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Abstract

Midpoint subdivision generalizes the Lane-Riesenfeld algorithm for
uniform tensor product splines and can also be applied to non regular
meshes. For example, midpoint subdivision of degree 2 is a specific
Doo-Sabin algorithm and midpoint subdivision of degree 3 is a specific
Catmull-Clark algorithm. In 2001, Zorin and Schröder were able to
prove C1-continuity for midpoint subdivision surfaces analytically up
to degree 9. Here, we develop general analysis tools to show that the
limiting surfaces under midpoint subdivision of any degree ≥ 2 are
C1-continuous at their extraordinary points.
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1 Introduction

The midpoint subdivision schemes form a class of subdivision schemes for
arbitrary two-manifold meshes. The midpoint subdivision scheme of degree
n ∈ N is given by the operator

Mn = An−1R ,

where R and A are the refinement and averaging operators, respectively.
Refining a mesh N by R means to connect the center of each face of N with
the midpoints of all its edges, which results in the quadrilateral mesh RN .
Averaging N means to connect the centers of all adjacent faces, which results
in the mesh AN , see Figure (1.1).
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(1.1) Figure. Masks of R (left and middle) and A (middle) and an example
for M2N (right).

The midpoint subdivision schemes of degree 2, 3 and 4 are specific in-
stances of the well-known Doo-Sabin, Catmull-Clark and Qu algorithms
[DS78, CC78, Qu90].

The valence m of a vertex or a face is the number of incident or surround-
ing edges. An inner vertex or face is called regular if m = 4 and irregular
or extraordinary otherwise. After subdividing a mesh by Mn, the mesh has
no irregular vertices or faces if n is even or odd, respectively. Subdividing
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the mesh further does not increase the number of extraordinary vertices and
faces and extraordinary elements become more and more isolated.

Therefore, and since midpoint subdivision generalizes the Lane-Riesenfeld
algorithm, midpoint subdivision surfaces are spline surfaces except for finitely
many extraordinary points. At these points, the smoothness analysis is
complicated. Using Reif’s C1-criterion [Rei95, Theorem 3.6] and interval
arithmetic, Zorin and Schröder [ZS01] showed C1-smoothness for degrees
n = 2, . . . , 9.

Naturally, this numeric approach is limited to a finite number of degrees.
Here, we develop a geometric framework that allows us to prove C1-continuity
of midpoint subdivision surfaces of all degrees. Moreover, we think that this
framework may conceptually be useful for other classes of (simple) subdivi-
sion schemes and that it provides – for the first time – an analysis toolbox
for a complete class of subdivision schemes.

In Section 2, we discuss the basic topological dependencies between the
vertices of a mesh before and after a subdivision step. These dependencies
correspond to a certain block structure of the subdivision matrix with a block
possessing a strictly positive power. This particular block represents the sub-
division operator restricted to a certain central part of the mesh, which we
call a core mesh. In Section 3, definitions and properties of symmetric meshes
and symmetric subdivision schemes are introduced. For symmetric meshes,
in Section 4, we define a partial order based on particular coordinate sys-
tems. In Section 5, we show that subdividing specific symmetric grid-like
core meshes results, in the limit, under normalization in a symmetric mesh
whose regular vertices do not coincide with the center and show that it is
an eigenvector of the subdivision matrix restricted to core meshes. In Sec-
tion 6, we use the partial ordering introduced in Section 4 to compare the
eigenvector constructed in Section 5 to any other eigenvector and show its
subdominance. Hence, in Sections 5 and 6, we restrict the analysis to core
meshes for which the subdivision matrix has a strictly positive power. Then,
in Section 7, we extend the analysis to larger meshes using the particular
block structure of the subdivision matrix. In Section 8, we show that sub-
dominant eigenvectors define a regular surjective characteristic map, which
concludes the proof that generic midpoint subdivision surfaces of any degree
n(≥ 2) are C1-continuous. This result is stated in Theorem (8.4) and the
entire paper consists of its proof which is composed of 19 lemmata, theorems
and corollaries whose ramified interdependencies are depicted in Figure (1.2).
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L: Lemma
T: Theorem
C: Corollary

(2.2) L
C0-Property(2.4) T

(3.6) L (3.5) L

(4.4) L(4.6) L

(5.1) L (5.2) L

(5.3) L
(5.4) T

(5.7) C

(6.1) T

(6.3) C
(6.5) T

(7.1) L
(7.2) T(7.3) T

(8.1) T
C1-Property(8.4) T

Section 2

Section 3

Section 4

Section 5

Section 6

Section 7

Section 8

(1.2) Figure. Interdependencies of lemmata, theorems and corollaries in
this paper.

2 Rings and ringnets

For the smoothness analysis of midpoint subdivision surfaces at extraordinary
points, it is sufficient for odd n to consider a mesh with only one irregular
vertex and for even n to consider a mesh with only one irregular face. We
will assume this throughout the paper. These simple meshes are illustrated
in Figure (2.1) and are called ringnets.

The 0-ring of a ringnet is formed by the irregular vertex or the irregular
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{ } = R0 ∈ R1 ∈ R2

R0 ∪ R1 ∪ R2

∈ R0 ∈ R1

R0 ∪ R1

(2.1) Figure. Example of rings and ringnets: a 1-ringnet with an irregular
face of valence 5 (left) and a 2-ringnet with an extraordinary vertex of valence
5 (right).

face, the 1-ring by the vertices of the adjoining faces that do not belong to
the 0-ring. The 2-ring, 3-ring, etc. are defined similarly. The rings 0, 1, . . . , l
constitute an l-ringnet or an l-net for short. A ringnet N is understood as
a vector whose coordinates represent the vertices of the ringnet or as the
set of its vertices, depending on the context. Following other authors, we
call a ringnet with an extraordinary vertex primal and a ringnet with an
extraordinary face dual.

In this paper, n always denotes the degree of the midpoint subdivision
scheme and m the valence of a vertex or of a face. In the following, let N be
a sufficiently large ringnet and let N (k) be the subdivided ringnet Mk

nN . If
N is primal we require n to be odd and otherwise to be even. The i-th ring
is denoted by Ni, and the subnet built from Ni,Ni+1, . . . ,Nj is denoted by
Ni..j. In particular, N0..i is called an i-ringnet or i-net or i-mesh for short.

In the rest of this section, we study on which vertices of N the vertices
of N ′ := N (1) depend and derive the minimal size of a ringnet required to
examine the eigenvalues of the subdivision matrix.

(2.2) Lemma. (The influence of vertices under subdivision)

We say that Ni influences N ′j and denote this by Ni Mn N ′j if every vertex in
Ni influences some vertex in N ′j and if additionally all vertices in N ′j depend
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on Ni. This is the case if and only if

2i−
⌊
n+ 1

2

⌋
≤ j ≤ 2i+

⌈
n+ 1

2

⌉
.

Consequently, N ′0..j is completely determined by N0..j, i. e.,

N ′0..j = (MnN0..j)0..j

for all j ≥ ω :=
⌊
n−1
2

⌋
. Furthermore, for i ≤ ω, it follows that

N (0)
i

Mn N (1)
ω−1

Mn N (2)
ω−3

Mn N (3)
ω−7

Mn · · · Mn N (dlog2(ω+1)e)
0

and since N0 or (RN )0 consists of only one vertex, every vertex in Ni influ-

ences every vertex in N (k)
0..ω, where k > dlog2(ω + 1)e.

Proof. The lemma can be shown via induction if one observes first that

Ni A
2

 (A2N )j if and only if i− 1 ≤ j ≤ i+ 1 ,

secondly for a primal N that

Ni R
 (RN )j if and only if 2i− 1 ≤ j ≤ 2i+ 1 ,

and finally for a dual N that

Ni AR (ARN )j if and only if 2i− 1 ≤ j ≤ 2i+ 2 .

The ω-mesh N0..ω with

ω =

⌊
n− 1

2

⌋
is called the core mesh ofN (with respect to Mn). According to Lemma (2.2),
the core mesh of N is the largest sub-ringnet of N with the property that
each of its vertices influences every vertex in the core mesh after several
iterations of subdivision.

The meshes N (i) = M i
nN converge to a piecewise polynomial surface.

Each regular subnet of (n+ 1)× (n+ 1) vertices of N (i) defines a polynomial
patch of this surface and all these patches form a spline surface ring si with
an m-sided hole. The difference surfaces si\si−1 are smaller spline rings

consisting of 3m
⌊
n
2

⌋2
polynomial patches determined by N (i)

0..ρ with

ρ =

⌈
3

2
n− 3

2

⌉
,(2.3)

see [Pra98]. The operatorMn restricted to ρ-nets is represented by a quadratic
matrix Sρ, called the subdivision matrix.
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(2.4) Theorem. (C0-property of Mn)
The subdivision surfaces generated by Mn are C0 for all n ≥ 1.

Proof. Since the subdivision matrix Sρ is stochastic, 1 is the dominant eigen-
value of Sρ. Using Lemma (2.2), we obtain that every vertex in N0 influences
all vertices in S2

ρ N0..ρ. This implies that S2
ρ has a positive column. According

to [MP89, Theorem 2.1], the sequence (Siρ c) converges to a multiple of the
vector [1 . . . 1]t as i→∞ for all real vectors c. Therefore, the only dominant
eigenvalue of Sρ is 1 and has algebraic multiplicity 1.

Hence, the difference surfaces si\si−1 converge to a point, see [Rei95,
Theorem 3.2] and [Che05, Remark 35 on Page 35], from which it follows that
the surfaces generated by Mn are continuous.

3 Symmetric ringnets

In this section, we introduce grid meshes and show that reflection symmetric
eigennets of Mn have real eigenvalues.

(3.1) Definition. (Grid mesh)
A primal grid mesh of valence m and frequency f is a planar primal ringnet
with the complex vertices

glij = ieı̂2πlf/m + jeı̂2π(l+1)f/m, i, j ≥ 0, l ∈ Zm, ı̂ =
√
−1 .

A dual grid mesh of valence m and frequency f consists of the vertices

hlij =
1

4
(gli−1,j−1 + gli,j−1 + gli−1,j + gli,j), i, j ≥ 1, l ∈ Zm ,

see Figure (3.2). For l fixed, the vertices glij or hlij with (i, j) 6= (0, 0) of

a grid mesh N build the l-th segment of N . The vertices g0
ij or h0

ij with
i ≥ j and (i, j) 6= (0, 0) constitute the first half segment of N , denoted by
H(N ). We call the vertices gl0j = gl+1

j0 , glii and hlii with i, j ≥ 1 spoke

vertices and call the vertices glij or hlij with i 6= j and i, j ≥ 1 inner vertices
of the l-th segment. The segment angle of N is ϕ = 2πf/m. The half-line
from the center gl00 through gl10 or through gl11 is called the l-th spoke or the
(l + 1

2
)-th spoke, denoted by Sl(N ) and Sl+ 1

2
(N ), or Sl and Sl+ 1

2
for short,

see Figure (3.3).

Topologically, any ringnet M is equivalent to a grid mesh N . Therefore
we use the same indices for equivalent vertices and denote the vertices ofM
by plij.
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0 S0

S1

Sm−1

g0
02

g0
21

g0
10g0

00

g1
21

0 S0

S1

Sm−1

h0
11 h0

21

h0
22

h1
21

(3.2) Figure. Primal grid mesh (left) and dual grid mesh (right).

S0

S1

S2

f = 4

ϕ

S4

S0

S1

S2

ϕ

S4

f = 2

S3 = S0.5

S3 = S0.5

(3.3) Figure. The spokes of a ringnet with m = 5 and frequency f = 2 (left)
and f = 4 (right). The segment angles are 4

5
π (left) and 8

5
π(≡ −2

5
π) (right).

(3.4) Definition. (Symmetric ringnet)
A ringnet of valence m with the vertices plij in C is called rotation symmetric
with frequency f , if

plije
ı̂2πf/m = pl+1

ij .

A ringnet N in the complex plane is called reflection symmetric if its permu-

tation Ñ consisting of the points p̃lij = p
(m−1)−l
ji equals the conjugate ringnet

8



N , i. e.,

Ñ = N .

A rotation and reflection symmetric ringnet is called symmetric.

It is easy to see that a symmetric ringnet is geometrically symmetric with
respect to each spoke. Hence, we obtain

(3.5) Lemma. (Eigenvalue of a reflection symmetric eigennet)
If N is a reflection symmetric eigennet of Mn with eigenvalue λ and with
j + 1 rings, j ≥ ω, i. e., (MnN )0..j = λN , then λ is real.

Proof. Since

λN = (MnN )0..j = (MnÑ )0..j = (M̃nN )0..j = λ̃ N = λN ,

we get λ = λ.

(3.6) Lemma. (Positional invariance)
Let N be a symmetric ringnet with segment angle ϕ ∈ (0, π]. If the first half
segment H(N ) of N lies in the cone C(N ) spanned by the spokes S0 and S0.5

of N , i. e.,

C(N ) = convex hull of S0(N ) and S0.5(N ),

then the subdivided ringnets RN , AN and consequently MnN have the same
property. By symmetry, the similar statement also holds for all half and,
hence, for all full segments.

Proof. The vertices ofH(RN ) andH(AN ) are convex combinations ofH(N )∪
{0} or lie on S0 and S0.5 since R and A preserve symmetry.

4 Comparing ringnets

In this section, we partially order symmetric ringnets by comparing the co-
ordinates of all vertices in the first half segment of any two meshes. Since
we need that orthogonal projections into the spokes preserve this order, we
choose the coordinate axes perpendicular to the spokes. This partial ordering
is preserved by midpoint subdivision. Moreover, if N1 � N2 for two distinct
core meshes, sufficiently many subdivision steps lead to the strict inequality
MkN1 > MkN2, where M is the operator Mn restricted to core meshes, see
Lemma (4.4). This will be crucial to prove that subdividing a grid mesh leads
to a subdominant eigennet and in Lemma (4.6), we show that this eigennet
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has no zero control points except for its extraordinary point if the net was
primal.

The coordinate system K of a planar symmetric ringnet N with segment
angle ϕ ∈ (0, 2π) has the basis vectors[

cos θ
sin θ

]
and

[
0
1

]
, where θ = ϕ/2− π/2 ,

which are orthogonal to the spokes S0.5 and S0, see Figure (4.1).

S0

S1

0 x

y

S0.5

S0

S1

0

x

y

S0.5

θ

ϕ/2

(4.1) Figure. Examples of K for ϕ/2 = ](S0, S0.5) ∈ (0, π
2
) (left) and ϕ/2 =

](S0, S0.5) = π
2

(right).

The midpoint of two vertices whose positions are symmetric with respect
to S0 or S0.5 is the orthogonal projection of these vertices into S0 or S0.5,
respectively. Thus, the two vertices and their midpoint have the same x or
y coordinates in K, respectively. This property is crucial in our proofs, see
Equation (4.8), Figures (4.5) and (4.9).

A point p with coordinates p1, p2 in K is called positive if p1 > 0 and
p2 > 0, and it is called non-negative if p1 ≥ 0 and p2 ≥ 0. We denote this by
p > 0 and p ≥ 0, respectively.

A symmetric ringnet M is called positive or non-negative if all points of
H(M) are positive or non-negative, respectively. This is denoted byM > 0
or M≥ 0.

(4.2) Definition. (Comparison of two symmetric ringnets)
Let N1 and N2 be two symmetric ringnets with the same topological structure
and coordinate system K. We call N1 > N2 if H(N1) > H(N2) holds point-
wise in K. The relations ≥, <, ≤ and = between two symmetric ringnets can
be defined similarly.
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In order to characterize the size of a ringnet in K, we introduce a norm.

(4.3) Definition. (Norm, MAX, MIN)
Let N be a symmetric ringnet with coordinate system K. Let p be a vertex
with coordinates p1 and p2. Then we define

‖p‖ := max{|p1|, |p2|} ,

MAX(N ) := ‖N‖ := max
q∈H(N )

‖q‖

and

MIN(N ) := min
q∈H(N )

‖q‖ .

(4.4) Lemma. (Comparable properties between two symmetric ring-
nets)
Let N1 and N2 be symmetric ringnets with segment angles ϕ1 ∈ (0, π) and
ϕ2 ∈ [ϕ1, π], respectively, such that H(N1) lies in C(N1). If we rotate N1 by
(ϕ2−ϕ1)/4 degrees counterclockwise, we obtain the following statements with
respect to the coordinate system of N2 under the assumption N1 ≥ N2:

(a) MnN1 ≥MnN2 .

(b) If 0 < (N1)0..ω 6= (N2)0..ω, then, for any j ≥ 0 there exists an α ∈ (0, 1)
such that

α(Mk
nN1)0..j > (Mk

nN2)0..j

for all sufficiently large k.

Proof. Because Ni is symmetric, H(MnNi) can be generated from H(Ni) ∪
{0} by calculating midpoints and by projecting points into the spokes S0(Ni)
and S0.5(Ni). Averaging preserves inequalities and the same holds for ortho-
gonal projections into the spokes as we see for two corresponding vertices

pi = [xi yi]
t = p0

kj(Ni), i = 1, 2 .

Let qi be their projections into S0(Ni) and let ri be their projections into
S0.5(Ni), see Figure (4.5). Since p1 ∈ C(N1), we obtain

p1 ≥ p2 ⇒ q1 ≥ q2 and r1 ≥ r2 ,

by which we derive Statement (a).
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q1

q2

p2

p1

S0.5(N1)
S0.5(N2)

x

y

0

S0(N1)

S0(N2)

r1

r2

ϕ1/2

(4.5) Figure. Projection into the spokes.

Moreover, since ϕ1 < π, we get

0 < p1 ≥ p2 and x1 > x2 ⇒ q1 > q2 ,
0 < p1 ≥ p2 and y1 > y2 ⇒ r1 > r2 ,

see Figure (4.5). We have assumed N1 ≥ N2 and 0 < p1 ≥ p2 6= p1 for
some points pi = p0

l1l2
((Ni)0..ω), i = 1, 2. According to Lemma (2.2), the

points pi influence all points in (Mk
n(Ni))0..ω for sufficiently large k and for

i = 1, 2, respectively. Hence, 0 < s1 > s2 for si = p0
11(M

k
n(Ni)) and since

si influences all points in (Mk
nNi)0..j for all sufficiently large(r) k, we have

derived Statement (b).

(4.6) Lemma. (MIN-MAX relation)
Let M(k) := (Mk

nM)0..ω be a subdivided grid mesh with segment angle in
(0, π). Then there exists a positive ν such that for all k ≥ 0

MIN(M(k))/MAX(M(k)) ≥ ν .

Proof. Let p be a maximum vertex in H(M(k)), i. e., ‖p‖ = MAX(M(k)).

First, we apply Lemma (2.2) to obtain an r ∈ N such that p influences
every vertex q in H(M(k+r)). The refinement and averaging operators R
and A preserve symmetry. Therefore, any vertex q in H(M(k+r)) can be
computed by calculating midpoints of vertices or by projecting vertices or-
thogonally into the spokes S0 and S0.5. According to Lemma (3.6), the first
half segment lies in the cone C = C(M). Since C is non-negative, it follows
for the midpoint of any two points a,b ∈ C that∥∥∥∥1

2
a +

1

2
b

∥∥∥∥ ≥ 1

2
‖a‖ .(4.7)
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Furthermore, if b is the projection of a into S0.5 and if c is the intersection
point of S0 and the line ab, we have

‖b‖ =
‖b‖
‖c‖ ‖c‖ = cos(ϕ/2) ‖c‖ ≥ cos(ϕ/2) ‖a‖ ,(4.8)

as illustrated in Figure (4.9).

S0

x

y

0

S0.5

a

b

c

‖c‖

‖b‖ ϕ/2

‖b‖ϕ/2

(4.9) Figure. Projection into the spoke S0.5.

Note that in deriving Equation (4.7), we used that the coordinate axes
are perpendicular to the spokes S0 and S0.5. Because of symmetry, the same
holds if b is the projection of a into S0. Altogether we see that there exists
a constant µ > 0 depending only on n and ϕ such that

MIN(M(k+r)) ≥ µ MAX(M(k)) .

Second, we retrace the above argument with Equation (4.7) by

max{‖a‖, ‖b‖} ≥ 1

2
‖a‖+

1

2
‖b‖

≥
∥∥∥∥1

2
a +

1

2
b

∥∥∥∥
and Equation (4.8) by ‖a‖ ≥ ‖b‖. This then shows

MAX(M(k))) ≥ MAX(M(k+r)))

and thus

MIN(M(k+r)) ≥ µ MAX(M(k+r)) .

Because µ and r do not depend on k, Lemma (4.6) holds for

ν = min
(
{µ} ∪ {MIN(M(k))/MAX(M(k)) | k = 0, 1, . . . , r − 1}

)
.
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5 Subdividing grid meshes

In this section we show, that a sequence of subdivided grid meshes converges
to an eigenvector of Mn, where we use the results of Section 4 to prove that
the sequence cannot have two distinct accumulation points. Let N be a grid
mesh with segment angle ϕ ∈ (0, π) and j + 1 rings, where j ≥ ω =

⌊
n−1
2

⌋
.

Let N (k) = (Mk
nN )0..j and Nk = N (k)/‖N (k)‖ for k ≥ 0. In this section,

we show that the sequence of the normalized ringnets Mk = N0..ω/‖N0..ω‖
converges (Theorem (5.4)) to a symmetric positive eigennet of Mn restricted
to core meshes.

Because of Lemma (4.4) (b),Mk is positive for all sufficiently large k and
we can apply Lemma (4.6) showing that MIN(Mk) is greater than a positive
constant for all sufficiently large k. Hence, and with the aid of Lemma (3.6),
we obtain

(5.1) Lemma. (K > 0)
Every accumulation point K of (Mk) is positive and its first half segment lies
in the cone spanned by the spokes S0 and S0.5 of M,

H(K) ⊂ C(M) .

Let M be the operator Mn restricted to j-nets. It can be represented
by a quadratic matrix with N (k) = MkN because of Lemma (2.2). Let
λ1, . . . , λp be the eigenvalues of M and let v0

i , . . . ,v
αi
i be the eigenvectors

and the generalized eigenvectors associated with λi, i. e.,

Mv0
i = λiv

0
i and Mvli = λiv

l
i + vl−1i , l = 1, . . . , αi .

With respect to these vectors, N has a unique decomposition

N =

p∑
i=1

σi∑
l=0

νi,lv
l
i

with σi ≤ αi and νi,σi 6= 0.
It can be readily checked that

Mkvli =

(
k

l

)
λk−li v0

i + uk

with ‖uk‖ = o(|
(
k
l

)
λk−li |). Assuming |λ1| = · · · = |λs| and σ1 = · · · = σs ≥ 0

and assuming for i > s that σi < σ1 if |λi| = |λ1|, or σi = −1 if |λi| > |λ1|,
we get the following lemma.
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(5.2) Lemma. (Expression of accumulation points)
The limit of any convergent subsequence of (Nk), i. e., any accumulation point
of (Nk), lies in

V := span{v0
1, . . . ,v

0
s} .

If λ1 = · · · = λs > 0, then any accumulation point of (Nk) is an eigenvector
of M with eigenvalue λ1.

(5.3) Lemma. (Accumulation point 1)
Here, we multiply and raise vectors to a power coordinate wise. The sequence
(rk) in Cl with r = [r1 . . . rl]

t and |r1| = · · · = |rl| = 1 has the accumulation
point 1 := [1 . . . 1]t.

Proof. The sequence (rk) is bounded and therefore has an accumulation point
h. Hence, for all ε > 0, there are integers l1 and l2 with arbitrarily large
differences l1 − l2 > 0 such that

‖rl1 − h‖ < ε and ‖rl2 − h‖ < ε ,

where ‖ · ‖ := ‖ · ‖∞. Because |rl2i | = 1, we have

‖rl1−l2 − 1‖ = ‖(rl1−l2 − 1)rl2‖
= ‖rl1 − rl2‖
≤ ‖rl1 − h‖+ ‖rl2 − h‖ < 2ε ,

which concludes the proof.

(5.4) Theorem. (Convergence of (Mk))
The sequence (Mk) converges.

Proof. Since (Mk) is bounded, it suffices to show that (Mk) has only one
accumulation point. Let K and L be two accumulation points of (Mk). Using
Lemma (5.2) with j = ω, we can write K and L as

K =
s∑
i=1

νiv
0
i and L =

s∑
i=1

µiv
0
i .

Let λ = |λ1|, ri = λi/λ and rk = [rk1 . . . rks ]
t. Then,

1

λk
MkK = [ν1v

0
1 . . . νsv

0
s]r

k and
1

λk
MkL = [µ1v

0
1 . . . µsv

0
s]r

k .

Due to Lemma (5.3), there is a sequence (kn) with rkn → 1 as n → ∞.
Therefore,

1

λkn
MknK → K and

1

λkn
MknL → L .(5.5)
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From Lemma (5.1), it follows that K > 0 and L > 0. Therefore, there is
a largest sequence (ak) ⊂ R>0 and a smallest sequence (bk) ⊂ R>0 such that

ak

(
1

λ

)k
MkK ≤

(
1

λ

)k
MkL ≤ bk

(
1

λ

)k
MkK(5.6)

for all k ≥ 0. Since (ak) is maximal and (bk) is minimal, (ak) is monotonically
increasing and (bk) monotonically decreasing because of Lemma (4.4) (a).
Since (ak) is bounded by b0 and (bk) by a0, both sequences converge. Let
a = lim ak and b = lim bk. Then we infer from (5.5) and (5.6) that

aK ≤ L ≤ bK ,

and again using (5.6) that a ≤ a0 ≤ b0 ≤ b. Consequently, the monotonicity
implies ak = a and bk = b for all k.

Next, we assume L ≥ aK 6= L. Due to Lemma (5.1), we can apply
Lemma (4.4) (b) and get MkL > aMkK for all sufficiently large k, which
contradicts the maximality of ak = a. Thus, L = aK.

Since 1 = ‖Mk‖ = ‖K‖ = ‖L‖ = ‖aK‖ = a‖K‖, we obtain a = 1 and
L = K, which concludes the proof.

(5.7) Corollary. (Properties of the limit ringnet)
Let M∞ be the limit ringnet of (Mk).

(a) M∞ is an eigenvector of M with eigenvalue λ = ‖MM∞‖ > 0.

(b) M∞ > 0.

(c) M∞ has norm 1.

(d) Since M preserves symmetry,M∞ is symmetric with the same segment
angle as M.

Proof. Because

MM∞

‖MM∞‖
=

M limk→∞
MkM
‖MkM‖∥∥∥M limk→∞
MkM
‖MkM‖

∥∥∥ = lim
k→∞

Mk+1M
‖MkM‖∥∥∥Mk+1M
‖MkM‖

∥∥∥
= lim

k→∞

Mk+1M
‖Mk+1M‖ =M∞ ,

we get Statement (a), and by Lemma (5.1) Statement (b), and Statement (c)
has been shown in the proof for Theorem (5.4).
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6 Subdominant eigenvalues of the midpoint

operator restricted to core meshes

Let M be a grid mesh with ω + 1 rings, frequency f and segment angle
ϕ = 2fπ/m ∈ (0, π). Let M be the matrix of Mn restricted to core meshes
and letM(k) = MkM for k ≥ 0. Due to Theorem (5.4) and Corollary (5.7),
the sequence Mk := M(k)/‖M(k)‖ converges to a symmetric eigennet M∞
with segment angle ϕ and some certain positive eigenvalue λ. In this section,
we show that λ is the dominant eigenvalue for the eigenspace of frequency
f and that λ is smaller for higher frequencies. Moreover, we derive that for
frequency 1, λ is a double subdominant eigenvalue of M .

(6.1) Theorem. (Maximum property of M∞)
Any rotation symmetric eigennet N of M with segment angle ϕN ∈ [ϕ, π]
has an eigenvalue µ with |µ| < λ or is a multiple of M∞.

Proof. It suffices to consider the case that N is not a multiple of M∞.

First, we assume that N is reflection symmetric. As in Lemma (4.4), we
rotateM∞ by (ϕN − ϕ)/4 degrees counterclockwise. We use the coordinate
system of N and normalize N such that

N ≤M∞ and N ≮M∞ .

From Lemma (4.4) (b) it follows that for sufficiently large k

M2kN < M2kM∞ and µ2kN < λ2kM∞ .

From Lemma (3.5) it follows that µ2 is positive, which yields |µ| < λ.

Second, we assume that N is not reflection symmetric and µ 6= 0. Using
the scalar product 〈N ,M∞〉 := N tM∞, we define

N1 :=

{ N if 〈N ,M∞〉 = 0
ı̂

〈N ,M∞〉N if 〈N ,M∞〉 6= 0

and obtain the symmetric ringnet

Ns = N1 + Ñ1

with segment angle ϕN . Since 〈Ñ ,M̃∞〉 = 〈N ,M∞〉, we have 〈Ns,M∞〉 = 0
and, hence, Ns 6= βM∞ for all β ∈ C\{0}.

If Ns = 0, then ı̂N1 = ˜̂ıN1 is a symmetric ringnet with eigenvalue µ and,
as shown above, |µ| < λ.
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If Ns 6= 0, we rotate M∞ by (ϕN − ϕ)/4 degrees counterclockwise as in
Lemma (4.4). We use the coordinate system of Ns and normalize Ns such
that

Ns ≤M∞ and Ns ≮M∞ .(6.2)

Because of Lemma (4.4) (b), there exists an α ∈ (0, 1) such that for suffi-
ciently large k

µkN1 + µkÑ1 = MkNs < αMkM∞ = αλkM∞

and (
µ

|µ|

)k
N1 +

(
µ

|µ|

)k
Ñ1 < α

(
λ

|µ|

)k
M∞ .

According to Lemma (5.3), there is a sequence (kl)l∈N with (µ/|µ|)kl → 1.
Consequently |µ| < λ because otherwise

lim
l→∞

(
1

|µ|

)kl
MklNs = Ns ≤ αM∞ <M∞ ,

which contradicts (6.2).

The subdivision operator M can be represented by a block-cyclic matrix.
Consequently, there is a basis of rotation symmetric (generalized) eigen-
vectors with frequencies f ∈ {0, . . . ,m− 1}, see [PR98, Section 3], [ZS01,
Section 4.2] and [Che05, Section 3.5 on Pages 47-58]. Since the conjugate
eigenvectors have the frequencies m− f , we obtain

(6.3) Corollary. (Dominant eigenvalues)
The eigenvalue λ ofM∞ is the dominant eigenvalue associated with frequen-
cies f and m− f . (Since M∞ and λ depend only on ϕ and the fixed n, we
denote λ by λϕ.)

For m = 4, the eigenvalues λϕ are well-known. Around a regular vertex,
the midpoint subdivision surface consists of four polynomial patches and
subdividing these means to map any polynomial p(z) onto p(z/2). Hence the
eigenfunctions of M are monomials and the eigenvalues are powers of 1/2.
Since the least monomials with frequency 0 and 2 are quadratic, besides the
constant 1, we obtain that µ0 = 1/4 is the subdominant eigenvalue for the
eigenspace with frequency 0 and that λπ = 1/4. Furthermore, Theorem (6.1)
implies

λα > λβ > λπ = µ0 = 1/4 for 0 < α < β < π .(6.4)

Consequently λ2π/m is the subdominant eigenvalue of M .
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(6.5) Theorem. (The subdominant eigenvalue of Mn restricted to
core meshes)
The eigenvalue λ2π/m of Mn restricted to core meshes is subdominant and
has algebraic and geometric multiplicity 2.

Proof. It remains to show that λ = λ2π/m has algebraic multiplicity 2 or
that there is no generalized eigenvector associated with λ. We assume that
H is a generalized eigenvector with frequency 1 and associated with λ, i. e.,
MH = λH +M∞. Then

Hs =
1

2
(H + H̃)

is a symmetric generalized eigenvector of M with frequency 1 because

MHs = (MH +MH̃)/2 = (λH +M∞ + ˜λH +M∞)/2

= (λH +M∞ + λH̃ +M∞)/2 = λHs +M∞ .

Therefore, it can be presupposed that H is symmetric. Because M∞ > 0,
there exists an α > 0 with αM∞ ≥ H. The ringnet αM∞−H is symmetric
of frequency 1 and is non-negative. From Lemma (4.4) (a) it follows that

Mk(αM∞ −H) ≥ 0(6.6)

for all k ≥ 0. Furthermore, we have

Mk(αM∞ −H) = αMkM∞ −MkH
= αλkM∞ −

(
λkH + kλk−1M∞

)
= λk

((
α− k

λ

)
M∞ −H

)
< 0

for all sufficiently large k, which contradicts (6.6). Therefore, the algebraic
multiplicity of λ is 2.

7 Subdivision of larger ringnets

As shown in Section 6, subdividing a core grid mesh with frequency 1 leads
to the subdominant eigenvectors of Mn restricted to core meshes. In this
section, we generalize this result to arbitrary large grid meshes.
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We consider a j-net N with j ≥ ω + 1, where the control points are
arranged so that

N =


N0..ω

Nb
Nc
Nω+2..j

 ,

where Nc consists of the corners of the ring Nω+1, i. e., Nc = {piω+1,ω+1 | i ∈
Zm} if N is primal or Nc = {piω+2,ω+2 | i ∈ Zm} if N is dual, and Nb consists
of the other points in Nω+1. With this arrangement of the control points
and according to Lemma (2.2), the matrix of Mn restricted to j-nets has the
lower triangular form

S =



A
∗ B
∗ ∗ C
∗ ∗ ∗ 0
...

. . . . . .

∗ . . . . . . . . . ∗ 0


,

where

(MnN )0..ω = AN0..ω ,[
(MnN )0..ω
(MnN )b

]
=

[
A
∗ B

] [
N0..ω

Nb

]
,

(MnN )0..ω+1 =

 A
∗ B
∗ ∗ C

N0..ω+1 .

Hence, the eigenvalues of S are zero or are the eigenvalues of the blocks A,
B and C.

(7.1) Lemma. (Spectral radii of B and C)
The spectral radii ρB and ρC of B and C satisfy

ρB ≤ 2−n and ρC ≤ 4−n .

Proof. Since C is non-negative, we get [HJ85, Corollary 6.1.5 on Page 346]

ρC ≤ ‖C‖∞ = ‖C1‖∞, where 1 := [1 . . . 1]t .

The vector C1 represents the corners of the (ω+1)-ring N ′ω+1, where N0..ω =
0, Nω+2..j = 0, Nb = 0 and Nc = 1. One can easily verify that the vertices of
these corners are ≤ 4−n, which concludes the proof of the second statement.
The first statement can be proven similarly.
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According to Theorem (6.5), Inequality (6.4) and Lemma (7.1), we get

(7.2) Theorem. (The subdominant eigenvalue of Mn restricted to
j-nets for j ≥ ω + 1)
The subdominant eigenvalue of Mn restricted to j-nets with j ≥ ω + 1 is
λ2π/m and λ2π/m has algebraic and geometric multiplicity 2.

(7.3) Theorem. (The characteristic mesh of Mn)
Let N be a grid mesh with frequency 1 and with ρ + 1 rings, where ρ =⌈
3
2
n− 3

2

⌉
, see Equation (2.3). Let Sρ be the matrix of Mn restricted to ρ-

nets. Let

nk := ‖SkρN‖ and Nk := SkρN /nk .

Then for n ≥ 2, (Nk) converges to a positive subdominant eigennet, called
the characteristic mesh of Mn.

Proof. Let mk := ‖(SkρN )0..ω‖ and let Mk := (SkρN )0..ω/mk. According
to Theorem (5.4) and Corollary (5.7) (b), the sequence (Mk) converges to
a positive eigennet M∞ with eigenvalue λ = λ2π/m. The dominant and
subdominant eigenvalues 1 and λ of Sρ are positive, see Corollary (5.7) (a).
Furthermore, since

nk ≥ mk ∈ Θ(λk) ,(7.4)

we obtain by Lemma (5.2) that (Nk) converges to an eigenvector N∞ with
eigenvalue 1 or λ. If (N∞)0..ω were zero, then SρN∞ = µN∞ with |µ| ≤ 2−n < λ
according to Lemma (7.1) and Inequality (6.4) , which contradicts (7.4). Con-
sequently (N∞)0..ω is a multiple ofM∞ and is positive and λ is its eigenvalue.
Using Lemma (4.4) (b), we have λkN∞ = Mk

nN∞ > 0 for all sufficiently large
k and hence, N∞ > 0.

8 The characteristic map

Let C be the characteristic mesh of valence m of the midpoint scheme Mn. It
defines the control mesh of a characteristic map, which is a spline surface ring
consisting of m segments with 3 subsegments of bn/2c2 polynomial patches,
as illustrated in Figure (8.2).

(8.1) Theorem. (Characteristic map)
The characteristic map of Mn is regular and injective for n ≥ 2.
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S0

x

0

S1

ı̂ 1

(8.2) Figure. One segment and its 3 · 9 polynomial patches for n = 6, 7.

Proof. Let Ω = [0, 2]2\[0, 1)2 and let c(u, v) : Ω→ C be the first segment of
the characteristic map rotated such that c(1, 1) > 0. According to [PR08,
Theorem 5.25 on Page 107], the characteristic map is regular and injective if
all partial derivatives cv(u, v) lie in

Q = {x+ ı̂y|x, y > 0} .
To show this, we consider a rotated grid mesh M such that the subdivided
and normalized meshesMk = (Mk

nM)0..ρ/‖(Mk
nM)0..ρ‖ converge to the char-

acteristic mesh C.
Let Ek and E be the sets of all edge directions p0

i,j+1 − p0
i,j in the first

segment of Mk and C, respectively. These and other edge directions control
the partial derivatives cv of the first segment. Furthermore, we add both u1

and ı̂u0 to Ek and E , where u0 and u1 are the edge directions of the spokes S0

and S1, respectively. Refining and averaging a mesh also means to average
its edge directions by the masks shown in Figure (8.3).

1/4

1/4

1/2 1/4

1/4

1/4

1/4

(8.3) Figure. Masks for the edge directions.

In particular, the directions in Ek are either, due to symmetry, parallel to
u1 and ı̂u0, or obtained by iteratively averaging the directions in Ek−1 and
multiplying these by positive numbers because of the normalization. Thus,
we know that Ek lies in the cone spanned by Ek−1, i. e., the cone spanned by
{u1, ı̂u0}, and therefore, both Ek and E lie in the larger set Q ∪ {0}.
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Moreover, since C0..1 is symmetric and has at most one zero control point,
at least one of its edge directions is non-zero. Subdividing C, we can see that
every element of E is a linear combination of E with non-negative weights
and a positive weight for the non-zero element in the 1-ringnet. Hence E has
no zero elements and lies in Q.

A partial derivative cv(u),u ∈ [0, 2] × [1, 2] (or u ∈ [1, 2] × [0, 2]) is a
convex combination of directions in E or in E reflected at S1 (or at ı̂S0), where
a reflected direction has a smaller weight than its unreflected counterpart.
Hence, cv(Ω) ⊂ Q as claimed.

Theorems (7.2) and (8.1) show that Reif’s C1-criterion [Rei95, Theorem
3.6] is satisfied. So finally, we have established

(8.4) Theorem. (C1-property of Mn)
The midpoint scheme Mn is a C1-subdivision algorithm for all degrees n ≥ 2
and for all valencies m ≥ 3.
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