 

= {P8 

= 0. 

€luster2{P\) = 

£luster2(P2) = 

£luster2(P7) = 

£luster3(P8) = 

= {Pih 

--{Pi), 

~-{Pi), 

= {P3,P4, Ps-,P6: ,P8] 

Thus, C is e-rational. 

4. Approximate parametrization algorithm 

In this section, we present our approximate parametrization algorithm. For this purpose, we assume that C is e-rational 
of proper degree d > 2 (note that for d = 1 the problem is trivial, and for d = 2 one can apply the algorithm by Pérez-Díaz 
et al., 2004), and that 

{<tlusterri{Q_i))i=x s, where Q¡ := ( g u : qU2 :1), 



-0.6 

-0.8 

-1 

-1.2 

-1.4 

0.6 0.8 1 1.2 1.4 

Fig. 1. Left: Clusters. Right: Curve C. 

is the cluster decomposition of Singe(C). Furthermore, if possible, i.e. when there exists a real canonical representative of 
the cluster, we take Q_¡ real. 

In this situation, the strategy is to adapt the algorithm in Section 2 as follows. Let Ch be the projective closure of C. We 
consider the linear system of curves Tíd-2 of degree (d — 2) given by the divisor ^ = 1 r¡Q_¡. That is, Q_¡ is a base point of 
(exact) multiplicity r¡ — 1 of the linear system. Afterwards, one computes (d — 3) e-simple affine points on Ch (see below 
for details), and determines the linear subsystem Ti*d_2 of Wd-2 obtained by intersecting Tid-2 with the linear system of 
(d — 2)-degree curves generated by the divisor J2¡ZÍ PU saY that P¡ := (p¡,i : p¡,2 : 1)- If P¡, Q.j would be exact points and 
singularities, respectively, of Ch, then dim(7ij_2) = 1 (see Chapter 4 in Sendra et al., 2007). However, in our case, since 
we are working with e-points we can only ensure that dím(Ti.¿_2) > 1 (see Theorem 2.56 in Sendra et al., 2007). If this 
dimension is strictly bigger than 1, we can either take more e-simple points till dimension 1 is reached, or we can take an 
small perturbation of the e-points such that the effective divisor 52f=iriQ.i + J2¡Z\ P¡ ¡s m general position (see p. 49 in 
Sendra et al., 2007), and hence the dimension is 1. So, we can assume w.l.o.g. that dím(Ti.¿_2) = 1. Let, then, H*(t,x, y,z) 

be the defining homogeneous polynomial of T~L*d_T 

At this point, if Pj, Q_j would be exact points and singularities, respectively, of C, the symbolic algorithm presented in 

Section 2 would output the parametrization V(t) = (^M, w j p . where 

g i ( t ) x - p i ( t ) : 

q2(t)y - p2(t) •-

Resj,(H*(t,x,y,l),/(x,y)) 

n?=i (x ~ lu-iY^-v Yltlb ~ PU)' 
Resx(H*(t,x,y,l),/(x,y)) 

YlU(y-Qi,2yi(ri-r>nti(y-Pi,2) 

However, in our case, P¡, Q_¡ are not exact points, but e-points. So these rational functions are not, in general, polynomials. 
Nevertheless, considering if necessary a small perturbation of H*, the quotient of the division of each numerator by its 
denominator is linear as polynomial in either x or y. Then, the idea is to determine the parametrization from these linear 
quotients. For this purpose, one may need to perform two perturbations, both affecting H*. The first one ensures that the 
degree in the resultants is the expected one, namely d(d — 2), and hence it controls the degree of the output curve. The 
second guarantees that the output is indeed a parametrization; i.e. that not both components are constants. Note that, 
in the exact case, these two facts are provided by the theory. In this paper, we deal with the first perturbation leaving 
as degenerated cases those curves requiring the second perturbation. In Pérez-Díaz et al. (2009), one can see a complete 
analysis of the second degeneration. 

More precisely, let H*(t, x, y,z) = H\(x, y,z) + tH2(x, y,z), and let X>¡ be the projective curve defined by H¡, ¡ = 1,2. 
We recall that (1 : 0 : 0), (0 : 1 : 0) £ Ch. Now, we need to ensure that either Ch, V\ or Ch, V2 do not have common points 
at infinity. If this is not the case, let {R\,..., Rm} be the points of C at infinity and K{p\, p2,x,y,z) = p\xd~2 + P2yd~2, 
where p¡ are parameters. Then, we consider in C2 the union C of the affine lines defined by H2(R¡) + K{p\, p2, R¡) = 0, for 
i = 1 , . . . , m. Note that, since R¡ are points at infinity, the polynomials H2(R¡) + K{p\, p2, R¡) e C[pi, p2] are not constant, 
and hence define lines. So, taking values for p\, p2 (say, small real numbers) we consider an small perturbation that ensures 



that the above requirement is satisfied. Thus, in what follows we assume that V2 and C do not have common points at 
infinity. Therefore, if F is the homogenization of / , by Lemma 3.1 in Alcázar and Sendra (2005), one has that 

degx(Resy (H*, F)) = degy (Resx(H*, F)) = d(d - 2). 

Moreover, since H* and Ch do not have common points at infinity, it holds that 

degx(Resy(H*(t,x, y, 1), / ) ) = degy (Resx(H*(t,x, y, 1), / ) ) = d(d - 2). 

Now, we consider the polynomials 

s d-3 s d-3 

MM = Y\(x - qiA)ri{n-x) \\{x - pu) , A2{y) = f](y - qU2)
T^-^ f](y - pu) . 

i=\ i=\ i=\ i=\ 

Since C is e-rational, it holds that 

degx(A,(x)) = degy (A2(y)) = d(d - 2) - 1. 

Let Bi(x, t) :=<ji( t)x-pi( t) be the quotient of Si(x, t) := Resy(H*(r, x, y, 1), /(x, y)) and Ai(x). Similarly let B2(y,t):= 
q2(t)x — p2(t) be the quotient of S2(y, t) := Resx(H*(t, x, y, 1), f(x, y)) and A2(y). Then, we output 

\Mt) Q2(t)J 

as approximate parametrization of C. 
Before outlining the algorithm, we briefly describe how to proceed with the selection and computation of the (affine 

simple) e-points P¡. We first observe that, in general, an e-point can be computed by solving {/(x, y) = 0, ax + /)y = p], 
where a, /), p e C. However, we are intersected in working with either real e-points or pairs of conjugate complex points. 
We can always compute all points, but at most one, in pairs of conjugate complex points. For choosing real points one 
can always analyze the roots of the discriminant of / (see Theorem 7.7 in Sendra et al., 2007). On the other hand we 
have observed, in our examples, that taking (when possible) the simple e-points as (affine) e-ramification points (see 
Definition 1.3) the error distance between the original curve and the output curve decreases. So we tend to use first such 
points. Finally, one has to take care of the fact that a chosen e-point can be too close (i.e. in the same cluster) to an 
e-singularity or to a previously computed e-point, and hence identifiable with it. To avoid this, whenever a new simple 
e-point is computed we check whether it belongs to the cluster of the others points. 

The above process provides the following approximate parametrization algorithm for deciding whether a real e-ir­
reducible (with proper degree) plane algebraic curve C is e-rational, and in the affirmative case, compute an approximate 
parametrization. Recall that we assume that C has d different points at infinity, and that (0: 1 : 0), (1 : 0: 0) £ Ch. If this last 
condition fails, one may consider an affine orthogonal change of coordinates to achieve the requirement. 

Approximate Parametrization Algorithm 

• Given a tolerance e > 0 and an e-irreducible polynomial f(x, y) e Q[x, y], of proper degree d > 2 (for d = 1 it is trivial, 
if d = 2 apply Pérez-Díaz et al., 2004), with d different points at infinity, not passing through (0 : 1 : 0), (1 : 0: 0), and 
defining a real plane algebraic curve C; let F(x, y,z) be the homogenization of / . 

• Decide whether C is e-rational and in the affirmative case. 
• Compute a rational parametrization V(t) of a curve C. 

(1) Compute the cluster decomposition {ff/ustern(Q.j)}i=i,...,s of Singe(C); say Q.¡ = (q¡j : q¡¿ : 1). 
(2) If £ |L i n(n - 1) + (d - l)(d - 2), RETURN "C is not (affine) e-rational". If s = 1 one may apply the algorithm in Pérez-

Díaz et al. (2004). _ 
(3) Determine the linear system 7id_2 of degree (d — 2) given by the divisor YM=I r¡0.¡-
(4) Compute (d — 3) e-ramification points {Pjh^j^d-3 of C; if there are not enough e-ramification points, complete with 

simple e-point. Take the points over R, or as conjugate complex points. After each point computation check that it is 
not in the cluster of the others (including the clusters of Q.¡); if this fails take a new one. Say P¡ = (pji : p ¡ 2 : 1). 

(5) Determine the linear subsystem Ti¿_2 of Tid-2 given by the divisor Y^Zi^i- Let H*(t,x,y,z) = H\(x,y,z) + 
tH2(x, y,z) be its defining polynomial. 

(6) If [gcd(F(x, y, 0),Hi(x, y, 0 ) ) ^ 1 ] and [gcd(F(x, y, 0), H2(x, y, 0)) ^ 1] replace H2 by H2 + /oixd"2 + p2y
d~2, where 

Pi, p2 are real and strictly smaller than e. Say that gcd(F(x, y, 0), H2(x, y, 0)) = 1; similarly in the other case. 
(7) S1(x, t) = Resy(H*(x, y, 1), / ) and S2(y, t) = Resx(H*(x, y, 1), / ) . 

(8) AX = nf=1(x - <j,,i)r'(r'_1) Ytz¡(* - PÍA), A2 = Y\U(y - qiaY'^ Ylt'iy - P U ) . 
(9) For i = l ,2 compute the quotient B¡ of S¡ by A¡ w.r.t. either x or y. 

(10) If the content of B\ w.r.t. x or the content of B2 w.r.t. y does depend on t, RETURN "degenerate case" (see Pérez-Díaz 
et al., 2009). 



(11) Determine the root p\(t) of B\, as a polynomial in x, and the root P2(t) of B2, as a polynomial in y. 
(12) RETURN P(t) = (p1(t),p2(t)). 

Remark 4.1 (General remarks on the algorithm). 

1. It should be noted that the algorithm works symbolically with the exceptions of Steps 1 and 4, where the e-singularities 
and e-simple points are determined. These points are computed numerically. Nevertheless, in order to be used in Steps 3 
and 5, they are converted to rational arithmetic. 

2. Since the algorithm follows the steps of the exact approach, by Theorem 3.10 in Mñuk et al. (1997), one deduces that 
the worst case complexity is polynomial in the degree of the input curve. 

3. In Step 9 of the algorithm, we only consider the quotients of the divisions, and we ignore the remainders. This remain­
ders might be used to control the distance between the input and the output as shown in Corollary 6.4; note that, 
because of the construction, the polynomial / evaluated at the parametrization is in fact the remainder. We leave such 
an study for future research. 

4. Note that not every set of (d — l)(d — 2)/2 points, counted with multiplicity, is the singular locus of a rational curve of 
degree d. Nevertheless in our case, because of Lemma 3 in Pérez-Díaz et al. (2004), the singular divisor used in Step 3 
of the algorithm can always be slightly perturbed so that it corresponds to a rational curve. 

In the last part of this section, we state the main properties of the curve output by the algorithm. But first, we need 
some lemmas. 

Lemma 4.2. The leading coefficient of B\(x, t) and B2Íy, t) w.r.t. x and y, respectively (see Step 9 of the algorithm), are the same 
up to multiplication by non-zero constants in C. Furthermore, the roots are {—Hi (a, b, 0)/FÍ2(a, b, 0)}/ab 0)eC/i (see Step 5 of the 
algorithm). 

Proof. Let Bx{x, t) =q1(t)x-px{t), and B2(y,t) =q2(t)y -p2(t). By hypothesis F(l, 0, 0) ^ 0, F (0 ,1 ,0 )^0 . So, the leading 
coefficient of F w.r.t. y is a non-zero constant; similarly w.r.t. x. Thus, by well known properties on resultants (see, e.g. 
Lemma 4.3.1. by Winkler, 1996), it holds that up to multiplication by a non-zero element in C: 

Resj,(H*(t,x, y, 0), F(x, y, 0)) = Sf (x, 0, t), Resx(H*(t,x, y, 0), F(x, y, 0)) = S%(y, 0, t), 

where H* is as in Step 5 of the algorithm, and S^ denotes the homogenization of 

S,(x, t) = Resy(H*(t,x, y, 1), / ) , S2(y, t) = Resx(H*(t,x, y, 1), / ) . 

Now, observe that Sf (x, 0, r) = qi{t)xiid'2), and S^(y, 0, r) = q2(t)y
d(d'2\ Moreover, let F(x, y, 0) factor as F(x, y, 0) = 

I~[j=1(/3jX — a¡y). Since F(0, 1, 0) ^ 0 then a¡ ^= 0 for all i. Hence, up to multiplication by non-zero constants 

d d 

Resj,(H*(t,x, y, 0), F(x, y, 0)) = ]~[Resj,(H*(t,x, y, 0), ftx- a¡y) = (-l)d ( í í"2 )xd ( í í"2 ) [ ^ H ^ t , ^ , ft, 0). 
i=\ i=\ 

Analogously, Resx(H*(t, x, y, 0), F(x, y, 0)) = (-if(d-2)yd(d-2) j-rd=1 M*(t, a¡, ft, 0). So, up to multiplication by non-zero 

constants q i( t ) = q2(t) = ffiLi H*(t, on, ft, 0) = n?= i(Hi(«¡, ft, 0) + tH2(au ft, 0)). D 

Lemma 4.3. degt(Bi(x, r)) =dand degt(B2(y, t))=d. 

Proof. First note that degt(Bi) <d and degt(B2) ^ d . The equality follows from the last equality in the proof of Lemma 4.2, 
and using that fÍ2(a¡, ft, 0) ^ 0 for all i. a 

Lemma 4.4. Let L be the algebraic closure of C(t), and C\,C2 two plane projective curves over L with defining polynomials 
C\(x, y,z), G2(x, y,z) e C[t][x, y,z], respectively. If there exist K, W,Le C[t][x, y,z] such thatKC\ + WG2 =zL, and 

(1) Gí(x,y,0)G2(x,y,0)=éO, 
(2) gcd(Gi(x,y,0),G2(x,y,0)) = l, 

then eitherz divides K and W or there exist U\, U2, U3 e C[t][x, y,z] such that 

L=UiGi(x,y,0) + U2G2(x,y,0)+zU3. 



Proof. If z divides K, then z divides WG2, and by (2) z divides W. So let us assume that z does not divides K, and let us 
denote by G° the polynomial G¡(x, y, 0); similarly with K°, W°. Then, K°G° + W°G° = 0. Since G° ^ 0 and gcd(G°, G°) = 1, 
then G° divides W° and G° divides K°. Let K° = A\G°, W° = A2G°. So (A\ + A2)G°G°2 = 0, and since G° ^ 0, one gets 
A\+ A2 = 0. Now, we write 

K = K° + zK, W = W°+zW, Gi = G°+zG¡, 

where K, W, G¡ e C[t][x, y,z]. Then, JfW, + WG2 = z(G°J? + G°W + z(KG1 + ¡VG2)). D 

Theorem 4.5. The rational curve C, output by the algorithm, and C have the same points at infinity, and deg(C) = deg(C). 

Proof. The fact on the degree follows from Lemmas 4.3 and 4.4, once the structured at infinity will be proved. For the rest 
of the proof, let H*(t, x, y, z), F(x, y, z), S1 (x, t), S2(y, t), A1(x), A2(y), B1(x, t) := qi(t)x - Pl(t), B2(y, t) := q2(t)y - p2(t) as 
in the algorithm, and let J?¡ be the remainder of the division of S¡ by A¡. By Lemma 4.2, q\(t) = Xq2(t), with X e C*. By 
Lemma 4.3, degt(Bi) = degt(B2) = deg(F) =d and, by Step 10 of the algorithm, we can assume w.l.o.g. that gcd(qi,pi) = 
gcd(q2,p2) = 1. So, 

PH(t):=(X-'p,(t):p2(t):q2(t)) 

parametrizes the projective closure of C. Furthermore, since deg(p¡) <deg(q2), then all points of C at infinity are reachable 
by VH(t) (see Sendra, 2002). In addition, we note that 

deg{X0,,z}(H*) = d - 2 , deg(Aj) = d(d-2)-h deg{x>y) (R j) < d(d- 2) - 2. 

Moreover, if mH(x, y, z, w) denotes the homogenization of m(x, y, w) as a polynomial in C[w][x, y], we have that 

Sf (x, z, r) = Resy (H*(t, x, y, z), F(x, y, z)) = Bf (x, z, t)A^(x, z) + flf (x, z, r)zn i , 

S2
d(y,z,t) = Resx(H*(t,x,y,z),F(x,y,z)) = B2

d(y,z,t)A2
d(y,z) + R2

d(y,z,t)z»\ 

where n¡ + deg(J?^) = d(d — 2), j = 1, 2. So n¡ > 2. Also, we denote by Coo and Coo the set of points at infinity C and C 
respectively. By resultant properties, there exist polynomials M\,N\,M2,N2e C[t, x, y,z] such that 

MiH* + N¡F = S",i = 1,2. 

So, 

y ^ S f - XxA^S^ = zA^A^(Xxp2 - ypi) + z"3K3, 

where n3 > 2 and J? 3 a polynomial; namely z"3 J?3 = yj42z
ni J?f - ;uo4iz"2 J?^. On the other hand, if K = yA^M\ - XxA^M2 

and, W = yA^Ni - XxA^N2, then 

yA^S^ - XxA^S^ = K(x, y, z, t)(H^ + tH2) + W(x, y, z, t)F. 

Therefore, z divides the right hand side of the above equation. We now check that H\ + tH2 and F satisfy the hypoth­
esis of Lemma 4.4. Since F is irreducible and non-linear, F(x, y, 0) ^ 0. Moreover, if H\{x, y, 0) + tH2(x, y, 0) = 0 then 
H2(x, y, 0) = 0 and this implies that V2 contains all the points at infinity of Ch, which is a contradiction. Finally, if 
gcd(Hi(x, y, 0) + tH2(x, y, 0), F(x, y, 0)) ^ 1, then gcd(H2(x, y, 0), F(x, y, 0)) ^ 1, and this implies that V2 and Ch share 
points at infinity. Therefore, applying Lemma 4.4, one deduces that either there exist polynomials M3,N3 e C[t][x, y,z] 
such that 

M3H* + N3F = A^A^(Xxp2 - yp^)+zn4R3, 

where n^ > 1, or there exist polynomials U\, U2, U3 e C[t][x, y,z] such that 

UiH*(t,x, y, 0) + U2F(x, y, 0)+zU3 = A^A^(Xxp2 - yPi)+zn*R3. 

In this situation, using Coo C VH(C), we first observe that Card(Coo) is less or equal to the number of different roots of q2(t) 
and, by Lemma 4.2, this number is less or equal to Card (Coo). So, Card(Coo) ^ Card(Cx>)- Now, we prove that Coo C Coo, from 
where one concludes the proof. Let P = (xo : yo : 0) e Cx>t and let to be the root of q2 generated by P (see Lemma 4.2). So, 
H*(to, xo, yo, 0) = F(xo, yo, 0) = 0. Applying the corresponding equality above, and using that n^ > 1, we get 

A?(x0,0)A$(y0,0)(Xx0p2(t0) - yoPi(to)) = 0. 

Moreover, since (1 : 0 : 0), (0 : 1 : 0) i Ch then x0yo =£ 0, and hence A^(x0, 0)y4^(y0, 0) =é 0. So, Xx0p2(t0) = yoPi(to)- In 
addition, pi(t0)p2(t0) ^ 0 because gcd(q2, pi) = 1 = gcd(q2, p2). Therefore, 



P í í ( t o ) = ( x - 1 p i ( t o ) : p 2 ( t o ) : 0 ) 

= ( y o ^ V i C t o ) : yoP2(to): 0) = (x0p2( t0) : yoP2(to) • 0) = (x0 : y0 : 0) = P. D 

Corollary 4.6. The asymptotes ofC and C are parallel. 

Proof. It follows from Theorem 3, p. 42, in Coolidge (1959). D 

5. Displaying examples 

In this section we present several examples to illustrate the algorithm. We note that the algorithm did no require 
perturbing H* in any of the examples. 

These examples have been computed in Maple. Let us give some details on how the computations have been done. 
As mentioned in Remark 4.1(1), we work symbolically with the exceptions of Steps 1 and 4. So the input polynomial 
f(x, y), and the tolerance e, are converted (if necessary) into a rational representation, and we only pass to float­
ing point arithmetic when computing the e-singularities and the e-simple points. For the e-singularities computation 
we proceed as follows (similarly for the e-simple points): / is converted into a floating-point coefficient polynomial; 
then, for each k e {2, . . . , deg(C)} we choose two partial derivatives of / of order k — 1 and we apply Maple com­
mands to solve the bivariate system defined by them; more precisely we consider the sequence of Maple commands 
evalf(allvalues(solve(pol1(x, y), pol2(x, y)))); once this set of solutions has been computed, we find the subset of solutions 
satisfying that the modulo of all partial derivatives, of order less or equal to k — 1, evaluated at the solution, is smaller 
or equal to e| |/ | | ; we consider next the union of all the resulting sets and we perform the cluster distribution; finally we 
transform the cluster representatives to rational representation. 

We write here, and in the next section, / and V(t) with 10-digits floating point coefficients, but the executions have 
been performed with the exact version; the precise data can be seen at www2.uah.es/sperez/sec5sec6.pdf. 

Example 5.1. Let e = ^ and C the curve of proper degree 5 defined by (see Fig. 3): 

, 17465 o 1741 c 12539 4167 , 24571 , 38146 , , 
/ (x, y) = —x y -\ xy -\ y xy -\ x^y xy -\ x y 

117409 281822 19281 639011 35273 217805 
15409 o 5933 , 4465 , 61558 , 6938 , 4167 , , 4167 , 

xr" -\ xy -\ y x y -\ x y -\ x 
48541 390846 126254 172857 29505 639011 639011 

4167 4 3021 2 3 4167 5 11559 3 182 
+ 639011* y + 3 3 9 3 0 4 * V + 639011* ~ 74969V + 2763067' 

First we compute the e-singularities of C. Singe(C)=5i U 5 2 U 5 3 where: 

5! = {Ch = (-3.999854219, 2.000094837), Q2 = (0., 0.), 

Q3 = (0.9998153818, -2.999388343), 

Q4 = (-2.001190360+ 0.05414244305Í, 3.001898191-0.08039416354i), 

Q5 = (-1.980207988, 3.002780607), Q6 = (-2.019931003, 2.997118979), 

Q7 = (-2.001190360 - 0.05414244305Í, 3.001898191 + 0.08039416354i)}, 

5 2 = {Q8 = (-2.000000001,3.000000001)}, 

5 3 = 0. 

Moreover, the cluster decomposition of the singular locus is (see Fig. 2, Left): 

C/uster2(Q1) = {Q1}, £/uster2(Q2) = {Q2}, C/uster2(Q3) = {Q3} and 

<tluster3(Q8) = {Q4, Qs, Qe, Qy, Qs}-

We observe that C is e-rational. Following Step 4 in the algorithm we obtain two e-ramification points, namely Pi = 
(3.437938023, 4.260660564), P2 = (7.712891931, 1.573609575). We note that these points are not in the cluster of each 
other and they are not in the clusters of the cluster decomposition of the singular locus (see Fig. 2, Right). 

Finally, the algorithm outputs the parametrization V(t) = (~f§r, TO)) where (see Fig. 3 to compare the input and the 
output curves): 

http://www2.uah.es/sperez/sec5sec6.pdf
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Fig. 2. Left: Cluster decomposition of the singular locus. Right: Cluster decomposition of the singular locus with two e-ramification points. 
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-0.1 

-10 ^ -0.1 

Fig. 3. Left: Input (in dots) and output curve in Example 5.1. Right: A zoom at the origin. 

px(t) = 0.1928498375 • 10551t2 + 0.1974296234 • 10549t4 - 0.3199304792 • 10547t5 

+ 0.4048447557 • 10550t + 0.1193911126 • 10551t3 - 0.8374467974 • 10549 , 

p2(t) = 0.2075974869 • 10550 + 0.8229900424 • 10548t4 - 0.1401409004 • 10551t 

- 0.4936881030 • 10550t3 - 0.1914613475 • 1 0 5 5 V + 0.5662842458 • 10547t5, 

q(t) = -0.1205298833 • 10550 - 0.1863676648 • 10550t - 0.1381087143 • 10550i2 

- 0.5167655604 • 10549t4 - 0.1020066715 • 10550t3 + 0.5236942518 • 10546t5. 

Example 5.2. Let e = j ^ and C the curve of proper degree 6 defined by (see Fig. 5): 

3013 11 
/ ( X ' y ) = —*y"20 

3 1 3 ! 4 2 ! 3 3 4 1 2 2 1 7 3 2 "> 4 "> 5 
x+ y — —xy + ——x y H—-xry + ~x y + TTT-X y H—ñ*y + -TF¿X y 75 150 

1 
25 
1 ' 9 4 1 ? ^ 3 l fi l fi 

xy xy y H x -\ y • 
30 15 150 150 

100 
1 1 ^2„3 19 1 1 

x H x y H xy -\ x"y xy" 
150 150 50 150 50 

75 J 150 J 20 J 150 
67 2 53 4 9 4 47 o 

V A yf1 _L_ y ^ vJ 

100 300 25 100 
8 o 91 , 1 c 1 

x^y y y -\ . 
75 150 25 37350 
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Fig. 4. Left: Cluster decomposition of the singular locus. Right: Cluster decomposition of the singular locus with two e-ramiflcation points. 

We get the e-singular locus Singe(C) = Si U S2 U S3 where 

Si = {Qi = (-1.994232333,1.005043048), 

Q2 = (-2.000005299 + 0.005645280797Í, -1.000026945 - 0.0002822677587Í), 

Q3 = (-2.000014217 + 0.004619269427Í, 1.000004775 - 0.003559494332Í), 

Q4 = (-2.003547061, -1.006293429), Q5 = (-2.005740475, 0.9948974977), 

Q6 = (-1.996418580, -0.9936748962), 

Q 7 = (-2.000014217 - 0.004619269427Í, 1.000004775 + 0.003559494332Í), 

Q 8 = (-2.000005299 - 0.005645280797Í, -1.000026945 + 0.002822677587Í), 

Q 9 = (1.000036272 + 0.008596901071 i, 2.000017052 - 0.003059926359Í), 

Qio = (5.999999669, -2.999998564), 

Qn = (1.000036272 - 0.008596901071Í, 2.000017052 - 0.003059926359Í), 

Q12 = (0.9978910941,1.994329680), Q B = (1.002094534, 2.005650021)}, 

5 2 = {Qi4 = (-2.000000001,1.), Q15 = ( -2 . , -1.000000005), Ch6 = (1., 2.)}, 

53 = 0. 

The singular cluster decomposition is (see Fig. 4, Left): 

€luster2(Qio) = {Qio}, £/uster3(Qi4) = {Qi, Q3, Qs, Qj, Qui 

<tluster3(Qis) = {Q2, Q4, Qe, Qs, Qis}, and <tluster3(Q16) = {Q9, Q „ , Q12, Q13, Q16}. 

We observe that C is e-rational. In Step 4 we obtain three e-ramification points: Pi = (—1.330235522,0.9268173641), 
p2 = (-1.979908167, 0.02661222172), and P3 = (-2.700785807, -0.07757312293). We note that these points are not in 
the cluster of each other and they are not in the clusters of the e-singularities (see Fig. 4, Right). 

The algorithm outputs the parametrization V(t) •• 
curves): 

Pi(t) Mt) 
W) ' q(t) 

) where (see Fig. 5 to compare the input and the output 

P l ( t ) : -0.4665969363 • 10910t6 + 0.1734681470 • 10912t5 + 0.8664051685 • 10914t 

- 0.4159434177 • 10914t3 - 0.4505650348 • 10915 + 0.2152577377 • 10915t2 + 0.7566892493 • 10912t4, 

p2(t) = 0.2378210112 • 10914t3 + 0.2759395174 • 10914t + 0.2196326945 • 10912t5 + 0.4655361031 • 10914t2 

• 0.4970648521 • 10913t4 - 0.1850888359 • 10915 - 0.2330404339 • 10910t6, 

9(0 = -0.2692822852 • 10914t3 + 0.3583267610 • 10913t4 0.1530968486-10912t5 

+ 0.2330431163 • 10910t6 + 0.6095885650 • 10915 + 0.5717788848 • 10915t - 0.2358118980 • 10914t2. 
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Fig. 5. Left: Input (in dots) and output curve in Example 5.2. Right: A zoom at (—2, —1). 
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Example 5.3. Let us consider a surface with implicit equation 

F(x,y,z) 
1 171201 

x + 
1 17119999 

100 100 
4320001 , 

-y 

y + 432x2zy-216xy2z + 
100 10000 

7 999 999 0 1439999 856000001 
:y z- -xy + 

zz + 

x2z + 

1 1920001 
xz -\— yz 10000 

1 
x2 + 

10000 
144000001 

10000 1000000 10000 1000000 10000 1000000 
+ 864z4 - 192z3 + 1296z6 - 1728z5 - 1284*3 - 2576xzy + 144z3xy - 96z2xy - 3888z4x 

+ 3936z2x2 - 72zV - 72z3y2 + 2592z3y + 48z2y2 - 1296z2y + 864XZ3 - 216x3z 

2 
Z X 

12 000001 

1000000 
•x-y • 

59 999 999 

1000000 xy'- • Ax3y + 6x2y2 - 4xy3 + 
36000001 

1000000 
y'+x^ + y" 

We consider the planar sectioning problem. The intersection of the surface with planes z = 1/21, i = 1 , . . . , 10 generates a 
family of 10 curves of proper degree 4 that are not rational. However, our algorithm shows that 9 of them are e-rational. 
In what follows, we present details of the application of the approximate parametrization algorithm to one of the curves of 
this family. Namely the curve defined by the polynomial (see Fig. 6): 

f(x,y) 
395 959 799 

-x + 
36160201 

4000000 
228000001 , 

-xzy 

-y + 
862 000201 14379 999 2 806000201 

_YV J y2 — 1392X3 

20000 J ' 2000000 J 10000 y 2000000 
167 999 999 

-xy'- • Ax3y + 6x2y2 - 4xy3 + 
36000001 

y'+x^ + y-1 
17 269 799 

40000 1000000 1000000 1000000 

Let e = -jjjjj. Singe(C) = Si U S2 U S3 where 

5! = {Ch = (0.9433279517, -6.369071364)}, 

52 = {Q2 = (-0.6522149822 - 0.9122043803Í, -14.99598555 + 3.758226746Í)}, 

53 = {Q3 = (-0.6522149822 + 0.9122043803Í, -14.99598555 - 3.758226746Í)}. 

Moreover, the cluster decomposition of the singular locus is: 

C/uster2(Q1) = {Q1}, £/uster2(Q2) = {Q2}, Cluster 2{Q_3) = {Q_3}. 

We observe that C is e-rational. Following Step 4 in the algorithm we obtain the e-ramification point, namely Pi 
(420.8571421, -157.1835301). We note that this point is not in the clusters of the e-singularities. 

Finally, the algorithm outputs the parametrization V(t) = (~§r, ^¡§r) where (see Fig. 6): 

P\(t) = 0.3678784753 • 10346t4 + 0.1244267377 • 10350t2 + 0.1165894081 • 10352 

- 0.3494866166 • 10348t3 - 0.1967543000 • 10351t, 



Fig. 6. Input (in dots) and output curve in Example 5.3. 

p2(t) = 0.6170290181 • 10349t2 - 0.1699115220 • 10348t3 + 0.6038177598 • 10351 

+ 0.1755842639 • 10346t4 - 0.9964982725 • 10350t, 

q(t) = 0.7090236056 • 10346t4 + 0.2453189759 • 10352 + 0.2502344903 • 10350t2 

- 0.6878413782 • 10348t3 - 0.4045978049 • 10351t. 

6. Empirical analysis of the error 

We start describing briefly the theoretical setting. For that purpose, we will follow Aliprantis and Border (2006); in 
particular its Section 3.14. Let (X, d) be a metric space. For 0 ̂  B c X and o e X w e define 

d(a,B) = MbeB{d(a,b)}. 

Moreover, for A, B c X \ {0} we define 

Hd(A, B) = max{supfle/4{d(a, B)}, supb(=B{d(b, A)}}. 

By convection H¡¡(0, 0) = 0 and, for 0 ̂  A c X, H¡¡(A, 0) = oo. The function H¡¡ is called the Hausdorff distance induced by d. 
The Hausdorff distance defines a metric on the close subsets of X (see Lemma 3.57 in Aliprantis and Border, 2006). 

Now, we consider the metric spaces (R2,de) c (C2,du) where de and du are the usual Euclidean and unitary metrics, 
respectively. Since du|R2 =de, in the sequel we denote by d both distances and by H the Hausdorff distance associated to d. 
Moreover, for A c C2 we denote by AR the set j4nR2. Then, for A, B c C2 we consider H(AR, BR); one might also consider 
H(A,B), H(AR, B), H(A,BR). 

In this situation, let C and C be the input and output curves of our algorithm. In addition, let f(x, y) and f(x, y) 
be the defining polynomials of C and C, respectively, and let V(t) = (pi(t), p2(t)) e R(t)2 be the parametrization of C 
output by our algorithm. In general the Hausdorff distance can be infinity, but in our case we can ensure that it is fi­
nite. 

Lemma 6.1. H(CR, CR) < oo. 

Proof. By Theorem 4.5 and Corollary 4.6, CR,CR are either bounded or all their points at infinity define asymptotes that 
are parallel. If the first case, the lemma follows from Lemma 3.58 in Aliprantis and Border (2006). Otherwise, let C\,..., Cn 

be the real asymptotes of C and let C\,..., Cn be the real asymptotes of C, with C¡ \\ C¡. Let p > 0, then there exists a 
compact ball B, such that for every P e CR n (R2 \ B), d(P, CR) < p. Then, 

H(Cm, Cm) < max{H(CR n B, Cm n B), 2/0 + H{Ci,Z{), ...,2p + H(£„, £„)}, 

that is finite because of Lemma 3.58 by Aliprantis and Border (2006). D 



In order to study H(C , C ), we consider the normal line to C at the generic point V(t): 

¿ i ( M ) = M t ) + s , *'•- ,p2(t)+s- ^ l W 

p\(ty+p'2(ty Jp\(t)2 + p'2(t) 

as well as the normal line to C at the generic point (a, b) e CR: 

£2(0,b,s) = I a + s—-——,b +s 
N(a,b) N(a,b) 

where (n\{a, b),n2(a, b)) = V/(a, b) and N(a, b) = +^/ri\(a, b)2 + n2(a, b)2. Moreover, we introduce the polynomials 

X>i(t,s) = / ( £ i ( t , s ) ) € l ( t ) [ s ] , P2(fl,l),s) = /(£2(( i , l ) ,s))eC(C)[s] , 

where R(t) denotes the algebraic closure of R(t) and C(C) the field of rational functions over C. For every to e R, such that 
T>i(to,s) is well defined and has real roots, 

d(V(f0), CR) < pf (t0), where pf (t0) = min{ |s0 |/X>i (t0, s0) = 0 and s 0 e l | , 

and for every (do, bo) e CR, such that V2(ao, bo, s) is well defined and has real roots, 

d((a0,b0),C
R) < pf(a0,b0), wherepf(a0 ,b0) = mm{\s0\/V2{a0,b0,s0) = 0 a n d s 0 e R } . 

Thus, the supremum of pf(t), pf(a,b) provides an upper bound of the Hausdorff distance; at least for those subsets of 
both curves where the considered mínimums are well defined. Because of computational difficulties, in the examples below, 
instead of computing pf(t), pf(a, b), we will minimize the module of all roots (not only real) of V\{to,s) and V2(ao,bo,s). 
That is, for to e R and for (do, bo) e CR such that V\{to, s) and V2(ao, bo, s) are well defined, we will study 

,01 (to) :=min{|s0 |/£>i(to,so) = 0} and p2(a0,b0) :=mm{\s0\/V2(a0,b0,s0) = 0}, 

which are upper bounds of d(V(t0), C) and d((a0, b0), C) respectively, instead of d(V(t0), CR) and d((a0, b0), CR). For those 
subsets of both curves, where the corresponding polynomials are well defined, we consider 

/ l (CR ,CR ) :=max{supp e C R{d(P,C)},supQ e C K{d(a ,C)}}. 

Note that this means that every real point on each of the curves is at distance, at most A(CR, CR), of a complex point on 
the other curve. Unfortunately, although it gives an idea of the closeness between of the curves, A(CR, CR) < H(CR, CR). 
Nevertheless, in the examples below we will look for empirical evidences indicating that the computed bound of A(CR, CR) 
also bounds H(CR, CR); for that we test empirically that, in our computations, p\(to) = pf'(to), p2(flo, bo) = pf(flo, bo). 

In order to bound A(CR, CR), we first prove the following lemma. 

Lemma 6.2. Let p(z) = anz" + h ÜQ e C[z], with an ^ 0, and letz\,... ,zn be its roots. 

min \\Zi\\ < min 
l < i < n l ' 

1 

ao where a¡ ^ 0 and 1 < i < n 

Proof. The result is obvious if ao = 0. So, let ao 7̂  0, let m = mini^¡^n{|z¡|}, and let a¡ =í 0 with 1 < i < n. We prove that 
m < (")|^-|T. We express p(z) as p(z) = an(z" — o\zn~x + o2z

n~2 + • • • + (— l)"ern), where o\,...,on are the elementary 
symmetric functions of z\,..., zn. If i < n then 

\<?n\ \Z\---Zn\ \Z\---Zn\ 

\<Jn-i\ | Z i - - - Z n _ i + - - - + Z ¡ + i - - - Z n | | Z i - - - Z n _ i | + --- + | Z ¡ + i - - - Z n | 

1 

1 

+ • • + ^ r 
> 

i 

(n)X 

If i =n then \ao/an\ = \z\ • • -zn\ >m". D 

In the sequel, we denote the coefficients of V\ and V2 as (note that degs(X?i) = degs(I?2) = deg(C) = deg(C)) 

ViQ, s) = An(t)s
n + •••+ A0(t), V2(a, b, s) = Bn(a, b)sn + ••• + B0(a, b). 

Then, Lemma 6.2 implies the following corollaries: 

file:///Z/---Zn/


Corollary 6.3. Let t0 e R, and (a, b) e CK be such that V\ (t0, s) and V2(a0, b0, s) are well defined. Then, 

1. d(V(t0), C) < m i n { ( ? ) | ^ | T where ¿¡(to) + Oand 1 < i < n}. 

2. d((a0, bo), C) < m i n { ( ^ ) | | 2 ^ i | T where Bi(a0, b0) ¿ 0 and 1 < ¡ < „}. 

In addition, using the expression of the coefficients given by the Taylor expansion, the next corollary also holds. 

Corollary 6.4. Let t0 e R, and (a0, b0) e CR such that V\ (t0, s) and V2(a0, b0, s) are well defined. Then, 

1. if V(/)CP(to)) and (—p'2(to), Pj(to)) are not orthogonal, then 

d ( P ( t 0 ) , C ) < n 
f(T(t0)) 

V(/)(P(to))-(-^(to),pi(t0)) 

2. if V(/)(ao, bo) and V(/)(ao, bo) are not orthogonal, then 

f(ao,b0) 

-p'2(t0),p\(t0) 

d((a0,b0),C)^n V(/)(ao,i>o)| 
V( / ) (a 0 ,bo) -V( / ) (a 0 ,bo) 

In the next examples we apply these results. 

Example 6.5 (A compact curve example). We consider e = ^ and the compact real curve C 

27399 , 20000001 q 21 4 27399 3335608 , q 27399 , 935993 , 
/ (x, y) = y H y H y H xy xy + xy -\ x -\ x y 

27397 20000000 100 27397 399953 27397 399997 
74 ,, 19 999 999 o 71 o 1 4 1 1 

H x y ?r x^y -\—x -\ x -\ y. 
25 20000000 50 4 125 125 

The output curve C and its parametrization are 

](x, y)=xy3 + 0.01055547819x + 0.005727140309y + 1.001749792y2 + 0.9870028562y3 + 0.21 y4 

Tit)-

where 

+ 0.9912384503x2-0.9982833629x3 + 0.25x4 + 1.053103489xy-8.391588270xy2 

+ 2.341024^ 

Pi(0 Mt)' 
9(0 ' 9(0 

+ 2.341024446x2y + 2.96x2y2 - 1.42x3y + 0.00002796854235, 

pi(r) = 1.730167858 • 10293t + 4.334613757 • 10292t3 + 5.424023201 • 10291r4 

+ 8.641660646 • 10292 + 1.299004236 • 10293r2, 

p2(t) = -1.039366064 • 10292r2 - 4.319011339 • 10290t4 - 6.947686841 • 10291 

- 3.459888148 • 10291r3 - 1.387682118 • 10292r, 

q(t) = 1.125103592 • 10293r2 +3.749748302 • 10292t3 + 7.503078839 • 10292 

+ 4.686439171 • 10291r4 + 1.500376938 • 10293t. 

We first observe that the polynomial V\{to, s) is well defined for every to e R. In this situation, in order to bound p\{t) we 
maximize the function R\{t) =4 | -^!f | (see Corollary 6.3). R\{t) is continuous in R\{a ,i,o ,2}, where a¡ are real zeros of the 
denominator that are isolated in the intervals ¡1 = (-2.020041475, -2.014041475), ¡2 = (-1.998980609, -1.998920609). 
Then, 

max{Ki(r) 11 e R\ (/i U /2)} = 0.2511290220. 

In order to bound dCP(to),C), when to e h U/2, we consider i?2(t) = {7)J\-^w¡\ ( s e e Corollary 6.3). i?2(t) is continuous in 
the adherence of l\ U ¡2, and its maximum is 1.843001438. Therefore, we conclude that 

P i ( r )< 1.843001438. 



Now, we perform some empirical tests to show evidences that p\(t) = pf(t). First, let Di(s) = limt^±oo T>\(t, s). Then, 

min{|s0 | /Di(s0) = 0 and s 0 e l | = min{|s0 | /Di(s0) = 0} = 0.004018853976. 

Since the roots of a polynomial depend continuously on its coefficients, for every 5 > 0 there exists K > 0 such that for all 
|to| > K there is a root so of X>i(£o, s) with ||0.004018853976 — solb < $• It might happen that these roots are all complex. 
However, in our example, we see that 

0.004018853976 < ̂ ((-ÍO)*) = pf ((-10)¡) < 0.004023539023 

for i = 1 , . . . , 20; reaching the lower bound from i = 12. Next, for each real pole of R\(t) as well as for each real critical 
value of J? i (t), we consider a sequence of isolating intervals J¡ of length 1/10'+5, we take the middle point t¡, and we 
analyze p\(t¡), pf*(t¡)- For each of the two poles we get 

P l( t ¡ ) = pf(tj) < 0.07620545140 

for i = 1 , . . . , 20; reaching the equality from i = 11. For each of the eight critical values we get 

P l( t ¡ ) = pf(t¡) < 0.05039734676 

for i = 1 , . . . , 20; reaching the equality from i = 11. 
T>2{a,b,s) is well defined for all (a,b) e CR. In order to bound p2(a,b) one may maximize the function 4| B £¡11 

(see Corollary 6.3) under the constrain f(a, b) = 0, for instance using Lagrange multipliers. Here, we simply show 
evidences for p2(a,b) being small and for p2(a,b) = pf(a,b). First we observe that CR c [—9/512,8041/1024] x 
[-20057/1024,2117/1024]. Now, for i = 2 , . . . , 100 we consider the partition Á¡ := {a¡j : = a i + i(a2 -ai)}0<j<i of the 
open interval (ai.o^) = (—9/512,8041/1024). Next, for each i we compute the set Q¡ of intersections of CR with the 
line x = a¡j. We obtain mR := max{pf(a, b) \ (a,b) e Í2¡} and m¡ := max{p2Ía, b) \ (a,b) e Í2¡}, and we check whether 
mR = m¡. Finally, we compute m := max{m¡ | i = 2 , . . . , 100}. We get that rnf = m¡ for all i with the exception of i = 63 
and ¡ = 88 where mR = 0.06012962586 < 0.06012962587 = m63, mR = 0.04097517998 > 0.04097517997 = m88. Moreover, 
m = 0.06109662080. 

As a conclusion, in this example, the computed bound for the distance between the curves is 1.843001438. 

Example 6.6 (A non-compact curve example). We consider e = j ^ and the non-compact real curve C 

30771 , 3 571429 q 4 30771 20535699 , q 22919 , 409991 , 
/ (x, y) = y H y + y -\ xy xy + xy -\ x -\ x y 

30769 3571428 30769 1785713 30154 71427 
369 , , 108 569 , 78 , 19 4 1 1 

H x y x^ x y -\ x -\ x -\ y. 
100 142854 25 100 100 100 

The output curve C and its parametrization are 

](x, y) = 1.037665836y2 + 0.9541760347y3 + y4 + 0.755788991 Ax2 - 0.7606067226X3 + 0.19x4 +xy3 

+ 0.01080256798x+0.009723389264y + 1.033610692xy-11.58684298xy2 + 5.792835786x2y 

Tit)-

where 

+ 3.69x2y2 - 3.120000001?^ + 0.00004058975565, 

Pi(0 Mty 
9(0 ' 9(0 

P!(i) = 5.634074231 • 10345 + 8.492460682 • 10345r2 + 3.555839494 • 10344r4 

+ 2.837737358 • 10345t3 + 1.129568064 • 10346t, 

p2(t) = -6.907472833 • 10339r4 - 1.112114026 • 10341 - 5.534739853 • 10340r3 

- 2.220814182 • 10341t - 1.663027642 • 1 0 3 4 V , 

q(t) = 1.423745556 • 10341r4 + 1.138797024 • 10342t3 + 4.553560207 • 10342t 

+ 3.415784668 • 10342r2 + 2.276365040 • 10342. 

We first observe that the polynomial V\{to,s) is well defined for every to e R with the exception of the two real 
poles pup2 of P(t), that are isolated in the intervals (-1.997680664,-1.997619629), (-2.008911133,-2.008850098). 
In this situation, in order to bound p\(t) when t e R \ {/Si, fo}, we maximize the function R\(t) = 4\-^M\ (see Corol-



lary 6.3). R\(t) is continuous in R\{a ,i,o ,2}, where a¡ are real zeros of the denominator that are isolated in the intervals 
h = (-1.996163599, -1.996123599), I2 = (-2.034359611, -2.020359611). Then, 

max{Ki(t) 11 G R \ (/i U /2)} = 0.301275147. 

In order to bound d(V(to), C), when to e 1\ U I2, we consider R2(t) = ( ^ v ' s f t ) ' ( s e e Corollary 6.3). R2(t) is continuous in 
the adherence of l\ U ¡2, and its maximum is 1.987657564. Therefore, we conclude that 

V t G R \ { a i , a 2 } , p i ( t ) < 1.987657564. 

Now, we perform some empirical tests to show evidences that p\{t) = pf(t). First we analyze the behavior through the real 
asymptotes. The real asymptotes of C and C are, respectively: 

A :=x-15.11127611y-2.469501937, £2 :=x- 1.659899985y + 0.6395629633, 

Zi:=x-15.11127611y-2.483911806, £2 :=x- 1.659899985y + 0.6343579098. 

Moreover, 

H(£u ¿1) = 0.0009515027113, H(£2, £2) = 0.002685992105. 

Next, for each of the two real poles /Si, /)2 of V(t) we consider a sequence of isolating intervals Ji(fij) of length 1/105', we 
take the middle point t¡ «., and we analyze p\(t¡ a.), pf(ti,p,). We get, for i = 1 , . . . , 40 

P\(U,p,) = pf(U,p,) = 0.000951502783 > 0.0009515027113 = H(£x,£\), 

P\{U,p2) = pf(U,p2) = 0.00268599101 < 0.002685992105 = H{£2,£2). 

Now, let D\(s) = limt^±oo üi( t , s). Then, 

min{|s0 | /Di(s0) = 0 a n d s 0 e M ) = min{|s0 | /Di(s0) = 0} = 0.001918863706. 

Furthermore, in our example, we see that 

0.001918863706 < ^ ( ( - Í O ) ' ) = pf ((-10) ¡) < 0.001922644324 

for i = 1 , . . . , 20; reaching the lower bound from i = 8. Next, for each real pole of R\(t) as well as for each real critical value 
of J? 1 (t), we consider a sequence of isolating intervals J¡ of length 1/10'+5, we take the middle point t¡, and we analyze 
p\(ti), pf'(ti)- For each of the two poles we get 

P l (t¡) = pf(t¡) <: 0.05760637790 

for i = 1 , . . . , 20; reaching the equality from i = 11. For each of the eight critical values we get 

P l (t¡) = pf(t¡) <: 0.07103885930 

for i = 1 , . . . , 20; reaching the equality from i = 17. 
V2(a,b,s) is well defined for all (a, fa) e CR. In order to bound p2(a,b) one may maximize the function 4| B £¡11 

(see Corollary 6.3) under the constrain f(a,b) = 0 , for instance using Lagrange multipliers. Here, we simply show evi­
dences for p2(a,b) being small and for p2(a,b) = pf(a,b). For each natural number i we consider the two intersection 
points of CR and x = i, say (¡, b\), (i, b2). For each of these points we compute the corresponding pf(i,b¡). We repeat 
this process till \pf(i, b\) - 0.000951502783| < 10~6, \pf(i, b2) - 0.002685991011 < 10~6 (see above for the meaning of 
0.000951502783 and 0.00268599101). We perform this experiment also for x = -i, for y = ¡, and for y = -i. The result 
is [—3430,3431] for the x and [—2067,2068] for y. In this situation, we empirically consider that out of the compact 
B = [—3430,3431] x [—2067, 2068], the curves behave as the asymptotes, and we analyze the distance in B. For this pur­
pose, as in Example 6.5, for i = 7000,.. . , 7010 we consider the partition A\ := {a¡j := a\ + j(a2 — ai)}o<j<¡ of the open 
interval (ai, a2) = (—3430, 3431). Next, for each i we compute the set S2¡ of intersections of CR with the line x = a¡j. We 
obtain mR := max{pf(a, b) \ (a, b) e S2¡] and m¡ := max{p2(a, b) \ (a, b) e Í2¡}, and we check whether mR = m¡. Finally, we 
compute m := max{mj | i = 7000,... , 7010}. We get that mf = m¡ and m = 0.03416457806. 

As a conclusion, in this example, the computed bound for the distance between the curves is 1.987657564. 

As a final summary, let us mention that, in both examples, e = 0.01 and the computed bounds for the distance were 
1.843001438 and 1.987657564, respectively. These two final bounds were derived applying Corollary 6.3, although all the 
other partial bounds empirically computed were much smaller. 
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