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Abstract

In this paper we present algorithms for computing the topology of planar and space
rational curves defined by a parametrization. The algorithms given here work di-
rectly with the parametrization of the curve, and do not require to compute or use
the implicit equation of the curve (in the case of planar curves) or of any projection
(in the case of space curves). Moreover, these algorithms have been implemented in
Maple; the examples considered and the timings obtained show good performance
skills.

1 Introduction

The topology of planar algebraic curves, implicitly given, is a well-studied
problem (see (1), (10), (11), (12), (13), and the more recent works (8), (17),
among others); more recently, the problem for space algebraic curves has also
received certain attention (see (2), (7), (9)). In all these works it is assumed
that the curve is given by means of implicit equations, and the considered
algorithms deal with the curves in this form. However, in this paper we address
the problem, apparently not discussed up to now, of computing the topology of
a rational curve (i.e. constructing a planar or space graph describing the shape
of the curve) starting directly from its parametrization, without computing
or making use of the implicit equation of the curve. This question may be
of special interest in the field of computer-aided geometric design (CAGD),
where many of the curves used are rational and even directly provided in
parametric form (e.g. Bezier curves, B-splines, NURBS).
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Perhaps the reason for the absence of previous studies in this direction is the
common belief that if the parametric equations of a curve are available, the
curve is easy to visualize. This is essentially true, but if the goal is to get
a global idea of how the curve is like, then there are still some difficulties.
On the one hand, one should previously compute a parameter interval such
that the plotting of the curve over the interval shows the main features of
the curve; this includes handling the case of possible missing points/branches
(which happens if some point of the curve is generated when the parameter
of the curve tends to infinity, see for example (4)). On the other hand, the
plotting, as pointed out by Gonzalez-Vega and Necula in the introduction to
(12), may not always provide a clear idea of the topology of the curve, and
hence auxiliary tools for describing the shape of the curve may be of help.

In this paper we address both planar and space rational curves. As in other
topology algorithms, we require the input curves to satisfy certain conditions
that can be achieved with generality. In the planar case it is required that
the curve has neither vertical asymptotes nor vertical components, and that
the parametrization is proper (see Section 2). Initially, the algorithm works
in a similar way to existing algorithms, i.e. first one computes the critical
points and the points of the curve lying on the lines x = αi containing some
critical point, and then one appropriately connects these points. However, the
connection phase is carried out not in the usual way, but taking advantage of
the fact that a parametrization is available (see Theorem 8 in Section 3). More
precisely, the algorithm computes how the parameter values are connected;
so, two points are joined whenever the algorithm detects that the parameter
values giving rise to them need to be connected. In particular, and unlike many
classical algorithms, this strategy does not require the curves to be in generic
position (as defined in (12)).

The method is specially profitable in the case of space rational curves. Existing
implicit algorithms compute the topology of the curve by projecting it onto a
plane (the xy-plane, in our case), and then lifting to space the topology of this
projection. In (2), this lifting phase is carried out in general by using a second,
auxiliary projection; however, in (7), (9) no auxiliary projection is needed. In
any case, the lifting of the singularities of the projection is a delicate opera-
tion. In our case, we use a similar strategy for 3D curves. However, here the
lifting operation (which is performed without auxiliary projections) presents
no difficulties since the space points are identified by the parameter values
giving rise to them (previously computed when addressing the projection). In
the case of 3D curves, our requirements are: (i) the curve has no asymptotes
or components normal to the xy-plane; (ii) the projection onto the xy-plane
fulfills the requirements of the 2D algorithm.

We have implemented the algorithms in Maple 13; outputs and timings of
several examples are given in Section 5. In our implementation we give to the
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user the option of computing isolated points of the curve or not. The reason
for this is that isolated points correspond to points generated by complex,
non-real, values of the parameter, and therefore they may not be of interest
for certain users; moreover, the number of isolated points is certified by means
of Hermite’s method (see (6)) and therefore it may be time-consuming.

The structure of the paper is the following. In Section 2 we provide the neces-
sary background on rational curves; hence, notions like properness, normality,
critical and singular points are reviewed here, jointly with related results. In
Section 3 we provide the algorithm for the 2D case. In Section 4, the algo-
rithm for the 3D case is given. Finally, in Section 5 we describe some details
of the implementation, and we provide the outputs and timings of different
examples in 2D and 3D. The parametrizations used in the examples are given
in Appendix I and Appendix II.

2 Background on Rational Curves

In this section we briefly recall the background on affine rational curves that
we need in order to develop our results. So, in the sequel we will consider an
affine rational curve C defined by a rational parametrization

ϕ(t) = (x1(t), x2(t), . . . , xn(t)) =

(

p1(t)

q1(t)
,
p2(t)

q2(t)
, . . . ,

pn(t)

qn(t)

)

where gcd(p1, q1) = gcd(p2, q2) = · · · = gcd(pn, qn) = 1 and pi(t), qi(t) ∈ Z[t]
for all i = 1, . . . , n. In our case n = 2 or n = 3; so, we will usually write
x, y, z instead of x1, x2, x3. Moreover, since the parametrization is assumed to
be real, we have that C is a real curve (i.e. that it consists of infinitely many
real points), although for theoretical reasons when necessary we will see the
curve embedded in Cn. Nevertheless, our goal will always be the description
of the shape of its real part.

A point P0 ∈ Rn is reached by the parametrization ϕ(t) if there exists t0 ∈ C

such that ϕ(t0) = P0; in this case, we will also say that t0 generates P0. Notice
that the value of the parameter generating a real point may be either real or
complex, and that there may be points generated by several (real or complex)
values of the parameter. In this sense, we will say that the parametrization
ϕ(t) is proper if almost all points of C are reached by just one value of the
parameter t, i.e. if ϕ(t) is injective for almost all the points of C. So, if ϕ(t)
is proper then there are just finitely many points of C generated by several
different values of the parameter, corresponding to the self-intersections of
the curve. In order to check whether ϕ(t) is proper, we will use the following
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criterion. Let

G̃1(t, s) = p1(t)q1(s)− p1(s)q1(t)

G̃2(t, s) = p2(t)q2(s)− p2(s)q2(t)
...

G̃n(t, s) = pn(t)qn(s)− pn(s)qn(t)

G̃(t, s) = gcd(G̃1, G̃2, . . . , G̃n)

Then, the following theorem, directly deducible from Proposition 7 in (15)
(see also Theorem 4.30 in (19), for the planar case), holds.

Theorem 1 The parametrization ϕ(t) is proper iff G̃(t, s) = t− s.

On the other hand, we will say that ϕ(t) is normal if every point in C is reached
by at least one value of the parameter, i.e. if ϕ(C) = C. If ϕ(t) is not normal,
then (see Proposition 4.2 in (4)) there is just one point of C non-reached by
the parametrization, namely the point

P∞ = limt→±∞ϕ(t)

Notice that P∞ exists if and only if deg(pi) ≤ deg(qi) for all i ∈ {1, 2, . . . , n}.
Furthermore, if P∞ exists, it may still be reached by some (real or complex)
value of the parameter. If we denote P∞ = (a1, a2, . . . , an), P∞ is reached iff

deg (gcd(a1q1(t)− p1(t), a2q2(t)− p2(t), . . . , anqn(t)− pn(t))) ≥ 1

Also, observe that if P∞ exists then it is obtained as the limit of a sequence of
real points of C, and therefore it cannot be isolated. Hence, if P∞ is reached
by some value ta then it is a self-intersection of the curve, because it is a
crossing of two branches of the curve, one corresponding to t → ±∞ and
the other corresponding to ta. On the other hand, if P∞ exists but it is not
reached, one can reparametrize the curve so that it is reached (see Theorem
7.30 in (19)). However, reparametrizations may complicate the equations of
the curve, or bring other difficulties, like improperness or the introduction of
algebraic numbers. Hence, in our case whenever we meet this phenomenon,
we will understand that this reparametrization has not been performed.

If every point of C is reachable via ϕ(t) by real values of the parameter one
says that ϕ(t) is R-normal. We refer to (4), (19) for a thorough study of
this phenomenon. If ϕ(t) is not R-normal, then there exist real points P ∈ C
reachable only by complex values of the parameter. Moreover, the following
result (see Proposition 4.2 in (4)) clarifies the nature of these points.

Proposition 2 Let ϕ(t) be a proper parametrization of C. Then P 6= P∞,
P ∈ C ∩Rn is non-reached by any real value of the parameter if and only if it
is a real isolated point of C.
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2.1 Critical Points of Planar Rational Curves

In the rest of the section we assume that n = 2, i.e. that C ⊂ R2 is a real
rational curve parametrized by ϕ(t) = (x(t), y(t)). Let f ∈ R[x, y] be its
implicit equation; then we have the following classical definitions:

Definition 3 A point P ∈ C is called: (a) a critical point if f(P ) = ∂f
∂y
(P ) = 0;

(b) a singular point, if it is critical and ∂f
∂x
(P ) = 0; (c) a ramification point if it

is critical, but non-singular; (d) a regular point if it is not critical.

One may easily see that ramification points correspond to those points sat-
isfying that x′(t) = 0 but y′(t) 6= 0, and that singular points correspond to
either points where x′(t) = y′(t) = 0, or to self-intersections of the curve.
Singularities of a rational parametrization can be computed directly from the
parametrization, without converting to implicit form. More precisely, the fol-
lowing result holds (see Theorem 10 and Theorem 11 in (14)). Here, we denote
G1 = G̃1/G̃, G2 = G̃2/G̃, and we write M(t) = Ress(G1, G2).

Theorem 4 Let ϕ(t) be a parametrization of C, and let P0 ∈ C be an affine
singularity of C, reacheable by some value t0 ∈ C of the parameter. Then,
M(t0) = 0.

Remark 1 If P∞ is reached by some t0 ∈ C (in that case it is a self-intersection
of the curve, and therefore a singularity, as we observed before), then t0 must
be a root of M(t) (see Theorem 10 in (14)).

Whenever ϕ(t) is proper, one may deduce that M(t) is not identically 0;
therefore, in that situation M(t) has finitely many roots and from Theorem
4, the t-values generating reachable singularities are among these roots. Now
let us denote the numerator of x′(t) by N(t), and let us write the square-
free part of M(t) · N(t) as m̃(t); also, let q̃(t) = lcm(q1, q2), and let m(t) =
m̃(t)/ gcd(m̃(t), q̃(t)). Then, the following corollary on the real critical points
of C can be deduced.

Corollary 5 The real critical points of C are included in the (finite) set con-
sisting of: (i) P∞ (if it exists); (ii) the real points generated by (real or complex)
roots of m(t).
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3 Computation of the Graph Associated with a Planar Curve

Let C ⊂ R2 be a planar algebraic curve, parametrized by

ϕ(t) = (x(t), y(t)) =

(

p1(t)

q1(t)
,
p2(t)

q2(t)

)

, gcd(p1(t), q1(t)) = gcd(p2(t), q2(t)) = 1

In this section we address the problem of algorithmically computing a graph
G homeomorphic to the curve C. In order to do so, we will follow the usual
strategy widely used in the implicit case (see (8), (12), (13), (17)):

(1) Compute the critical points of C (see Definition 3 in Subsection 2.1). Let
a1 < · · · < am be the x-coordinates of the critical points of C; also, let
a0 = −∞, am+1 = +∞.

(2) Compute the points of C lying on the vertical lines x = ai, i = 1, . . . , m
passing through the critical points; we will refer to these lines as critical

lines.
(3) For i = 1, . . . , m − 1, compute the points of C lying on the vertical line

x = (ai + ai+1)/2; similarly for x = a1 − 1, x = am + 1. We will refer to
these lines as “non-critical” lines.

(4) Connect, by means of segments, the points of C lying on each non-critical
line, with the points in the critical lines immediately on its right and on its
left, respectively.

In our case, we will take advantage of the fact that a parametrization of the
curve is available; this will be specially useful in order to carry out step (4).
Moreover, in order to apply the method presented in this section, we need
that certain hypotheses are fulfilled by C. These hypotheses are introduced in
Subsection 3.1. Then, in Subsection 3.2 and Subsection 3.3 we show how to
compute the vertices and edges, respectively, of the planar graph. Finally, in
the last subsection we provide the full algorithm. The reader may find several
examples of the output of this algorithm in Section 5.

3.1 Hypotheses

In the rest of the section, we assume that the following hypotheses are fulfilled:

(i) ϕ(t) is proper.
(ii) C has no vertical asymptotes; in particular, it is not a vertical line.

The first hypothesis guarantees that C is traced just once when following the
parametrization ϕ(t). In order to check this hypothesis, Theorem 1 can be ap-
plied. Moreover, if this hypothesis does not hold, one can always reparametrize
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the curve (see Chapter 6.1 in (19)) so that it is fulfilled. In order to check the
second hypothesis, one can use the following result, which is easy to prove.

Lemma 6 C has a vertical asymptote iff one of the following conditions oc-
curs: (a) q2(t) has some real root which is not a real root of q1(t); (b) deg(p2) >
deg(q2) but deg(p1) ≤ deg(q1).

If C has some vertical asymptote, one proceeds in the following way:

• If C has no horizontal asymptotes (which can be checked by appropriately
adapting Lemma 6), then by interchanging the axes x and y the condition
is fulfilled. Notice that this is an affine transformation, which therefore does
not change the topology of the curve.

• If C has also horizontal asymptotes, then almost all changes of coordinates
of the type {x = X + µY, y = Y }, with µ ∈ Q, set the curve properly
(see Proposition 3.2 in (11)). Observe that if ϕ(t) is proper, the curve Cµ
obtained by applying such a transformation is properly parametrized by
ϕµ(t) = (x(t)− µy(t), y(t)).

3.2 Vertices of the Graph.

The notable points of C are the real critical points. Now from Corollary 5, we
have that these are among the following points:

(i) P∞ (if it exists).
(ii) The points of C generated (via ϕ(t)) by the real roots of the polynomial

m(t) in Corollary 5.
(iii) The real points of C generated (via ϕ(t)) by complex roots of m(t).

The computation of P∞ is described in Section 2. Moreover, once the real
roots of m(t) are computed, the points in (ii) are obtained by evaluating
x(t), y(t) at these roots. Now we consider as vertices of the graph G not only
these points, but also the points of C lying on the vertical lines containing the
points in (i) and (ii). In order to compute these points, we recall the definition
of the polynomials G̃1, G̃2, G̃, introduced in Section 2, and we consider the
polynomials

G1(t, s) =
G̃1(t, s)

G̃(t, s)
, G2(t, s) =

G̃2(t, s)

G̃(t, s)
.

Then, given a point Pr = (xr, yr) = ϕ(tr), tr ∈ R, the real roots of G1(t, tr)
provide the t-values of the points lying in the line x = xr; then, the coordi-
nates of those points can be obtained by evaluating x(t), y(t) at these t-values.
Observe that we get not only the coordinates, but also the t-values generating
the points, via ϕ(t). This is important for the connection phase.

7



So, let us consider the points in (iii). If a point in (iii) is also generated by a
real value of the parameter, then it will have already been computed as a point
in (ii). So, if this is not the case, by Proposition 2 it is an isolated point. Now
these points might be computed by seeking complex roots of m(t) giving rise
(when evaluating x(t), y(t)) to real points of C. However, in the sequel we will
provide an alternative way for carrying out this computation, that allows to
certify the existence or non-existence of this kind of points. For this purpose,
we denote a complex value of the parameter t = u + iv, where i2 = −1 and
u, v ∈ R, and we represent the complex modulus as | · |. Also, we write

p1(u+ iv) · q1(u+ iv)

|q1|2
=

1

|q1|2
· (a(u, v) + ib(u, v))

and
p2(u+ iv) · q2(u+ iv)

|q2|2
=

1

|q2|2
· (c(u, v) + id(u, v))

Then the following result, that can be easily verified, holds. Here, we denote
the result of substituting t = u+ iv in q̃(t) = lcm(q1, q2), as q̃(u, v).

Lemma 7 Let P0 ∈ C ∩ R2. Then, P0 is generated by a complex value of the
parameter t0 = u0 + iv0 if and only if there exists w0 ∈ R satisfying that
(u0, v0, w0) is a real solution of the system



























b(u, v) = 0

d(u, v) = 0

v · |q̃(u, v)|2 · w − 1 = 0

(1)

In order to certify the number of real solutions of System (1) we apply Her-
mite’s method (see for example (6)). However, these solutions include the
complex values of the parameter generating real points that are also reached
by real values of the parameter. In order to identify the existence of those so-
lutions, we compute, also by Hermite’s method, the number of real solutions
of the system obtained by adding the following equations to System (1):



































x(t) =
a(u, v)

|q1(u, v)|2

y(t) =
b(u, v)

|q2(u, v)|2

v · q̃(t) · w − 1 = 0

(2)

So, real isolated points of C correspond to solutions of System (1) which are
not solutions of System (2).
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3.3 Edges of the Graph.

In this section, we address the problem of connecting the vertices of G (to
compute the edges of the graph). For this purpose, the idea is to introduce
between two consecutive critical lines an intermediate “non-critical” line, and
to connect the points of C on each “non-critical” line with the points of C on
the critical line immediately on its right or on its left. In order to do this, we
take advantage of the fact that a parametrization of the curve is available,
and we connect the points just by comparing the parameters generating the
points in the two vertical lines (one of them critical, and the other one “non-
critical”). The idea is made precise in the following theorem. Here, we will
consider P∞ as “generated” by both +∞ and −∞, besides other real values
that may also generate it; as usual, −∞ (resp. +∞) is considered less (resp.
greater) than any other real number compared with it, and −∞ < +∞. This
result is illustrated by Figure 1.

Theorem 8 Let xa, xb ∈ R satisfying that: (i) xa < xb (resp. xa > xb); (ii)
there is no critical line x = xc such that xa ≤ xc < xb (resp. xa ≥ xc > xb).
Also, let Pa be a real point of C lying on the line x = xa, generated by ta ∈ R,
and let Vb = {tb,1, . . . , tb,nb

, } (including −∞,+∞, if P∞ belongs to the line
x = xb) be the set of real values generating the real points of C ∩ {x = xb}.
The following statements are true:

(1) If x′(ta) > 0, then Pa must be connected with the point Pb of C ∩ {x = xb}
generated by the least (resp. greatest) element of Vb which is greater (resp.
less) than ta.

(2) If x′(ta) < 0, then Pa must be connected with the point Pb of C ∩ {x = xb}
generated by the greatest (resp. least) element of Vb which is less (resp.
greater) than ta.

Proof. We prove (1) for the case when xa < xb; the proofs of (1) for the case
xa > xb, and of (2) in both cases, are analogous. Now let tc ∈ Vb be the least
element of Vb which is greater than ta. Since by hypothesis C has no vertical
asymptotes, then Pa must be connected either with exactly one real point of
C ∩{x = xb} generated by a real value of the parameter, or with P∞. Now, we
distinguish two different cases, depending on whether P∞ belongs to the line
x = xb, or not. We begin with the case when P∞ does not belong to x = xb. So,
Pa is connected with a point of C ∩ {x = xb} generated by some t̃ ∈ Vb. First
of all, observe that t̃ > ta. Indeed, by hypothesis C has no vertical asymptotes.
Then, x(t) is defined for every t between ta and t̃, and since x(t) is a quotient
of polynomials, x′(t) is also differentiable there. Moreover, x′(t) cannot vanish
between ta and t̃ because by hypothesis there does not exist any critical line
between x = xa and x = xb. Hence, the sign of x′(t) is constant in the interval
lying between ta and t̃, and since x′(ta) > 0, then x′(t) > 0 in that interval;
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therefore, x(t) is increasing there. So, since xa = x(ta) < x(t̃) we deduce that
ta < t̃.

Now our aim is to prove that t̃ = tc. For this purpose, observe that t̃ ≥ tc
because tc is the least element of Vb greater than ta; hence, we just have to
prove that t̃ > tc cannot occur. Assume by contradiction that t̃ > tc. Since
x(tc) = xb = x(t̃) and x(t) is differentiable along [ta, t̃), by Rolle’s Theorem
x′(t) must vanish at some point of (tc, t̃). However, this is absurd because x′(t)
is strictly positive in [ta, t̃), which contains (tc, t̃).

Finally, let us consider the case when P∞ belongs to the line x = xb. If there
exists t̂ ∈ Vb, t̂ 6= +∞, with t̂ > ta, then P must be connected with P̂ = ϕ(t̂),
since otherwise by adapting the above argument one reaches a contradiction.
On the other hand, if ta is greater than every real element of Vb, then Pa

cannot be connected with any other point of C ∩ {x = xb} but P∞; however,
since we consider P∞ generated by +∞, and ta < ∞, the rule also holds in
this case.

Pa = ϕ(ta)

Non-critical line Critical Line
Y

X

x′(ta) > 0

x = xa x = xb

P̃ = ϕ(tc)

Fig. 1. Connecting Points

3.4 Full Algorithm

The following algorithm Planar-Top can be derived from the preceding sub-
sections.

Planar-Top Algorithm:

10



Input: a planar curve C, parametrized by

ϕ(t) = (x(t), y(t)) =

(

p1(t)

q2(t)
,
p2(t)

q2(t)

)

,

fulfilling: (i) pi(t), qi(t) ∈ Z[t] for i = 1, 2, gcd(pi, qi) = 1 for i = 1, 2; (ii) ϕ(t)
is proper; (iii) C has no vertical asymptotes.

Output: a planar graph G homeomorphic to the curve.

(1) (Critical Points) Compute the polynomial m(t) in Corollary 5, and the real
roots of m(t). Then, compute:

(1.1) The critical points of C (by evaluating x(t), y(t) at the real roots of m(t)).
Store these points in a list

Lcrit = [P1, . . . , Pr],

For each of these points, store its coordinates, and the list of real t-values
generating them.

(1.2) The point P∞ = (x∞, y∞) (if it exists), and the list of t-values generating
it.

(2) (Points of C on Critical Lines)
(2.1) For ℓ from 1 to r, compute the real points of C lying on the line x = xℓ.

Store these points in a list

Lℓ = [Pℓ,1, . . . , Pℓ,jℓ]

For each of these points, store its coordinates, and the list of real t-values
generating them.

(2.2) Check whether P∞ belongs to some of the above lines x = xℓ. In the
affirmative case, go to (3); otherwise, compute the real points of C lying
on x = x∞. Store these points in a list

L∞ = [P∞,1, . . . , P∞,m]

For each of these points, store its coordinates, and the list of real t-values
generating them.

(3) (Points of C on Non-Critical lines)
(3.1) Let N = {a1 . . . , as}, a1 < . . . < as, be the set consisting of the x-

coordinates of the critical points computed in (1.1) and (1.2). Also, let
ā0 = a1 − 1, ās = as + 1, and for i from 1 to s− 1 let āi = (ai + ai+1)/2.

(3.2) For j from 0 to s, compute the real points of C lying on the line x = āj ;
store these points in a list

Nj = [P̄j,1, . . . , P̄j,αj
]

For each of these points, store its coordinates, and the list of real t-values
generating them.
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(4) (Edges)
(4.1) For i from 0 to s−1, connect the points of C lying on x = āi and x = ai+1

by applying Theorem 8.
(4.2) For i from 1 to s, connect the points of C lying on x = āi and x = ai by

applying Theorem 8.
(5) (Isolated vertices) Compute the real isolated points of the curve, and add

them to the graph.

We will provide several examples of the output of the algorithm in Section 5.

4 Computation of the Graph Associated with a Space Curve

In this section we let C ⊂ R3 be a real curve, parametrized by

ϕ(t) = (x(t), y(t), z(t)) =

(

p1(t)

q1(t)
,
p2(t)

q2(t)
,
p3(t)

q3(t)

)

where gcd(p1, q1) = gcd(p2, q2) = gcd(p3, q3) = 1. In the sequel, we consider
the problem of algorithmically computing a graph G homeomorphic to C. In
order to do that, we will follow the strategy used to address the implicit case
in (2), (7), (9); more precisely, we need to perform the following steps:

(1) Project the curve onto a coordinate plane (the xy-plane, in our case)
(2) Compute the graph G associated with the projection (by using the algorithm

given in Section 3)
(3) Lift the graph G of the projection, to get G.

As in (7) and (9), here we will require just one projection in order to perform
the lifting phase. Now in the following subsections we first describe the hy-
potheses that we request on the input curve (essentially, that it is properly
parametrized, and that it is “correctly placed” in space); then, we present the
ideas and results needed for computing the vertices and edges of the graph,
and finally we provide the full algorithm.

4.1 Hypotheses

Since C is rational, if it is not a line parallel to the z-axis, then its projection
onto the xy plane, denoted as πxy(C), is an algebraic rational curve and can
be parametrized by

ψ(t) = (x(t), y(t)) =

(

p1(t)

q1(t)
,
p2(t)

q2(t)

)

12



Thus, in the sequel we assume that the following hypotheses hold:

(i) C has no asymptotes parallel to the z-axis (in particular, it is not normal
to the xy-plane).

(ii) ψ(t) is a proper parametrization of πxy(C).
(iii) πxy(C) has no asymptotes parallel to the y-axis.

In particular, hypotheses (ii) and (iii) imply that the graph of πxy(C) can be
computed by using the Planar-Top Algorithm. Now if the parametrization
ϕ(t) of C is not proper, then ψ(t) cannot be a proper parametrization of
πxy(C) either; then, in particular (ii) implies that C is properly parametrized.
However, the converse does not necessarily hold, i.e. it can happen that ϕ(t)
is proper, but ψ(t) is not. From Section 3, we know how to check hypotheses
(ii) and (iii). In order to check hypothesis (i), the next lemma, analogous to
Lemma 6, can be applied.

Lemma 9 C has an asymptote parallel to the z-axis iff one of the following
conditions happen: (a) q3(t) has some real root, which is not a real root of
q1(t) · q2(t); (b) deg(p3)) > deg(q3) but deg(p2) ≤ deg(q2), deg(p1) ≤ deg(q1).

Moreover, hypothesis (i) implies the following relationship between the points
Q∞ = limt→±∞ ψ(t), P∞ = limt→±∞ ϕ(t). Recall from Section 2 that they are
the only points of πxy(C) and C, respectively, that may not be reached by any
complex value of the parameter.

Lemma 10 Assume that hypothesis (i) holds. Then, P∞ exists iff Q∞ exists,
and πxy(P∞) = Q∞.

Proof. If P∞ exists, then it is clear that Q∞ exists and is the projection of
P∞. Conversely, if Q∞ = (x∞, y∞) ∈ R2 then P∞ exists because C has no
asymptotes.

On the other hand, hypothesis (ii) leads to the following result. Here, the
notion of birationality arises; essentially, the projection of C is said to be bi-
rational if there are not two different branches of C whose projections overlap
(see Chapter 5 in (5) for further information on birationality).

Theorem 11 Assume that C is not a line parallel to the z-axis. Then, if ψ(t)
is proper, the projection of C onto the xy-plane is birational. Conversely, if
ϕ(t) is proper and the projection of C onto the xy-plane is birational, then
ψ(t) is proper.

Proof. Let us see (⇒). For this purpose, let Q ∈ πxy(C), Q 6= Q∞, satisfying
that there are at least two different points P, P̃ ∈ C projecting onto Q. Since
Q 6= Q∞, by Lemma 10 none of these points is P∞, and hence both are
reached by ϕ(t). Let tp 6= t̃p be the t-values generating P, P̃ , respectively. Then,
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ψ(tp) = ψ(t̃p), and thusQ is generated by two different values of the parameter.
But since ψ(t) is proper, this can only happen for finitely many points, and
thus the projection is birational. Conversely, given any Q ∈ πxy(C), Q 6= Q∞,
not generated by any root of q3(t) (notice that we are excluding finitely many
points), the t-values reaching Q are exactly those ones generating the points
of C that are projected onto Q. Since ϕ(t) is proper, almost all points of C
are generated by just one value of the parameter. And since the projection is
birational, we conclude that almost all points of πxy(C) come from just one
point of C, and therefore almost all points of πxy(C) are generated by just one
value of the parameter. So, (⇐) holds.

It is well-known that almost all affine transformations of the type {X = x +
az, y = y+bz, z} transform C so that its xy-projection is birational. So, if ϕ(t)
is proper, almost all of these transformations set C proper. Moreover, if ϕ(t) is
not proper there exist reparametrization algorithms (see (3), (16)). Therefore,
in the sequel we will assume that the above hypotheses hold.

4.2 Definition of the Space Graph.

By assuming the hypotheses of the preceding subsection hold, we can compute
the graph G associated with πxy(C) with the Planar-Top Algorithm described
in Section 3. Hence, in the following we will assume that this process has
already been carried out.

Now we make precise the definition of the graph G that we want to compute.

Definition 12 Let C be a space curve in the above conditions. Then, the graph
associated with C, G, is the following graph:

(i) Its vertices are the real points of C giving rise (by projection) to the vertices
of G.

(ii) Its edges are the result of “lifting” to space the edges of G, i.e. of computing,
for each edge ℓ of G, an space segment ℓ′ corresponding to the branch of C
giving rise (by projection) to ℓ.

Hence, we have to lift to space the vertices and edges of G in order to compute
G. Let us see that this lifting operation is well-defined.

Theorem 13 Every vertex of G, except perhaps the isolated vertices, lifts to
at least one real space point of C.

Proof. Every point of Q ∈ πxy(C)∩R2 fulfills one of the following conditions:
(1) Q = Q∞; (2) there exists t0 ∈ R satisfying that Q = ψ(t0); (3) Q does not
fulfill (2), but there exists t0 ∈ C such that Q = ψ(t0). In the first case,Q is
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lifted to P∞ by Lemma 10. If Q belongs to the second group, then it is lifted
to P = ϕ(t0) because C has no asymptotes parallel to the z-axis. Finally, if Q
belongs to the third group then it is an isolated point of πxy(C); in this case,
Q comes from a real point of C iff z(t0) ∈ R.

Remark 2 Real isolated points of πxy(C) may come from real isolated points
of C, or from points of C whose z-coordinate is complex. In any case, thanks
to hypothesis (i) they do not come from branches of C normal to the xy-plane.

Now let us consider the lifting of the edges of the planar graph. The next result
guarantees that, under the considered hypotheses, this lifting process can be
always carried out. In particular, it implies that there are no real branches of
πxy(C) coming from complex components of C (which is a phenomenon that in
general can happen when working with space algebraic curves; see for example
p. 734 in (2)).

Theorem 14 Under the considered hypothesis, for every edge ℓ of G there
exists one and just one branch of C giving rise to ℓ.

Proof. Let ℓ be an edge of G. By construction of the graph provided in Section
3, , if Q∞ exists, it is always included as a vertex of G. So there exists a real
open interval I ⊂ R such that ψ(I) generates the real branch of πxy(C), that
we denote by L, corresponding to ℓ. On the other hand, for every t ∈ I we
have that z(t) must be defined, because otherwise C has an asymptote parallel
to the z-axis. Then, ϕ(t) is defined for every t ∈ I, and gives rise to a real
connected branch of C projecting as L. Furthermore, since ϕ(t) is proper by
hypothesis, the projection onto the xy-plane is birational by Theorem 11.
Hence, there are just finitely many points of C giving rise, by projection, to
the same point of πxy(C); but none of these points can give rise to a point of
L, because such a point would create a singularity of πxy(C) which would split
ℓ into two different edges, and ℓ is already an edge of G. Then, we conclude
that L lifts to a unique connected real branch of C.

4.3 Computation of the Vertices

From Definition 12, this process is the lifting of the vertices of G. From the
construction of the planar graph, one may see that for each vertex Qi =
(xi, yi) of G the algorithm stores the real values ti,1, . . . , ti,r of the parameter
generating it. For a fixed i, z(ti,j) is well-defined for j ∈ {1, . . . , r}, since
otherwise C has an asymptote parallel to the z-axis. Hence, Qi is lifted to the
space points

Pi,1 = ϕ(ti,1), . . . , Pi,r = ϕ(ti,r)

Furthermore, if Q∞ exists, then it is lifted to P∞ and to the space points
reached by the real values of the parameter generating Q∞, if any. Proceeding
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this way, the only remaining space vertices are the real isolated ones (which,
by Proposition 2, are generated by complex values of the parameter). So, in
the rest of the subsection we consider this kind of points.

From Theorem 13, the real isolated vertices of πxy(C) do not necessarily come
from real isolated points of C (since they may be the projection of complex
space points). Conversely, a real isolated point of C does not necessarily project
as an isolated point of πxy(C), because its projection may coincide with the
projection of some other real point of C which is not isolated. However, the
next result ensures that isolated points of C always project as vertices of G;
therefore, these points are computed when lifting the planar vertices.

Lemma 15 Let P ∈ C be a real isolated point. Then, πxy(P ) is a vertex of G.

Proof. If πxy(P ) is an isolated point of πxy(C), then the statement is true.
Otherwise, there exists a point P ′ 6= P in a real branch of C such that
πxy(P ) = πxy(P

′). Observe that P cannot be P∞ because it is isolated. There-
fore, suppose that it is reached via ϕ(t) by tp ∈ C. Now we distinguish the
cases P ′ 6= P∞ or P ′ = P∞, respectively. If P ′ 6= P∞, then P ′ = ϕ(tp′) with
tp′ ∈ R. Thus, πxy(P ) is generated via ϕ(t) by two different values of the pa-
rameter, namely tp, tp′, and since ϕ(t) is proper, πxy(P ) is a self-intersection of
πxy(C). Hence, it is a singularity of πxy(C), and the statement follows. Finally,
if P ′ = P∞ then πxy(P

′) = Q∞ and therefore it is also a vertex of G.

Then, we might recover isolated singularities of C by determining the complex
values of the parameter that generate (by projection) vertices of G, and by
computing those real points of C which are generated by those values. Nev-
ertheless, in the sequel we consider an alternative method, analogous to that
in Subsection 3.2. For this purpose, the following lemma is needed. Here, we
denote a complex value of the parameter t as t = u + iv, where i2 = −1 and
u, v ∈ R. Also, we write

p1(u+ iv) · q1(u+ iv)

|q1|2
=

1

|q1|2
· (a(u, v) + ib(u, v))

p2(u+ iv) · q2(u+ iv)

|q2|2
=

1

|q2|2
· (c(u, v) + id(u, v)) ,

and
p3(u+ iv) · q3(u+ iv)

|q3|2
=

1

|q3|2
· (e(u, v) + ih(u, v))

Then the following result, analogous to Lemma 7, holds. Here, q̃(u, v) denotes
the result of substituting t = u + iv in lcm(q1, q2, q3). As in Lemma 7, by
applying the following result one computes a finite set of complex points which
contains the complex points generating the isolated singularities of the space
curve.
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Lemma 16 Let P ∈ C ∩ R3. Then, P is generated by a complex value of
the parameter t0 = u0 + iv0 if and only if there exists w0 ∈ R satisfying that
(u0, v0, w0) is a real solution of the system







































b(u, v) = 0

d(u, v) = 0

h(u, v) = 0

v · |q̃(u, v)|2 · w − 1 = 0

(3)

As in the planar case, one can certify the number of real solutions of the system
by Hermite’s method; also, one can construct another system whose solutions
correspond to complex values of the parameter generating points that are also
reached by real values of the parameter, and proceed as in the 2D case.

4.4 Computation of the Edges

The method consists of the lifting of the edges of G. So, let ℓ be an edge of G;
by Theorem 14, ℓ is lifted to an space edge ℓ′ ∈ G. In order to compute ℓ′, the
crucial observation is that the computation of the edges of G is in fact done
by connecting not points, but values of the parameter t. Hence, each edge ℓ
can be identified with a pair

[ta, t̃]

where ta, t̃ belong to R ∪ {−∞,+∞}, and where the vertices of G defining ℓ
are Qa = ψ(ta), Q̃ = ψ(t̃) (see also Figure 1); here, Q∞ = ψ(±∞). Hence, ℓ is
lifted to the space segment connecting the points Pa = ϕ(ta), P̃ = ϕ(t̃); also,
P∞ = ϕ(±∞). Notice that this idea works perfectly when Q̃ is the projection
of several real points of C.

4.5 Full Algorithm

The following algorithm Space-Top can be derived from the preceding sub-
sections.

Space-Top Algorithm:

Input: a space curve C, parametrized by

ϕ(t) = (x(t), y(t), z(t)) =

(

p1(t)

q2(t)
,
p2(t)

q2(t)
,
p3(t)

q3(t)

)

,
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fulfilling: (i) pi(t), qi(t) ∈ Z[t] for i = 1, 2, 3, gcd(pi, qi) = 1 for i = 1, 2, 3; (ii) C

has no asymptotes parallel to the z-axis; (iii) ψ(t) =

(

p1(t)

q2(t)
,
p2(t)

q2(t)

)

is proper;

(iv) πxy(C) has no asymptotes parallel to the y-axis.

Output: a space graph G homeomorphic to C.

(1) (Projection) Compute the graph G associated with the projection πxy(C) of
C onto the xy-plane, parametrized by ψ(t), by applying Planar-Top.

(2) (Lifting phase)
(2.1) (Vertices) For each vertex of G: if P is generated by t1, . . . , tp where

t1, . . . , tp ∈ R ∪ {−∞,+∞}, then P lifts to the points ϕ(t1), . . . , ϕ(tp);
Q∞, if it exists, lifts to P∞, and we write P∞ = ϕ(±∞).

(2.2) (Edges) For each edge of G: if ℓ is identified (according to Subsection 4.4)
with [ta, tb], where ta, tb ∈ R ∪ {−∞,+∞}, then it is lifted to the space
edge obtained by connecting ϕ(ta), ϕ(tb) by means of a segment.

(3) (Isolated vertices) Add to G the real isolated singularities of C.

Several examples of the output of this algorithm are presented in the next
section.

5 Experimentation and Examples

The algorithm has been implemented in Maple 13, and the examples run
on an Intel Core 2 Duo processor with speeds revving up to 1.83 GHz. The
implementation allows the option of computing isolated points, or not. The
reason for introducing this option is that the number of isolated points is
certified by means of Hermite’s method, and this method may be costly.

On the other hand, the user can decide the number of digits used in the
computation. Suppose we denote such a number by n. Then, when running
the algorithm, the computing starts using n digits. However, if the algorithm
detects that the number of points in a vertical line is not the right number, the
precision is automatically increased by 5 more digits and the whole process
starts again. In our experimentations, we usually set n = 10, the default value
of Digits variable in Maple, and in the implementation, the number of digits
is limited to a maximum of 500, although we have never needed more than 70
digits.

Next, we first present examples of the 2D algorithm. In Table 1, we include,
for each curve, the degree of the parametrization (i.e. the maximum exponent
of the parameter in the numerators and denominators of the components of
the parametrization, dp), the total degree of the implicit equation (di), the
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number of terms of the implicit equation (n.terms), the timings in seconds
corresponding to the graph without computing isolated points (t0) or com-
puting them (t1), and the number of digits used in the computations. The
parametrizations corresponding to these examples are given in Appendix I.

Example dp di n.terms t0 t1 Digits

1 3 6 16 0.359 1.672 10

2 8 8 25 0.891 1.078 10

3 8 8 9 10.250 71.172 40

4 4 4 7 0.109 0.110 10

5 6 6 28 0.203 11.859 10

6 8 8 21 0.171 2.50 10

7 23 23 335 49.797 > 1 h. 10

8 6 12 49 13.625 > 1 h. 10

9 17 17 171 1.656 > 1 h. 10

Table 1: 2D Examples.

One may notice that as the degree increases (see Example 7 or Example 9) the
computation of the isolated points turns very costly. An alternative for those
cases could be to detect isolated points directly by checking the existence of
complex values of the parameter corresponding to real singular points; users
interested in certifying rigourously the number of isolated singularities, can
choose to apply Hermite’s method later.

The pictures corresponding to the examples in Table 1 can be found in Figure
2; from left to right we have Examples 1, 2, 3 in the first row, 4, 5, 6 in the
second row and 7, 8, 9 in the third one. Examples 2 and 6 are the offsets
of the cardioid and of the cubical cusp, respectively; furthermore, Example 4
corresponds to the epitrochoid. Notice that the curves in Examples 2, 3 and
4 are not in generic position.

Finally, we present examples of the 3D algorithm. In Table 2, for each curve we
include: the degree of the parametrization (dp), the total degree of the implicit
equation of the projection onto the xy-plane (di), the number of terms of this
projection (n.terms), the timing without computing isolated points (t0), the
timing including the computation of isolated points (t1), and the number of
digits used. As in the 2D-case, in all cases the computations start with 10
digits, and the algorithm increases the number of digits when it is necessary.
The parametrizations corresponding to these examples are given in Appendix
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Fig. 2. Examples of the 2D algorithm.

II.
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Example dp di n.terms t0 t1 Digits

1 8 8 38 5.578 6.188 30

2 10 10 65 3.516 3.297 10

3 21 21 234 4.453 4.515 10

4 4 7 8 0.657 0.625 10

5 6 6 28 0.437 0.266 10

6 8 4 5 0.141 0.109 10

7 4 4 15 0.125 0.500 10

8 12 12 91 1.015 0.875 10

9 16 16 142 74.00 74.094 65

Table 2: 3D Examples.

The pictures corresponding to these curves can be found in Figure 3. The
diamond in each picture points out the origin of the system of coordinates;
moreover, in Example 7 we have not plotted the axes for the isolated point to
be better appreciated.
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Fig. 3. Examples of the 3D algorithm.

References

[1] Arnon D., MacCallum S. (1988). A polynomial time algorithm for the
topology type of a real algebraic curve, Journal of Symbolic Computation,
vol. 5 pp 213-236.

[2] Alcazar J.G., Sendra R. (2005) Computation of the Topology of Real Al-
gebraic Space Curves, Journal of Symbolic Computation 39, pp. 719-744.

[3] Andradas C., Recio T., Sendra J.R. (1997) A relatively optimal
reparametrization algorithm through canonical divisors, Proceedings
ISAAC 97, ACM press, pp. 349-355.

[4] Andradas C., Recio T. (2007) Missing points and branches of real para-

22



metric curves, Applicable Algebra in Engineering and Computing 18 (1-
2), pp. 107-126

[5] Cox D., Little J., O’Shea D. (1992). Ideals, Varieties and Algorithms.
Springer.

[6] Cox D., Little J., O’Shea D. (2005). Using Algebraic Geometry. Second
Edition. Springer.

[7] Diatta D.N., Mourrain B. and Ruatta O. (2008) On the Computation
of the Topology of a Non-Reduced Implicit Space Curve. In Proceedings
ISSAC 2008, ed. David Jeffrey, pp. 47-55.

[8] Eigenwilling A., Kerber M., Wolpert N. (2007) Fast and Exact Geometric
Analysis of Real Algebraic Plane Curves, in C.W. Brown, editor, Proc.
Int. Symp. Symbolic and Algebraic Computation, pp. 151-158, Waterloo,
Canada. ACM.

[9] El Kahoui M. (2008) Topology of Real Algebraic Space Curves. Journal of
Symbolic Computation vol. 43, pp. 235-258.

[10] Gianni P., Traverso C. (1983). Shape determination of real curves and
surfaces, Ann. Univ. Ferrera Sez VII Sec. Math. XXIX pp 87-109.

[11] Gonzalez-Vega L., El Kahoui M. (1996). An improved upper complexity
bound for the topology computation of a real algebraic plane curve, J.
Complexity 12 pp 527-544.

[12] Gonzalez-Vega L., Necula I. (2002). Efficient topology determination of
implicitly defined algebraic plane curves, Computer Aided Geometric De-
sign, vol. 19 pp. 719-743.

[13] Hong H. (1996). An effective method for analyzing the topology of plane
real algebraic curves, Math. Comput. Simulation 42 pp. 571-582
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Appendix I: Parametrizations of the planar curves used in the ex-

perimentation

Example 1:

ϕ(t) =

(

44 + 37t3 − 23t2 + 87t

10 + 29t3 + 98t2 − 23t
,

95− 61t3 − 8t2 − 29t

40 + 11t3 − 49t2 − 47t

)

Example 2:

ϕ(t) =

(

3456t5 − 31104t3 + 6t8 − 756t6 + 61236t2 − 39366

486t4 + 36t6 + 2916t2 + t8 + 6561
,

−18t(864t3 − 16t5 − 1296t+ 6t6 − 126t4 − 1134t2 + 4374)

486t4 + 36t6 + 2916t2 + t8 + 6561

)

Example 3:

ϕ(t) = (t8 − 8t6 + 20t4 − 16t2 + 2, t7 − 7t5 + 14t3 − 7t)

Example 4:

ϕ(t) =

(

−7t4 + 288t2 + 256

t4 + 32t2 + 256
,
−80t3 + 256t

t4 + 32t2 + 256

)

Example 5:

ϕ(t) =

(

3t2 + 3t+ 1

−3t− 1 + t6 − 2t4
,

t2(t4 − 2t+ 2)

−3t− 1 + t6 − 2t4

)

Example 6:

ϕ(t) =

(

(t2 − 1)(t4 − 1 + 9t2)

9t2(t2 + 1)
,
−(t8 − 2t6 + 2t2 − 1− 54t4)

27(t2 + 1)t3

)

Example 7:

ϕ(t) = (−83t23 + 98t20 − 48t18 − 19t13 + 62t11 + 37t8,−13− 64t27 + 64t25 − 90t22 − 60t12 − 34t2)

Example 8:

ϕ(t) =

(

9 + 85t6 + 80t5 + 90t3 + 74t2 + 27t

5− 91t6 + 81t5 + 65t4 − 12t2 + 78t
,

−56− 5t6 + 36t5 − 8t4 + 30t3 − 3t

−79− 70t5 + 42t4 + 9t3 − 21t2 − 27t

)

Example 9:

ϕ(t) = (t17 + 80− 20t5 − 4t4 − 89t3 − 77t2 + 69t, t17 − 64− 33t6 + 21t4 − 35t3 + 97t2 + 30t)
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Appendix II: Parametrizations of the space curves used in the ex-

perimentation

For each example, will use the notation ϕ(t) = (x(t), y(t), z(t)).

Example 1:

x(t) =
36t(−1− 98t− 3954t2 − 78868t3 − 726692t4 − 1092840t5 + 31242296t6 + 193263952t7

q(t)

y(t) =
−648t2(1 + 84t+ 2940t2 + 54880t3 + 549996t4 + 2492112t5 + 2385712t6)

q(t)

z(t) =
36t(476t3 + 426t2 + 42t+ 1)

64660t4 + 10976t3 + 1176t2 + 56t+ 1
,

with q(t) = 112t+5488t2+153664t3+2741608t4+33057472t5+272552896t6+
1419416320t7 + 4180915600t8 + 1

Example 2:

x(t) =
7 + 33t10 + 80t9 − 57t7 + 88t3 + 75t2

5t10 + 61t8 + 8t7 + 71t6 − 16t5 + 37t

y(t) =
18t8 + 28t7 + 58t5 + 69t4 + 8t3 + 4t

5t10 + 61t8 + 8t7 + 71t6 − 16t5 + 37t

z(t) =
−94t9 − 59t5 + 16t4 − 82t3 + 69t2 − t

5t10 + 61t8 + 8t7 + 71t6 − 16t5 + 37t

Example 3:

ϕ(t) =

(

t20 + t− 1

t2 + 1
,
t21 − 2

t2 + 1
,
t5 + 1

t2 + 1

)

Example 4:

ϕ(t) =

(

t2 + 1

t4 + 1
,
1

t3
, t2
)

Example 5:

x(t) =
(t− 1)4(1 + 4t + 7t2)

1− 4t+ 17t2 − 5t6 − 13t4 + 20t5 + 48t3

y(t) =
(1− 4t+ 22t2 − 4t3 + t4)(1 + t)2

1− 4t+ 17t2 − 5t6 − 13t4 + 20t5 + 48t3
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z(t) =
(1− 4t+ 22t2 − 4t3 + t4)(1 + t)2

1− 4t+ 17t2 − 5t6 − 13t4 + 20t5 + 48t3

Example 6:

ϕ(t) =

(

1− 3t2

(t2 + 1)2
,
(1− 3t2)t

(t2 + 1)2
,
(1− 3t2)t3

(t2 + 1)4

)

Example 7:

x(t) =
87− 7t4 + 22t3 − 55t2 − 94t

−73− 56t4 − 62t2 + 97t

y(t) =
−82 − 4t4 − 83t3 − 10t2 + 62t

−73− 56t4 − 62t2 + 97t

z(t) =
−82− 4t4 − 83t3 − 10t2 + 62t

−73− 56t4 − 62t2 + 97t

Example 8:

x(t) = 91 + 11t12 − 49t10 − 47t7 + 40t6 − 81t

y(t) = −28t12 + 16t10 + 30t8 − 27t5 − 15t3 − 59t2

z(t) = 53 + 43t10 + 92t9 − 91t6 − 88t3 − 48t

Example 9:

x(t) = −90t16 + 81t8 + 65t6 − 12t5 + 78t4 + 5t3

y(t) = −70t16 + 42t15 + 9t12 − 21t9 − 27t8 − 79t5

z(t) = 62− 14t14 + 83t12 − 96t7 − 8t3 − 54t2
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