
UC Davis
UC Davis Previously Published Works

Title
Rotation-minimizing Euler-Rodrigues rigid-body motion interpolants

Permalink
https://escholarship.org/uc/item/7m71z9pw

Journal
Computer Aided Geometric Design, 30(7)

ISSN
0167-8396

Authors
Farouki, Rida T
Han, Chang Yong
Dospra, Petroula
et al.

Publication Date
2013-10-01

DOI
10.1016/j.cagd.2013.03.001
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7m71z9pw
https://escholarship.org/uc/item/7m71z9pw#author
https://escholarship.org
http://www.cdlib.org/


Rotation-minimizing Euler-Rodrigues

rigid-body motion interpolants

Rida T. Farouki
Department of Mechanical and Aerospace Engineering,

University of California, Davis, CA 95616, USA

Chang Yong Han
Department of Applied Mathematics, Kyung Hee University,

Yongin–si, Gyeonggi–do 446–701, SOUTH KOREA

Petroula Dospra and Takis Sakkalis

Mathematics Laboratory, Agricultural University of Athens,
75 Iera Odos, Athens 11855, GREECE

Abstract

A characterization for spatial Pythagorean–hodograph (PH) curves of
degree 7 with rotation–minimizing Euler–Rodrigues frames (ERFs) is
determined, in terms of one real and two complex constraints on the
curve coefficients. These curves can interpolate initial/final positions
pi and pf and orientational frames (ti,ui,vi) and (tf ,uf ,vf ) so as to
define a rational rotation–minimizing rigid body motion. Two residual
free parameters, that determine the magnitudes of the end derivatives,
are available for optimizing shape properties of the interpolant. This
improves upon existing algorithms for quintic PH curves with rational
rotation–minimizing frames (RRMF quintics), which offer no residual
freedoms. Moreover, the degree 7 PH curves with rotation–minimizing
ERFs are capable of interpolating motion data for which the RRMF
quintics do not admit real solutions. Although these interpolants are
of higher degree than the RRMF quintics, their rotation–minimizing
frames are actually of lower degree (6 versus 8), since they coincide
with the ERF. This novel construction of rational rotation–minimizing
motions may prove useful in applications such as computer animation,
geometric sweep operations, and robot trajectory planning.



Keywords: Pythagorean–hodograph curves; Euler–Rodrigues frame;
rotation–minimizing frame; quaternions; Hopf map; spatial motion planning.

e–mail: farouki@ucdavis.edu, cyhan@khu.ac.kr, pdospra@aua.gr, stp@aua.gr



1 Introduction

The need to describe the orientation of a rigid body that moves along a curved
spatial path r(t) is a basic problem in computer animation, the use of sweep
operations in geometric design, path planning in robotics, and programming
of CNC machines with rotary axes. This can be accomplished by invoking an
orthonormal frame (f1, f2, f3) embedded in the body to specify its orientation.
The variation of such a frame is defined by its angular velocity ω(t) according
to the relations

df1
dt

= ω × f1 ,
df2
dt

= ω × f2 ,
df3
dt

= ω × f3 .

A common requirement is that the frame vector f1 should coincide with the
path tangent t = r′/|r′|, while the normal–plane vectors f2, f3 should exhibit
no instantaneous rotation about f1 — such rotation–minimizing motions are
characterized [1] by the fact that the angular velocity satisfies ω · f1 ≡ 0.

Numerical methods are often used [11, 14, 16, 15, 17, 18] to approximate
rotation–minimizing frames, since in general the unit vectors f1(t), f2(t), f3(t)
do not admit a rational dependence on the curve parameter, even if r(t) is a
polynomial or rational curve. In recent years, there has been greater interest
in constructing special curves that do possess rational rotation–minimizing
frames (RRMF curves) — such curves must be Pythagorean–hodograph (PH)
curves [4], since only the PH curves have rational unit tangents.

The introduction [2] of the Euler–Rodrigues frame (ERF) was a key step
in identifying the RRMF curves as subset of the spatial PH curves. The ERF
(e1(t), e2(t), e3(t)) is a rational orthonormal frame, defined on any spatial PH
curve r(t), such that e1 = r′/|r′| is the curve tangent t. The RRMF curves
are those PH curves for which the component of the ERF angular velocity
in the direction of e1 can be eliminated by imposing a rational normal–plane
rotation on the frame vectors e2(t), e3(t) at each curve point [13]. The first
RRMF curves were identified by Choi and Han [2], as PH curves of degree 7
for which the ERF is itself rotation–minimizing — such curves were shown to
depend on 16 real parameters, and the interpolation of first–order Hermite
data (initial/final points pi,pf and tangents ti, tf) was briefly studied.

Subsequently, RRMF curves of degree 5 were characterized [5, 8] in terms
of coefficient constraints in the quaternion and Hopf map representations for
spatial PH curves, and their use in constructing rational rotation–minimizing
rigid–body motions — that interpolate initial/final positions pi and pf and
frames (ti,ui,vi) and (tf ,uf ,vf) — was studied in [9]. With these curves,
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however, it was not possible to guarantee the existence of rotation–minimizing
interpolants to arbitrary spatial motion data.

This study revisits the degree 7 curves with rotation–minimizing ERFs
identified by Choi and Han [2], and derives a simpler characterization of them
in terms of one real and two complex constraints on their coefficients. It is
also shown that, unlike the RRMF quintics [9], these curves admit two free
parameters in the interpolation of initial/final positions pi and pf and frames
(ti,ui,vi) and (tf ,uf ,vf) by rational rotation–minimizing motions. The free
parameters permit shape optimization of the motion interpolant, and make
the existence of interpolants to arbitrary data highly probable. Although the
curves are of higher degree than the RRMF quintics, their rational RMFs
are actually of lower degree, since they are coincident with the ERF.

The plan for the remainder of this paper is as follows. After reviewing the
definitions and key properties of PH curves and RRMF curves in Sections 2
and 3, the problem of characterizing those degree 7 PH curves whose ERFs
are rotation–minimizing is considered in Section 4. In particular, it is shown
that one real and two complex constraints on the curve coefficients suffice to
identify these curves. In Section 5, this characterization is exploited to derive
a system of four quadratic equations in four real variables, that embodies
the rational rotation–minimizing rigid–body motion problem. Preliminary
methods for solving this system, together with computed examples, are then
presented in Section 6. Finally, Section 7 summarizes the key results of this
paper, and identifies problems that deserve further investigation.

2 Spatial PH curves

The characteristic feature of a polynomial Pythagorean–hodograph (PH) curve

r(t) = (x(t), y(t), z(t)) is that its derivative r′(t) = (x′(t), y′(t), z′(t)) satisfies

x′2(t) + y′2(t) + z′2(t) = σ2(t) (1)

for some polynomial σ(t). The quaternion and Hopf map forms [3, 6] are two
alternative (equivalent) models for the construction of PH curves. The former
generates a Pythagorean hodograph r′(t) from a quaternion1 polynomial

A(t) = u(t) + v(t) i + p(t) j + q(t)k (2)

1Calligraphic characters such as A are used to denote quaternions, their scalar (real)
and vector (imaginary) parts being indicated by scal(A) and vect(A). Bold symbols denote
either complex numbers or vectors in R

3 — the meaning should be clear from the context.
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and its conjugate A∗(t) = u(t)− v(t) i− p(t) j− q(t)k through the product2

r′(t) = A(t) iA∗(t) = [ u2(t) + v2(t) − p2(t) − q2(t) ] i

+ 2 [ u(t)q(t) + v(t)p(t) ] j + 2 [ v(t)q(t) − u(t)p(t) ]k . (3)

The latter generates a Pythagorean hodograph from complex polynomials

α(t) = u(t) + i v(t) , β(t) = q(t) + i p(t) (4)

through the expression

r′(t) = (|α(t)|2 − |β(t)|2, 2 Re(α(t)β(t)), 2 Im(α(t)β(t))) . (5)

The equivalence of (3) and (5) is seen by setting A(t) = α(t)+kβ(t), where
the imaginary unit i is identified with the quaternion basis element i. It will
be advantageous to simultaneously employ both representations (3) and (5)
of spatial PH curves — see [4] for further details.

The quaternion polynomial (2) and the complex polynomials (4) may be
specified in terms of the Bernstein basis

bnr (t) =

(

n

r

)

(1 − t)n−rtr , r = 0, . . . , n

of degree n on t ∈ [ 0, 1 ] as

A(t) =
n

∑

r=0

Ar b
n
r (t) , (6)

α(t) =
n

∑

r=0

αr b
n
r (t) , β(t) =

n
∑

r=0

βr b
n
r (t) , (7)

where the coefficients are related by Ar = αr + kβr for r = 0, . . . , n.
An adapted orthonormal frame (f1, f2, f3) on a space curve r(t) employs

the curve tangent t = r′/|r′| as the vector f1, while the vectors f2, f3 span the
curve normal plane. The Euler–Rodrigues frame (ERF) is a rational adapted
rational frame, defined on spatial PH curves [2]. In terms of the quaternion
form (3), it is specified by

e1(t) =
A(t) iA∗(t)

|A(t)|2 , e2(t) =
A(t) jA∗(t)

|A(t)|2 , e3(t) =
A(t)kA∗(t)

|A(t)|2 . (8)

2Note that a product of the form A(t) iA∗(t) always generates a pure vector quaternion.
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Here e1 is the curve tangent t = r′/|r′|, while e2, e3 span the curve normal
plane. The ERF is a useful “reference frame” for the identification of rational
rotation–minimizing frames [2]. The ERF can also be defined in terms of the
Hopf map form (5) as

e1(t) =

(

|α(t)|2 − |β(t)|2, 2 Re(α(t)β(t)), 2 Im(α(t)β(t))
)

|α(t)|2 + |β(t)|2 ,

e2(t) =

(

− 2 Re(α(t)β(t)),Re(α2(t) − β2(t)), Im(α2(t) + β2(t))
)

|α(t)|2 + |β(t)|2 ,

e3(t) =

(

2 Im(α(t)β(t)),− Im(α2(t) − β2(t)),Re(α2(t) + β2(t))
)

|α(t)|2 + |β(t)|2 .

3 Rational rotation-minimizing frames

Han [13] showed that the RRMF curves can be characterized in terms of the
quaternion form (2)–(3) of spatial PH curves by the existence of relatively
prime polynomials a(t), b(t) such that

u(t)v′(t) − u′(t)v(t) − p(t)q′(t) + p′(t)q(t)

u2(t) + v2(t) + p2(t) + q2(t)
=

a(t)b′(t) − a′(t)b(t)

a2(t) + b2(t)
. (9)

This can be phrased in terms of the Hopf map form (4)–(5) as requiring the
existence of a complex polynomial w(t) = a(t) + i b(t) such that

Im(α(t)α′(t) + β(t)β′(t))

|α(t)|2 + |β(t)|2 =
Im(w(t)w′(t))

|w(t)|2 . (10)

The left–hand side of (9) and (10) is the ERF angular velocity component in
the direction of the curve tangent e1 = t = r′/|r′|, and when these conditions
are satisfied, a rational RMF (f1(t), f2(t), f3(t)) can be obtained from the ERF
by a rational normal–plane rotation. Namely, we set f1(t) = e1(t) and

[

f2(t)
f3(t)

]

=
1

a2(t) + b2(t)

[

a2(t) − b2(t) − 2 a(t)b(t)
2 a(t)b(t) a2(t) − b2(t)

] [

e2(t)
e3(t)

]

. (11)

Note that, since the determination of RMFs is an initial–value problem, one
need not require coincidence of f2, f3 with e2, e3 at t = 0. One may, instead,
impose any desired orientation of the former relative to the latter.
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4 Rotation-minimizing ERFs

When deg(α(t),β(t)) = m and (10) is satisfied with deg(w(t)) = m, we have
a Class 1 RRMF curve. The Class 1 quintics are the simplest non–degenerate
RRMF curves, i.e., true space curves [5, 8]. It was observed in [12] that (10)
can also be satisfied with deg(w(t)) < m. In particular, if (10) is satisfied
with deg(w(t)) = l < m, we have an RRMF curve of Class m− l + 1.

Our focus here is on the case l = 0 (i.e., w(t) = constant), which defines
RRMF curves of Class m+1. For such curves, the satisfaction of (10) implies
that Im(α(t)α′(t) + β(t)β′(t)) ≡ 0. These are PH curves for which the ERF
(e1(t), e2(t), e3(t)) is inherently rotation–minimizing, so the rational normal–
plane rotation (11) is not required. Choi and Han [2] showed that the simplest
non–planar curves in this category occur for m = 3, and characterized these
Class 4 RRMF curves of degree 7 in terms of sixteen real parameters.

For given m, the RRMF curves of Class m+ 1 (i.e., the PH curves with
rotation–minimizing ERFs) have the important advantage that their rational
RMFs are of lower degree than for those of Class < m+1. If (10) is satisfied
with deg(α(t),β(t)) = m, we obtain an RRMF curve of degree 2m+1 whose
rational RMF vectors are of degree 4m when deg(w(t)) = m, but only degree
2m when deg(w(t)) = 0. For example, the Class 1 RRMF quintics (m = 2)
satisfying (10) with deg(w(t)) = 2 have rational RMFs of degree 8, while the
Class 4 RRMF curves of degree 7 (m = 3) satisfying (10) with deg(w(t)) = 0
have rational RMFs of degree 6 (both cases define true space curves).

So the degree 7 PH curves with rotation–minimizing ERFs offer rational
RMFs of lower degree than the RRMF quintics studied in [5, 9]. They also
offer more degrees of freedom for the design of rotation–minimizing motions.
In [9] the problem of interpolating initial/final positions and orientations of
a rigid body by a rational rotation–minimizing motion, defined by a Class 1
RRMF quintic, was considered. These curves nominally have sufficient free
parameters to interpolate the given data, but the construction algorithm is
highly non–linear in nature — the existence of interpolants was found to be
contingent on a certain polynomial of degree 6 possessing a positive real root,
and examples reveal that this requirement is not always satisfied.

To define a PH curve of degree 7, we use cubic complex polynomials

α(t) = α0 b
3

0
(t) + α1 b

3

1
(t) + α2 b

3

2
(t) + α3 b

3

3
(t) ,

β(t) = β
0
b3
0
(t) + β

1
b3
1
(t) + β

2
b3
2
(t) + β

3
b3
3
(t) , (12)
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in (5). For these polynomials, we have

Im(α(t)α′(t) + β(t)β′(t)) = 3 Im(α0α1 + β0β1) b
4

0
(t)

+ 3

2
Im(α0α2 + β

0
β

2
) b4

1
(t)

+ 1

2
[ 3 Im(α1α2 + β1β2) + Im(α0α3 + β0β3) ] b4

2
(t)

+ 3

2
Im(α1α3 + β1β3) b

4

3
(t)

+ 3 Im(α2α3 + β
2
β

3
) b4

4
(t) , (13)

|α(t)|2 ± |β(t)|2 = (|α0|2 ± |β0|2) b60(t) + Re(α0α1 ± β0β1) b
6

1
(t)

+ [ 2

5
Re(α0α2 ± β

0
β

2
) + 3

5
(|α1|2 ± |β

1
|2) ] b6

2
(t)

+ [ 1

10
Re(α0α3 ± β0β3) + 9

10
Re(α1α2 ± β1β2) ] b6

3
(t)

+ [ 2

5
Re(α1α3 ± β1β3) + 3

5
(|α2|2 ± |β2|2) ] b6

4
(t)

+ Re(α2α3 ± β
2
β

3
) b6

5
(t) + (|α3|2 ± |β

3
|2) b6

6
(t) . (14)

If the curve is to have a rotation–minimizing ERF, the polynomial (13) must
vanish identically, i.e., we must have

Im(α0α1 + β0β1) = Im(α0α2 + β0β2) = 0 ,

3 Im(α1α2 + β1β2) + Im(α0α3 + β0β3) = 0 , (15)

Im(α1α3 + β
1
β

3
) = Im(α2α3 + β

2
β

3
) = 0 .

These equations impose five real constraints on the sixteen degrees of freedom
in the complex coefficients (αi,βi) for i = 0, . . . , 3. Choi and Han [2] were
the first to note that certain degree 7 PH curves possess rotation–minimizing
ERFs, and they described such curves in terms of sixteen real parameters.

Remark 1. For the quaternion form (3), we use a cubic polynomial

A(t) = A0 b
3

0
(t) + A1 b

3

1
(t) + A2 b

3

2
(t) + A3 b

3

3
(t) . (16)

In terms of its quaternions coefficients, the conditions (15) for a rotation–
minimizing ERF become

scal(A0 iA∗

1
) = scal(A0 iA∗

2
) = 0 ,

3 scal(A1 iA∗

2
) + scal(A0 iA∗

3
) = 0 , (17)

scal(A1 iA∗

3
) = scal(A2 iA∗

3
) = 0 .
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Note that, when the quaternion coefficients are expressed in the scalar–vector
form Ar = (ar, ar), the terms in (17) are of the form

scal(Ar iA∗

s) = i · (aras − asar − ar × as) .

The conditions (15) or (17) that identify rational ERFs are equivalent to the
constraints defined by equations (32)–(33) in [2].

We now derive an alternative to the characterization (15), in terms of one
real and two complex constraints on the coefficients of (12). For brevity, we
assume that Im(α0α3) 6= 0. This assumption is justified in Remark 2 below.

Proposition 1. If Im(α0α3) 6= 0, the conditions (15) identifying rotation–

minimizing ERFs on degree 7 PH curves are equivalent to

α1 =
Im(β3β1) α0 − Im(β0β1) α3

Im(α0α3)
, (18)

α2 =
Im(β3β2) α0 − Im(β0β2) α3

Im(α0α3)
, (19)

Im(α0α3 + β
0
β

3
) Im(α0α3 + 3 β

1
β

2
) = 0 . (20)

Proof : Suppose conditions (15) are satisfied with Im(α0α3) 6= 0. Setting
αi = ui + i vi, βi = qi + i pi for i = 0, . . . , 3, the first and fourth conditions in
(15) may be solved as linear equations for u1, v1 to obtain

u1 =
(q3p1 − q1p3)u0 − (q0p1 − q1p0)u3

u0v3 − u3v0

,

v1 =
(q3p1 − q1p3)v0 − (q0p1 − q1p0)v3

u0v3 − u3v0

,

and since q3p1 − q1p3 = Im(β
3
β

1
), q0p1 − q1p0 = Im(β

0
β

1
), u0v3 − u3v0 =

Im(α0α3), we obtain expression (18) for α1 = u1+i v1. Similar arguments for
the second and fifth conditions in (15) yield expression (19) for α2 = u2+i v2.
Now from (18)–(19) we obtain

Im(α1α2) =
Im(β

0
β

1
) Im(β

3
β

2
) − Im(β

3
β

1
) Im(β

0
β

2
)

Im(α0α3)
,

and one can verify that the numerator of this expression simplifies to give

Im(α1α2) =
Im(β

0
β

3
) Im(β

1
β

2
)

Im(α0α3)
. (21)
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Substituting this into the third of equations (15) then yields condition (20),
after some manipulation.

Conversely, suppose Im(α0α3) 6= 0 and conditions (18)–(20) are satisfied.
Multiplying (18) and its conjugate by α0 and α3 and taking the imaginary
part then yields the first and fourth conditions in (15). Similarly, multiplying
(19) and its conjugate by α0 and α3 and taking the imaginary part gives the
second and fifth conditions in (15). Finally, noting that (18)–(19) imply (21),
multiplying out condition (20), substituting (21), and simplifying gives

Im(α0α3) [ 3 Im(α1α2 + β1β2) + Im(α0α3 + β0β3) ] = 0 .

Since Im(α0α3) 6= 0 by assumption, the third condition in (15) must hold.

Further simplification of the conditions (18)–(20) is achieved by adopting
a special coordinate system, which proves advantageous in the context of the
rotation–minimizing motion interpolation problem discussed in Section 5.

Definition 1. The PH curve specified by (5) and (12) is in canonical form3

if (α0,β0) = wi(1, 0) with wi 6= 0, so that (e1(0), e2(0), e3(0)) = (i, j,k).

A regular curve, with r′(0) 6= 0, can always be mapped to canonical form
through a spatial rotation. Since the assumption of canonical form amounts
to the adoption of a particular coordinate system, any results we deduce for
curves in canonical form must apply to PH curves in general position.

Lemma 1. In canonical form with (α0,β0) = wi(1, 0) the degree 7 PH curves

defined by (5) and (12) that have rotation–minimizing ERFs are characterized

by the conditions

α1 =
Im(β3β1)

Im(α3)
, α2 =

Im(β3β2)

Im(α3)
, Im(wiα3 + 3 β

1
β

2
) = 0 . (22)

Proof : The expressions for α1,α2 in (22) arise on setting (α0,β0
) = wi(1, 0)

in (18)–(19). Also making this substitution in (20) yields

wi Im(α3) Im(wiα3 + 3 β1β2) = 0 ,

3This definition of canonical form differs somewhat from prior use [5], where the initial
derivative r′(0) was mapped to the vector i. No scaling is invoked in Definition 1, since the
parameter wi is used to adjust |r′(0)| = w2

i
. Instead, a standard orientation of the normal–

plane vectors e2(0), e3(0) about the tangent e1(0) is imposed in the present definition.
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and since Im(α0α3) = wi Im(α3) 6= 0 by assumption, we obtain the third
condition in (22).

Note that, since the reduction to canonical form corresponds to a spatial
rotation of the hodograph, it does not affect the satisfaction of (10). We focus
on canonical–form curves that satisfy (10) with a(t), b(t) constant, so that
Im(αα′ + ββ′) ≡ 0. On such curves, characterized by Lemma 1, the ERF is
rotation–minimizing, and the normal–plane rotation (11) is not required.

Example 1. With wi = 1, the conditions (22) are satisfied by the values

α0 = 1 , α1 = −5

3
, α2 =

8

3
, α3 = 2 + 3 i ,

β
0

= 0 , β
1

= − 2 − i , β
2

= 3 + 2 i , β
3

= 1 − 2 i .

The cubic polynomials defining the Hopf map form of r′(t) are then

α(t) = (1 − 8 t+ 21 t2 − 12 t3) + (3 t3) i ,

β(t) = (− 6 t+ 21 t2 − 14 t3) + (− 3 t+ 12 t2 − 11 t3) i ,

and hence we find that

α(t)α′(t) + β(t)β′(t) = − 8 + 151 t− 1026 t2 + 2904 t3 − 3390 t4 + 1410 t5

is a real polynomial, as required for a rotation–minimizing ERF.
The components x′(t) = |α(t)|2 − |β(t)|2, y′(t) = 2 Re(α(t)β(t)), z′(t) =

2 Im(α(t)β(t)) of r′(t) and parametric speed σ(t) = |α(t)|2 + |β(t)|2 are

x′(t) = 1 − 16 t+ 61 t2 − 36 t3 − 186 t4 + 348 t5 − 164 t6 ,

y′(t) = − 12 t+ 138 t2 − 616 t3 + 1232 t4 − 1020 t5 + 270 t6 ,

z′(t) = 6 t− 72 t2 + 340 t3 − 788 t4 + 876 t5 − 348 t6 ,

σ(t) = 1 − 16 t+ 151 t2 − 684 t3 + 1452 t4 − 1356 t5 + 470 t6 .

One can verify that [ r′(t) × r′′(t) ] · r′′′(t) 6≡ 0, so r(t) is a true space curve.

Remark 2. The characterization of canonical–form degree 7 PH curves with
rotation–minimizing ERFs in Proposition 1 assumed that Im(α0α3) 6= 0. In
fact, this condition is necessary for a space curve. For brevity, we consider
it in the case of canonical–form curves, where it becomes Im(α3) 6= 0. For a
canonical–form curve with α0 = wi 6= 0 and β0 = 0, the first two conditions
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in (15) become wi Im(α1) = wi Im(α2) = 0, and thus α0,α1,α2 are all real.
If we also have Im(α3) = 0, the remaining three conditions in (15) become

Im(β
1
β

2
) = Im(β

1
β

3
) = Im(β

2
β

3
) = 0 ,

and thus β
1
,β

2
,β

3
are of the form ℓ1 exp(iψ), ℓ2 exp(iψ), ℓ3 exp(iψ). Then,

since α(t) is real and β(t) = [ ℓ1b
3

1
(t)+ ℓ2b

3

2
(t)+ ℓ3b

3

3
(t) ] exp(iψ), we see that

r′(t) as defined by (5) lies in the plane through the origin with unit normal
n = (0, sinψ,− cosψ).

5 Rotation-minimizing motion design

Choi and Han [2] considered the problem of first–order Hermite interpolation
by degree 7 PH curves with rotation–minimizing ERFs, and on the basis of
numerical experiments concluded that “it is highly likely that the C1 Hermite
interpolation problem is solvable for most (if not all) practical cases.”

The problem considered here is a generalization of that in [2]. Instead of
just initial/final points and tangents pi,pf and ti, tf we consider points pi,pf

and frames (ti,ui,vi) and (tf ,uf ,vf) specifying the initial/final positions and
orientations of a rigid body that is to execute a rotation–minimizing motion.
As noted above, this problem has already been considered [9] in the context
of Class 1 RRMF quintics, but with these curves it was not possible to ensure
the existence of interpolants for arbitrary spatial motion data. Furthermore,
when interpolants exist, there are no residual degrees of freedom to improve
shape quality. This is a significant concern since — as observed in [9] — the
interpolation of end points and frames by rotation–minimizing motions does
not necessarily yield trajectories of good shape quality.

Remark 3. In the interpolation of C1 Hermite data with PH quintics [7], free
parameters φ0, φ1, φ2 associated with the quaternion coefficients arise. Since
the shape of the curve depends only their differences, it is customary to take
φ1 = 0. In the present context, however, this assumption is not appropriate
since it alters the ERF orientation. On proceeding to degree 7 PH curves, four
additional parameters are introduced through another quaternion coefficient,
and two more in relaxing from C1 to G1 data. Together with φ0, φ1, φ2 this
gives a total of nine freedoms, of which five are used to satisfy the conditions
(22) for a rotation–minimizing ERF, and two are employed to interpolate the
orientations of (ui,vi) and (uf ,vf ) about ti and tf . Hence, the interpolation
problem addressed here incorporates two free parameters.
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Henceforth, we assume that pi = (0, 0, 0) and (ti,ui,vi) = (i, j,k). Since
integrating the hodograph (5) introduces a free constant r(0) = pi, the former
choice involves no loss of generality. The latter is achieved through a spatial
rotation R that transforms4 the curve to canonical form (see Section 4). The
rotation R must also be applied to the vectors (tf ,uf ,vf ) and ∆p = pf −pi.
Once the interpolation problem is solved for this standard configuration, the
inverse rotation R−1 can be applied to restore the solution to general position.
In standard configuration, the remaining interpolation requirements are:

(a) matching e1(1) to the specified end–tangent tf ;

(b) matching e2(1), e3(1) to the the normal–plane vectors uf ,vf ;

(c) matching r(1) − r(0) to the displacement ∆p = pf − pi.

5.1 Interpolation of tangent

The interpolation condition (a) corresponds to the requirement that

e1(1) =
(|α3|2 − |β

3
|2, 2 Re(α3β3

), 2 Im(α3β3
))

|α3|2 + |β
3
|2 = tf .

Writing tf = (λ, µ, ν) where λ2 + µ2 + ν2 = 1, and defining φ by

µ+ i ν =
√

1 − λ2 exp(iφ) , (23)

this is equivalent to

|α3|2 − |β3|2
|α3|2 + |β3|2

= λ ,
2 α3β3

|α3|2 + |β3|2
=

√
1 − λ2 exp(iφ) . (24)

The solutions to (24) can be expressed in terms of parameters wf and θ as

α3 = wf

√

1

2
(1 + λ) exp(i(φ+ 1

2
θ)) , β3 = wf

√

1

2
(1 − λ) exp(i1

2
θ) . (25)

Condition (a) is satisfied by choosing α3,β3 of the form (25). Note that, since
|r′(1)| = w2

f , the parameter wf controls the mangitude of the final derivative.

4This is most easily realized as a sequence of two rotations — the first being a rotation
that maps ti onto i, and the second being a rotation about i that maps ui, vi onto j, k.
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5.2 Interpolation of normal-plane vectors

The satisfaction of condition (b) is facilitated by the following result.

Lemma 2. Consider the orthonormal frame (e1, e2, e3) defined in terms of

a given quaternion A = u+ v i + p j + q k by

e1 =
A iA∗

|A|2 , e2 =
A jA∗

|A|2 , e3 =
AkA∗

|A|2 .

Then, under the transformation

A → AQ , Q = cos 1

2
θ + sin 1

2
θ i , (26)

this frame transforms according to

(e1, e2, e3) → (e1, cos θ e2 + sin θ e3,− sin θ e2 + cos θ e3) . (27)

In other words, e1 is unaltered but e2, e3 rotate through angle θ about e1.

Proof : The transformation rule (27) follows directly from the fact that the
quaternion Q defined by (26) satisfies Q iQ∗ = i and

Q jQ∗ = cos θ j + sin θ k , QkQ∗ = − sin θ j + cos θ k .

Writing A = α + kβ for appropriate complex numbers α, β we see that
for the Hopf map form, the equivalent frame

e1 =

(

|α|2 − |β|2, 2 Re(αβ), 2 Im(αβ)
)

|α|2 + |β|2 ,

e2 =

(

− 2 Re(αβ),Re(α2 − β2), Im(α2 + β2)
)

|α|2 + |β|2 ,

e3 =

(

2 Im(αβ),− Im(α2 − β2),Re(α2 + β2)
)

|α|2 + |β|2 , (28)

also obeys (27) under the corresponding transformation

(α,β) → (α exp(i1
2
θ),β exp(i1

2
θ)) .

Lemma 2 allows one to enforce any desired orientation of the ERF normal–
plane vectors e2(t), e3(t) about the tangent e1(t) at a particular point t on a
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spatial PH curve r(t). This property will be used to match the ERF at t = 1
to the prescribed final frame (tf ,uf ,vf). Now let

ê1 = λ i +
√

1 − λ2 cosφ j +
√

1 − λ2 sinφk ,

ê2 = −
√

1 − λ2 cos φ i + (λ cos2 φ− sin2 φ) j + (1 + λ) cosφ sin φk ,

ê3 =
√

1 − λ2 sin φ i − (1 + λ) cosφ sinφ j + (cos2 φ− λ sin2 φ)k ,

be the frame defined by substituting (25) with θ = 0 for α,β in (28). Then
the value of θ that matches the final ERF vectors e2(1), e3(1) to uf , vf is
determined by the conditions

cos θ ê2 + sin θ ê3 = uf , − sin θ ê2 + cos θ ê3 = vf ,

from which we may deduce that

(cos θ, sin θ) = (ê2 · uf , ê3 · uf ) = (ê3 · vf ,− ê2 · vf) . (29)

Condition (b) is satisfied by using in (25) the θ value defined by (29).

5.3 Interpolation of end-point displacement

Satisfaction of condition (c) is equivalent to

r(1) − r(0) =

∫

1

0

r′(t) dt = ∆p , (30)

where ∆p = pf −pi = (∆x,∆y,∆z). Using the Hopf map form (5), we have

∫

1

0

|α(t)|2 − |β(t)|2 dt = ∆x ,

∫

1

0

2 α(t)β(t) dt = ∆y + i ∆z . (31)

We now take stock of the available freedoms. In canonical form α0,β0
depend

only on the parameter wi. Moreover, interpolation of (tf ,uf ,vf) implies that
α3,β3

are specified by (25), where θ is defined by (29), and thus depend only
on wf . Now by Lemma 1, the coefficients of the cubics (12) must satisfy the
conditions (22) if the curve is to possess a rotation–minimizing ERF. The
first two conditions specify α1,α2 in terms of β

1
,β

2
and α3,β3

. Thus, only
wi, wf and β1,β2 remain as free variables, incorporating six scalar degrees of
freedom, while four scalar constraints remain to be satisfied — namely, the
third of conditions (22) and the displacement interpolation (31).
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Hence, the motion interpolation problem embodies two residual freedoms.
In the approach described below wi and wf are regarded as free parameters,
that appear in a system of four equations for the real and imaginary parts of
β

1
, β

2
. Since |r′(0)| = w2

i and |r′(1)| = w2

f , varying these parameters offers
a natural means to manipulate the shape of the trajectory, while preserving
interpolation of the end points/orientations. Henceforth, for brevity, we write

c = cos(φ+ 1

2
θ) , s = sin(φ+ 1

2
θ) , (32)

k =
√

1

2
(1 + λ) , l =

√

1

2
(1 − λ) , m =

l

k

1

s
. (33)

These are known values, once the end frames have been interpolated. Thus,
setting β

1
= z1 exp(i1

2
θ), β

2
= z2 exp(i1

2
θ) with z1 = x1 + i y1, z2 = x2 + i y2

and using (22) and (25) — with θ defined by (29) — the coefficients of the
cubics (12) become

(α0,α1,α2,α3) = (wi, m y1, m y2, wfk(c+ i s)) , (34)

(β0,β1,β2,β3) = (0, z1exp(i1
2
θ), z2 exp(i1

2
θ), wf l exp(i1

2
θ)) , (35)

and they must also satisfy the third condition in (22). Recall from Remark 2
that we require Im(α3) 6= 0 for a space curve. Since wf 6= 0 for a regular
curve, this implies that ks 6= 0. Hence, the quantity m in (33) is finite.

Now for the cubics (12), the first integrand in (31) is given by (14) with
the minus sign, while the second integrand is

2 α(t)β(t) = 2 α0β0 b
6

0
(t) + (α0β1 + α1β0) b

6

1
(t)

+ 2

5
(α0β2 + α2β0 + 3 α1β1) b

6

2
(t)

+ 1

10
[ α0β3 + α3β0 + 9 (α1β2 + α2β1) ] b6

3
(t)

+ 2

5
(α1β3

+ α3β1
+ 3 α2β2

) b6
4
(t)

+ (α2β3
+ α3β2

) b6
5
(t) + 2 α3β3

b6
6
(t) .

Since the definite integral of a Bernstein–form polynomial of degree n is just
the sum of its coefficients divided by n+1, conditions (31) can be written as

10(|α0|2 − |β
0
|2) + 10 Re(α0α1 − β

0
β

1
)

+ 4 Re(α0α2 − β
0
β

2
) + 6 (|α1|2 − |β

1
|2)

+ Re(α0α3 − β0β3) + 9 Re(α1α2 − β1β2)

+ 4 Re(α1α3 − β
1
β

3
) + 6 (|α2|2 − |β

2
|2)

+ 10 Re(α2α3 − β
2
β

3
) + 10(|α3|2 − |β

3
|2) = 70 ∆x , (36)
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20 α0β0 + 10(α0β1 + α1β0)

+ 4(α0β2
+ α2β0

) + 12 α1β1

+ α0β3 + α3β0 + 9 (α1β2 + α2β1)

+ 4(α1β3 + α3β1) + 12 α2β2

+ 10(α2β3
+ α3β2

) + 20 α3β3
= 70 (∆y + i ∆z) . (37)

We substitute from (34)–(35) into the third of equations (22) and equation
(36). In equation (37), we multiply both sides by exp(i1

2
θ), substitute (34)–

(35), and separate real and imaginary parts. This yields the following system
of four quadratic equations

f1(x1, y1, x2, y2) = k wiwf s + 3(x1y2 − x2y1) = 0 , (38)

f2(x1, y1, x2, y2) = 10w2

i + mwi(10y1 + 4y2) + 6m2(y2

1
+ y2

2
)

+ 9m2y1y2 − 6(x2

1
+ y2

1
+ x2

2
+ y2

2
) − 9(x1x2 + y1y2) + k wiwf c

− kmwf [ 4(sx1 − cy1) + 10(sx2 − cy2) ] + 10w2

f λ − 70 ∆x = 0 , (39)

f3(x1, y1, x2, y2) = wi(10x1 + 4x2) + 9m(x1y2 + x2y1) + 12m(x1y1 + x2y2)

+ l wiwf + lmwf (4y1 + 10y2) + k wf [ 4(cx1 + sy1) + 10(cx2 + sy2) ]

+ 20 kl w2

f c − 70 (cos 1

2
θ∆y − sin 1

2
θ∆z) = 0 , (40)

f4(x1, y1, x2, y2) = − wi(10y1 + 4y2) − m (12y2

1
+ 18y1y2 + 12y2

2
)

+ k wf [ 4(sx1 − cy1) + 10(sx2 − cy2) ] + 20 kl w2

f s

− 70 (sin 1

2
θ∆y + cos 1

2
θ∆z) = 0 , (41)

in the four real variables x1, y1, x2, y2, where λ, φ,∆x,∆y,∆z and (32)–(33)
are known quantities, while wi, wf are parameters that can be used to vary
the end–derivative magnitudes, since |r′(0)| = w2

i and |r′(1)| = w2

f .

Remark 4. Apart from the terms involving ∆x,∆y,∆z equations (38)–(41)
are quadratic in wi, wf , x1, y1, x2, y2. Hence, if (x1, x2, y1, y2) is a solution for
parameter values (wi, wf) when |∆p| = 1, then

√
L(x1, x2, y1, y2) is a solution

for the parameter values
√
L(wi, wf) when |∆p| = L. So equations (38)–(41)

can be solved, without loss of generality, under the assumption that |∆p| = 1,
and an appropriate scaling can be applied a posteriori to the solution.

From Remark 4, we observe that canonical–form input data depends upon
only five essential parameters — namely, two to specify the direction of ∆p,
and three to determine the orientation of the end–frame (tf ,uf ,vf ).
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Once solutions x1, y1, x2, y2 to the system (38)–(41) have been computed,
we may determine the complex coefficients (34)–(35), where z1 = x1+i y1 and
z2 = x2 + i y2. The corresponding quaternion coefficients are Ai = αi + kβi

for i = 0, . . . , 3. Then, substituting (16) into (3) and integrating yields the
Bézier form of a degree 7 PH curve,

r(t) =
7

∑

i=0

pi b
7

i (t) ,

with control points p0, . . . ,p7 given by

p1 = p0 +
1

7
A0 iA∗

0
,

p2 = p1 +
1

14
(A0 iA∗

1
+ A1 iA∗

0
) ,

p3 = p2 +
1

35
(A0 iA∗

2
+ 3A1 iA∗

1
+ A2 iA∗

0
) ,

p4 = p3 +
1

140
(A0 iA∗

3
+ A3 iA∗

0
+ 9A1 iA∗

2
+ 9A2 iA∗

1
) ,

p5 = p4 +
1

35
(A1 iA∗

3
+ 3A2 iA∗

2
+ A3 iA∗

1
) ,

p6 = p5 +
1

14
(A2 iA∗

3
+ A3 iA∗

2
) ,

p7 = p6 +
1

7
A3 iA∗

3
, (42)

where we set p0 = pi. By construction, this curve has a rotation–minimizing
ERF, with initial and final instances that coincide (in standard configuration)
with the specified frames (ti,ui,vi) and (tf ,uf ,vf ). Also, p7 − p0 coincides
with the specified displacement vector ∆p = (∆x,∆y,∆z) = pf − pi.

5.4 Motion interpolation algorithm

The following algorithm summarizes the procedure for constructing a rigid–
body motion, described by a degree 7 PH curve with a rotation–minimizing
Euler–Rodrigues frame, that matches initial/final positions and orientations.

Algorithm

input: initial/final points pi, pf and frames (ti,ui,vi), (tf ,uf ,vf )
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1. identify the spatial rotation R that maps the initial frame
(ti,ui,vi) onto (i, j,k) and apply it also to the final frame
(tf ,uf ,vf ) and the displacement vector ∆p = pf − pi;

2. determine φ from the components (λ, µ, ν) of tf using (23);

3. find the θ value that matches e2(1), e3(1) to uf , vf from (29);

4. compute the constants specified by expressions (32)–(33);

5. choose values for wi, wf appropriate to the desired magnitudes
of the end derivatives;

6. identify a real solution (x1, y1, x2, y2) of the system (38)–(41);

7. with z1 = x1 + i y1 and z2 = x2 + i y2 determine
(αr,βr) for r = 0, . . . , 3 from expressions (34)–(35);

8. compute the corresponding quaternion coefficients
Ar = αr + kβr for r = 0, . . . , 3 and the Bézier control
points p0, . . . ,p7 of the curve r(t) from (42);

9. compute the rotation–minimizing ERF using (8);

10. apply the inverse R−1 of the spatial rotation used in step 1,
to restore the curve r(t) to its original orientation.

output: degree 7 PH curve r(t) with rotation–minimizing ERF
(e1(t), e2(t), e3(t)) where r(0) = pi, (e1(0), e2(0), e3(0)) = (ti,ui,vi)
and r(1) = pf , (e1(1), e2(1), e3(1)) = (tf ,uf ,vf ).

6 Computed examples

The system (38)–(41), in which wi and wf are free parameters, imposes four
quadratic constraints on the real variables x1, y1, x2, y2. Experiments indicate
that, for appropriately chosen wi, wf values, this system is well–conditioned,
and numerical methods for its solution converge rapidly to machine precision.
Since the parameters wi and wf are found to strongly influence the existence
and shape properties of the solutions, their values should be determined by
consideration of suitable shape measures, rather than ad hoc choice.
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6.1 Integral shape measures

In the Hopf map form, the curvature of the PH curve specified by (4)–(5)
can be expressed [10] as

κ(t) = 2
|α(t)β′(t) − α′(t)β(t) |

σ2(t)
, (43)

where σ(t) = |α(t)|2 + |β(t)|2. Hence, the shape measures defined by

Im =

∫

1

0

κm(t) σ(t) dt , m = 0, 1, 2

can, in principle, be evaluated by factorizing σ(t) and performing a partial
fraction expansion of the integrand. The simplest shape measure is the total
arc length,

S = I0 =

∫

1

0

σ(t) dt =

∫

1

0

|α(t)|2 + |β(t)|2 dt . (44)

By arguments analogous to those used in Section 5, one can verify that the
dependence of S on x1, y1, x2, y2 and the parameters wi, wf is defined by

70S(x1, y1, x2, y2) = 10w2

i + mwi(10y1 + 4y2) + 6m2(y2

1
+ y2

2
)

+ 9m2y1y2 + 6(x2

1
+ y2

1
+ x2

2
+ y2

2
) + 9(x1x2 + y1y2) + k wiwf c

+ kmwf [ 4(sx1 + cy1) + 10(sx2 + cy2) ] + 10w2

f . (45)

The integral I1, which may be regarded as a measure of the “total turning”
of the curve tangent, is less commonly used in practice. Finally, the m = 2
case corresponds to the elastic bending energy,

E = I2 =

∫

1

0

κ2(t) σ(t) dt = 4

∫

1

0

|α(t)β′(t) − α′(t)β(t) |2
(|α(t)|2 + |β(t)|2)3

dt . (46)

This defines the strain energy stored in an initially–straight elastic beam that
is bent into the shape of a given space curve. As noted above, it is possible to
evaluate (46) by a partial fraction expansion of the integrand if the roots of
σ(t) are known, but this can be rather cumbersome. However, it is possible
to differentiate E with respect to the parameters wi, wf and evaluate the
integrals in the resulting expressions by numerical quadrature.

The arc length S and the bending energy E both have shortcomings as
measures to be minimized to identify interpolants of good shape. Curves for
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which S is minimized may have regions of high curvature. On the other hand,
curves for which E is minimized may have large arc lengths (for a circle of
radius R, we note that E = 2π/R→ 0 while S = 2πR → ∞ as R → ∞). E
may, in principle, be minimized under the constraint of a fixed value for S,
but there is no a priori guarantee that the chosen value will admit solutions.

A weighted linear combination of S and E has been proposed as a shape
measure that will penalize both high curvature and excessive arc length.
But such a combination is not scale–invariant, since S has dimension length

while E has dimension (length)−1. The product SE, on the other hand, is
scale–independent: it depends only on the shape (not the size) of the curve.

6.2 Representative examples

Ideally, the interpolation would be formulated as a constrained optimization
problem, in which some shape measure is minimized subject to satisfaction
of the conditions (38)–(41) by the variables x1, y1, x2, y2 and wi, wf . However,
developing robust and efficient algorithms for this is a substantive problem
in its own right, which we defer to a future study.

The examples presented below were computed using a computer algebra
system to solve the equations (38)–(41) numerically for given wi, wf values,
and the system graphical display function was used to animate the behavior
of these solutions as wi, wf are varied continuously. In this manner, a “visual”
identification of parameter values that provide solutions with desirable shape
properties was possible. It was observed that, as wi, wf are varied, either zero
or two real solutions exist — or, exceptionally, two coincident real solutions.
Because of their non–linear nature, it is difficult to verify that the equations
(38)–(41) always admit real solutions for some wi, wf values, given arbitrary
motion data. But the availability of these free parameters, and our experience
with the numerical experiments, suggest that this is probable.

Examples 2–4 below re–visit the data used to construct RRMF quintic
motion interpolants in [9]. Examples 2 and 3 show that, for suitable choices of
wi and wf , one can obtain motion interpolants of shape quality comparable to,
or better than, that of the RRMF quintics. Example 4 shows the possibility of
interpolants to motion data for which the RRMF quintics admit no solution.
Finally, Example 5 illustrates the interpolation of motion data sampled from
a smooth analytic curve — a circular helix — for which closed–form (though
not rational) expressions for the RMF vectors are known.

Example 2. The data for Example 1 in [9] comprises the displacement vector

19



∆p = (1, 0, 0) and initial/final frames specified by

(ti,ui,vi) = (Q0 iQ∗

0
,Q0 jQ∗

0
,Q0 kQ∗

0
) , (47)

(tf ,uf ,vf) = (Q1 iQ∗

1
,Q1 jQ∗

1
,Q1 kQ∗

1
) , (48)

where the unit quaternions Q0, Q1 are defined by

Q0 = (cos 1

2
φ0 + sin 1

2
φ0 n0) S , Q1 = (cos 1

2
φ1 + sin 1

2
φ1 n1) S ,

with

φ0 =
π

4
, n0 = (0, 0, 1) and φ1 = − π

4
, n1 =

(1, 1, 1)√
3

,

and S = (−1+ i)/
√

2. This data is reduced to canonical form, in the sense of
Definition 1, by setting (ti,ui,vi) = (i, j,k) and making the transformations

∆p → Q∗

0
∆pQ0 , (tf ,uf ,vf ) → (Q∗

0
tf Q0,Q∗

0
uf Q0,Q∗

0
vf Q0) . (49)

By visual inspection, the values (wi, wf) = (1.01,−1.78) are found to yield a
good solution. There are two distinct interpolants, defined by the coefficients

A0 = 1.010000 ,

A1 = 1.102520 + 0.125786 j + 0.543737k ,

A2 = 0.304785 + 0.337894 j + 0.085320k ,

A3 = 1.368820 − 0.513842 i + 0.992666 j− 0.212840k ,

and

A0 = 1.010000 ,

A1 = − 0.952646 − 0.356107 j− 0.416772k ,

A2 = 1.927890 + 0.369852 j + 0.918649k ,

A3 = 1.368820 − 0.513842 i + 0.992666 j− 0.212840k ,

in (16). The arc length (44) and bending energy (46) for the first interpolant
are S = 1.19035 and E = 4.81259, while for the second they are S = 1.10768
and E = 54.1824. Figure 1 shows the two interpolants, with a parallelepiped
indicating the initial/final frame orientations. Also shown is an animation of
the rotation–minimizing motions defined by them. Clearly, the first solution
is preferable, as suggested by its lower bending energy. The second solution
exhibits a small region of high curvature near one end, apparent in Figure 1.
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Figure 1: Upper: the degree 7 interpolants to the motion data of Example 2
— the parallelepiped indicates the initial and final frame orientations. Lower:
animation of the rational rotation–minimizing motions defined by these two
degree 7 interpolants. The motion has been discretized by uniform arc–length
increments, corresponding to maintenance of uniform speed, along the path.

Figure 2: The two RRMF quintic interpolants to the Example 2 data, from
[9], for comparison with the degree 7 interpolants with rotation–minimizing
ERFs shown in Figure 1. Note that these rational RMFs are of degree 8, as
compared to the degree 6 rational RMFs for the interpolants in Figure 1.
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Two RRMF quintic interpolants to the motion data of this example were
found in [9]. For comparison, they are shown in Figure 2. The first degree 7
rotation–minimizing ERF interpolant, at least, is of comparable shape quality
to these RRMF quintic curves. This is apparent in the curvature plots shown
in Figure 3. The other degree 7 interpolant should be rejected.
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Figure 3: Comparison of the curvature plots for the first degree 7 rotation–
minimizing ERF interpolant (solid line) and two RRMF quintic interpolants
(dotted lines) from [9], for the spatial motion data specified in Example 2.

Example 3. For Example 2 in [9], ∆p = (1, 0, 0) again, while (ti,ui,vi) and
(tf ,uf ,vf) are defined as in the preceding example, with the choices

φ0 =
π

6
, n0 =

(0, 1, 2)√
5

and φ1 =
π

3
, n1 =

(1, 1,−2)√
6

.

The data was reduced to canonical form as in the preceding example.
In this case, the parameter values (wi, wf) = (1.39, 1.39) were found to

give interpolants of good shape. For these values, two distinct solutions were
obtained, with coefficients for (16) given by

A0 = 1.390000 ,

A1 = 1.188430− 0.073706 j− 0.613274k ,

A2 = 0.291656 + 0.291452 j− 0.123586k ,

A3 = 1.064230 + 0.405430 i + 0.793956 j + 0.069048k ,
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and

A0 = 1.390000 ,

A1 = 0.523536− 0.221495 j− 0.286604k ,

A2 = 0.988106 + 0.284614 j− 0.479820k ,

A3 = 1.064230 + 0.405430 i + 0.793956 j + 0.069048k .

The arc length and bending energy for the first interpolant are S = 1.19619
and E = 5.38838, while for the second they are S = 1.17523 and E = 4.41097.
The interpolants are shown in Figure 4, in the same manner as in Figure 1. In
this case the solutions are quite similar, as suggested by their arc lengths and
bending energies (the second interpolant is perhaps somewhat preferable).

Figure 4: The two degree 7 interpolants to the motion data of Example 3.

Two distinct RRMF quintic interpolants were also found in [9] for this
example, shown in Figure 5. By comparison of Figures 4 and 5, it is evident
that the two degree 7 rotation–minimizing ERF interpolants and two RRMF
quintic interpolants are all quite similar. Figure 6 compares the curvature
plots for these two sets of motion interpolants.

Example 4. The data for Example 3 in [9] comprises the displacement vector
∆p = (1, 0, 0) and initial/final frames defined by

ti =
(1, 0,

√
3)

2
, ui = (0, 1, 0) , vi =

(−
√

3, 0, 1)

2
,
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Figure 5: The two RRMF quintic interpolants to the Example 3 data from
[9], for comparison with the corresponding degree 7 interpolants in Figure 1.
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Figure 6: The curvature plots for the two degree 7 rotation–minimizing ERF
interpolant (solid lines) compared with the two RRMF quintic interpolants
(dotted lines) from [9], for the spatial motion data specified in Example 3.
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tf =
(1,−

√
2, 1)

2
, uf =

(1, 0,−1)√
2

, vf =
(1,

√
2, 1)

2
.

In this case, reduction to canonical form is achieved by setting (ti,ui,vi) =
(i, j,k) and invoking (49) with Q0 = 1

2
(
√

3 − j).

Figure 7: The two degree 7 interpolants to the motion data of Example 4.

In this case, the values (wi, wf) = (1.52,−1.46) were found to yield good
solutions, specified by the quaternion coefficients

A0 = 1.520000 ,

A1 = 0.776903 + 1.166980 j + 0.896788k ,

A2 = 0.181929 + 0.609912 j + 0.035746k ,

A3 = 0.894064 − 0.997199 i + 0.516188 j− 0.267199k ,

and

A0 = 1.520000 ,

A1 = 0.398324 + 0.378487 j + 0.573583k ,

A2 = 0.630180 + 1.255390 j + 0.567579k ,

A3 = 0.894064 − 0.997199 i + 0.516188 j− 0.267199k .

The arc length and bending energy are S = 1.35179 and E = 10.9894 in the
former case, and S = 1.3554 and E = 10.559 in the latter case. These values
suggest that the motion interpolants are very similar, and this is corroborated
by Figure 7. The curvature plots for the interpolants are shown in Figure 8.
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Figure 8: The curvature plots for the two degree 7 rotation–minimizing ERF
interpolants to the spatial motion data specified in Example 4.

It was found in [9] that the data in this example does not admit RRMF
quintic interpolants. Hence, degree 7 rotation–minimizing ERF interpolants
may exist in cases where RRMF quintic interpolants are impossible.

Example 5. For the circular helix

r(φ) = (R cos φ,R sinφ, kφ) (50)

the Frenet frame can be written as

t = (−a sinφ, a cosφ, b), p = (− cos φ,− sinφ, 0), b = (b sin φ,− b cosφ, a)

where a = R/
√
R2 + k2 and b = k/

√
R2 + k2, while the parametric speed,

curvature, and torsion are

σ =
√
R2 + k2 , κ =

a

σ
, τ =

b

σ
.

The deviation of the RMF normal–plane vectors (u,v) from the Frenet frame
vectors (p,b) is thus

θ = θ0 −
∫ φ

0

τ σ dφ = θ0 − b φ .

Taking θ0 = 0, the RMF normal–plane vectors are

u = (− cosφ cos bφ− b sinφ sin bφ,− sinφ cos bφ+ b cosφ sin bφ,−a sin bφ) ,

v = (− cosφ sin bφ+ b sin φ cos bφ,− sin φ sin bφ− b cos φ cos bφ, a cos bφ) .
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Choosing R =
√

3 and k = 1, we obtain a = 1

2

√
3 and b = 1

2
. For end points

defined by φi = 0, φf = 1

2
π we have ∆p = (−

√
3,
√

3, 1

2
π) and

ti = 1

2
(0,

√
3, 1) , ui = (−1, 0, 0) , vi = 1

2
(0,−1,

√
3) ,

tf = 1

2
(−

√
3, 0, 1) , uf = 1

4
(−

√
2,−2

√
2,−

√
6) , vf = 1

4
(
√

2,−2
√

2,
√

6) .

The initial frame is generated through (47) using the quaternion

Q0 =
(2 i +

√
3 j + k)

2
√

2
(cos 1

2
φ0 + sin 1

2
φ0 i) , φ0 =

7π

8
.

Reduction to canonical form is thus achieved by setting (ti,ui,vi) = (i, j,k)
and invoking (49) with Q0 as defined above.

Figure 9: Degree 7 interpolants to positions and rotation–minimizing frames
sampled at φ = 0 and 1

2
π from the circular helix (50) with R =

√
3, k = 1.

For the values (wi, wf) = (1.14, 2.35) two solutions were obtained, with
quaternion coefficients

A0 = 1.140000 ,

A1 = 1.636390 + 0.099096 j + 0.152096k ,

A2 = 1.901260 − 0.012749 j + 0.485457k ,

A3 = 1.853160 + 0.131700 i− 0.550710 j + 1.329530k ,
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and

A0 = 1.14000 ,

A1 = − 1.711400 − 0.030904 j− 0.334667k ,

A2 = 4.425560 + 0.202195 j + 0.570214k ,

A3 = 1.853160 + 0.131700 i− 0.550710 j + 1.329530k .

The arc length and bending energy are S = 3.14512 and E = 0.610073 for the
former case, S = 3.04441 and E = 10.9288 for the latter. The interpolants
are illustrated in Figure 9. The large energy for the latter solution is due to a
small high–curvature region near one end of the interpolant, that is difficult to
discern in Figure 9 — this solution should be rejected. The first solution, on
the other hand, approximates the helical arc quite well. Figure 10 illustrates
the curvature and torsion plots for this solution. The curvature conforms well
to the value for the exact helix, although the torsion is initially higher. The
interpolant remains close to the exact helix segment over its entire extent.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

t

cu
rv

at
ur

e

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

t

to
rs

io
n

Figure 10: The curvature (left) and torsion (right) plots for the first degree
7 rotation–minimizing ERF interpolant to motion data sampled from a helix
in Example 5. Dotted lines show the curvature and torsion of the exact helix.

For general input data, the complexity of equations (38)–(41) precludes a
simple proof of the existence of solutions for some values of the parameters
wi, wf . Instead, we give empirical evidence suggesting that this may be true.
For the displacement vector5 ∆p = (1, 0, 0) a total of 1000 pairs of randomly–
oriented end frames (ti,ui,vi) and (tf ,uf ,vf ) were chosen. For each pair of
end frames wi, wf values were chosen randomly from the interval [−10,+10 ].
If no solution was obtained with the chosen values, the process was repeated
with newly–chosen wi, wf values, up to a maximum of 100 times.

5Note that, by Remark 4, fixing |∆p| does not influence the existence of solutions.
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Figure 11 shows a histogram of the number of input data sets that yielded
a solution within a given number of wi, wf choices. The vast majority of cases
yield a solution within just a few choices. In particular, 491 cases produced a
solution with the first random choices for wi, wf on the interval [−10,+10 ].
Note the “tail” in the distribution (32 cases) evident in Figure 11 — for these
cases, no solution was obtained within 100 random wi, wf choices. This may
be an artifact of restricting the two free parameters to the interval [−10,+10 ]
rather than an indication of non–existence of solutions. In principle, it can
be remedied by employing a larger interval, but this distorts the distribution
under uniform sampling, since most solutions occur for small wi, wf values,
which become more sparsely sampled when the range is increased.
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Figure 11: Histogram showing number of data sets (vertical axis) for which a
solution was found within a given number of wi, wf choices (horizontal axis).

7 Closure

A characterization of the degree 7 spatial PH curves with rotation–minimizing
Euler–Rodrigues frames has been derived, and used to formulate the problem
of identifying a rational rotation–minimizing rigid–body motion interpolant
to given initial/final positions and frames pi, (ti,ui,vi) and pf , (tf ,uf ,vf ) as
a system of four quadratic equations in four real variables. These equations,
containing two free parameters that control the magnitudes of the interpolant
end–derivatives, are well–conditioned and amenable to accurate solution by
numerical methods. Computed examples show that motion interpolants with
excellent shape properties can be obtained through appropriate choices of the
free parameters, and solutions exist for data sets that do not admit a quintic
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RRMF interpolant. Moreover, the rational RMFs on these new interpolants
are of degree 6, rather than degree 8 for the RRMF quintics in [9].

The goals of this paper were to characterize the degree 7 PH curves with
rotation–minimizing ERFs in a manner amenable to the motion interpolation
problem; to formulate a system of equations that embodies this problem; and
to demonstrate the existence of solutions with excellent shape properties for
suitable choices of the two free parameters. The systematic exploitation of
these free parameters, in terms of optimizing certain integral shape measures,
is a substantive open problem that we defer to a future study.
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