
This is a repository copy of A structure-preserving matrix method for the deconvolution of
two Bernstein basis polynomials.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/91525/

Version: Accepted Version

Article:

Winkler, J.R. and Yang, N. (2014) A structure-preserving matrix method for the
deconvolution of two Bernstein basis polynomials. Computer Aided Geometric Design, 31
(6). 317 - 328. ISSN 0167-8396

https://doi.org/10.1016/j.cagd.2014.02.009

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

A structure-preserving matrix method for the

deconvolution of two Bernstein basis

polynomials

Joab R. Winkler, a Ning Yang a

aDepartment of Computer Science, The University of Sheffield, Regent Court,

211 Portobello, Sheffield S1 4DP, United Kingdom

j.winkler@dcs.shef.ac.uk, acp08ny@sheffield.ac.uk

Abstract

This paper describes the application of a structure-preserving matrix method to the
deconvolution of two Bernstein basis polynomials. Specifically, the deconvolution
ĥ/f̂ yields a polynomial ĝ provided the exact polynomial f̂ is a divisor of the
exact polynomial ĥ and all computations are performed symbolically. In practical
situations, however, inexact forms, h and f of, respectively, ĥ and f̂ are specified,
in which case g = h/f is a rational function and not a polynomial. The simplest
method to calculate the coefficients of g is the least squares minimisation of an over-
determined system of linear equations in which the coefficient matrix is Tœplitz,
but the solution is a polynomial approximation of a rational function. It is shown
in this paper that an improved result for g is obtained when the Tœpliz structure
of the coefficient matrix is preserved, that is, a structure-preserving matrix method
is used. In particular, this method guarantees that a polynomial solution to the
deconvolution h/f is obtained, and thus an essential property of the theoretically
exact solution is retained in the computed solution. Computational examples that
show the improvement in the solution obtained from the structure-preserving matrix
method with respect to the least squares solution are presented.

Key words: Polynomial deconvolution; Bernstein basis polynomials;
structure-preserving matrix methods

1 Introduction

The Bernstein polynomial basis is used in computer aided geometric design
because of its elegant geometric properties and superior numerical properties
with respect to those of the power basis [2]. Algorithms for the addition, mul-
tiplication, division and subdivision of Bernstein basis polynomials have been

Preprint submitted to Elsevier Preprint 29 April 2014

developed [3,4], and this paper considers the deconvolution of two Bernstein
basis polynomials h and f , that is, the computation of the polynomial g = h/f .
If h = ĥ and f = f̂ where ĥ and f̂ are the exact forms of h and f respectively,
f̂ is an exact divisor of ĥ, and all computations are performed symbolically,
then ĝ = ĥ/f̂ is a polynomial. In practical problems, however, the polynomials
h and f are inexact, in which case g = h/f is a rational function and not a
polynomial. It is shown in this paper that in this circumstance, a polynomial
is returned when a structure-preserving matrix method is used to compute g.
This solution must be compared with the simplest solution, that is, the least
squares (LS) solution of an over-determined set of linear equations, in which
case a polynomial approximation of a rational function is returned.

The approximation of a rational function by a polynomial may be adequate
in some applications, but other applications may require that the algorithm
for polynomial deconvolution return a polynomial, and not an approximation
of a polynomial. The requirement that a polynomial be returned arises in the
computation of multiple roots of a polynomial because the algorithm includes
a series of deconvolutions in which the denominator polynomial is an exact
divisor of the numerator polynomial [8]. The discussion above shows that if
the polynomials are subject to error and/or the computations are performed
in finite precision arithmetic, it cannot be guaranteed that the result of each
deconvolution is a polynomial. In this circumstance, the algorithm returns in-
correct results or fails, and it is shown in this paper that a structure-preserving
matrix method returns polynomial solutions to these deconvolutions, which is,
as noted above, essential for the computation of multiple roots of a polynomial.

The deconvolution of two Bernstein basis polynomials is considered in Section
2. It is shown that the problem can be cast as the computation of the vector
ĝ, which stores the coefficients of ĝ, from the equation,

D−1T (f̂)ĝ = ĥ, (1)

where D−1 is a diagonal matrix of combinatorial factors, T (f̂) is a Tœplitz
matrix whose non-zero entries are the coefficients of f̂ , and ĥ stores the coef-
ficients of ĥ. The Tœplitz structure of T (f̂) is retained when inexact polyno-
mials h and f are specified, but h, the vector that contains the coefficients of
h, does not lie in the column space of D−1T (f) in this circumstance, and thus
(1) is replaced by

D−1T (f)g ≈ h. (2)

The approximation in (2) implies that a computed solution w has a non-zero
error, ‖D−1T (f)w− h‖ > 0, from which it follows that the entries of w are
the coefficients of a polynomial that is an approximation of a rational function.

2

It is shown in Section 3 that if the Tœplitz structure of T (f) is retained in
the computations, that is, a structure-preserving matrix method is used, an
exact polynomial, and not a polynomial approximation of a rational function,
is returned when an approximate solution of (2) is computed.

The application of a structure-preserving matrix method to the deconvolution
of two Bernstein basis polynomials is considered in Section 4. This method
requires the iterative solution of a non-linear equation, and the condition for
its convergence is discussed in Section 5. Section 6 contains two examples that
compare the solutions obtained from the method of LS with the solutions ob-
tained from a structure-preserving matrix method. The solutions are discussed
in Section 7, and Section 8 contains a summary of the paper.

2 The deconvolution of two Bernstein polynomials

This section considers the deconvolution of two Bernstein polynomials and it
is shown it can be considered in the matrix form (1).

Let f̂(y), ĝ(y) and ĥ(y) be Bernstein polynomials of degrees m,n and m + n
respectively,

f̂(y)=
m
∑

i=0

âi

(

m

i

)

(1− y)m−iyi, (3)

ĝ(y)=
n
∑

i=0

b̂i

(

n

i

)

(1− y)n−iyi, (4)

ĥ(y)=
m+n
∑

i=0

ĉi

(

m+ n

i

)

(1− y)m+n−iyi. (5)

It follows from (3) and (4) that the coefficients ĉi in (5) are given by

ĉk =
min(m,k)
∑

i=max(0,k−n)

âi
(

m

i

)

b̂k−i

(

n

k−i

)

(

m+n

k

) , k = 0, . . . , m+ n,

which can be written in matrix form as

(

D−1T (f̂)
)

b̂ = ĉ, (6)

where

3

D−1 = diag
[

1

(m+n

0)
1

(m+n

1)
· · · 1

(m+n

m+n−1)
1

(m+n

m+n)

]

∈ R
(m+n+1)×(m+n+1),

T = T (f̂) ∈ R
(m+n+1)×(n+1), b̂ ∈ R

n+1, ĉ ∈ R
m+n+1 and

T =

â0
(

m

0

)

â1
(

m

1

)

â0
(

m

0

)

... â1
(

m

1

) . . .
...

...
. . . â0

(

m

0

)

âm
(

m

m

) ...
. . . â1

(

m

1

)

âm
(

m

m

) . . .
...

. . .
...

âm
(

m

m

)

, b̂ =

b̂0
(

n

0

)

b̂1
(

n

1

)

...

...

b̂n
(

n

n

)

, ĉ =

ĉ0

ĉ1
...
...

ĉm+n

.

Previous work [11,12] has shown it is numerically advantageous to express b̂

as the product of a diagonal matrix Q ∈ R
(n+1)×(n+1) and a vector p̂ ∈ R

n+1

of the coefficients b̂i,

b̂ = Qp̂, Q = diag
[

(

n

0

) (

n

1

)

· · ·
(

n

n

)

]

, p̂ =
[

b̂0 b̂1 · · · b̂n

]T

,

and thus (6) can be written as

(

D−1T (f̂)Q
)

p̂ = ĉ, (7)

where the coefficient matrix is of order (m + n + 1) × (n + 1). It is better
to calculate the coefficients of ĝ(y) from (7) than from (6) because numerous
experiments showed that

κ
(

D−1T (f̂)Q
)

< κ
(

D−1T (f̂)
)

,

where κ(X) denotes the condition number of X . It therefore follows that (7)
is more stable than (6), and thus improved solutions are expected from (7).

The magnitudes of the entries in the coefficient matrix and right hand side
vector of (7) may differ by several orders of magnitude, and it is therefore
advantageous to normalise them. This issue is discussed in [10,12], and it is
shown that the normalisation of the entries in the coefficient matrix, and the

4

normalisation of the entries in the right hand side vector, by their geometric
means yield significantly improved results. The geometric mean of the terms
that contain the coefficients of f̂ in D−1T (f̂)Q is [12]

λ =

(

∏m
i=0

∣

∣

∣âi
(

m

i

)∣

∣

∣

)
1

m+1
(

∏n
k=0

(

n

k

))
1

n+1

(
∏m

i=0 Pi)
1

(n+1)(m+1)

, (8)

where

Pi =
i+n
∏

j=i

(

m+ n

j

)

, i = 0, . . . , m,

and thus the normalised form of f̂(y) is

f̄(y) =
m
∑

i=0

āi

(

m

i

)

(1− y)m−iyi, āi =
âi
λ
. (9)

The normalised form of ĥ(y) is

h̄(y) =
m+n
∑

i=0

c̄i

(

m+ n

i

)

(1− y)m+n−iyi, c̄i =
ĉi
µ
, (10)

where the geometric mean µ of the coefficients ĉi is

µ =

(

m+n
∏

i=0

|ĉi|

)

1
m+n+1

. (11)

It therefore follows from (9) and (10) that (7) becomes

(

D−1T (f̄)Q
)

p̄ = c̄, (12)

where c̄ ∈ R
m+n+1 and p̄ ∈ R

n+1 are, respectively,

c̄ =
[

c̄0 c̄1 · · · c̄m+n

]T

and p̄ =
[

b̄0 b̄1 · · · b̄n

]T

,

and it is required to compute the coefficients b̄i of the polynomial ḡ(y),

5

ḡ(y) =
n
∑

i=0

b̄i

(

n

i

)

(1− y)n−iyi.

The normalisation of the coefficients of f̂(y) retains the Tœplitz structure of
T , but the inclusion of the diagonal matrices D−1 and Q implies that the coef-
ficient matrix in (12) is not Tœplitz, but it is still structured. It is appropriate
to consider, therefore, a structure-preserving matrix method for the solution
of (12), and this issue is addressed in the next section.

3 A structure-preserving matrix method

This section considers the application of a structure-preserving matrix method
to the solution of (12), and the difference between the solution obtained using
this method, and the solution obtained by solving a LS problem, is described.

If exact polynomials are considered and all computations are performed in
infinite precision arithmetic, the coefficients of ḡ can be computed from the
LS solution of (12),

p̄ =
(

D−1T (f̄)Q
)†

c̄, A† = (ATA)−1AT ,

and the error is zero. The pseudo-inverse A† of a matrix A should be computed
from the singular value decomposition (SVD) of A and not from the SVD
USV T of A† because this can lead to large errors, such that USV T 6= A†.

If the inexact polynomials f(y) and h(y) are considered, then (12) is replaced
by an approximate equation whose LS solution defines the coefficients of a
polynomial that is an approximation of a rational function. This is the sim-
plest method of computing the coefficients of ḡ(y), but it fails to consider the
structure of the coefficient matrix. Since f(y), g(y) and h(y) are inexact forms
of f̂(y), ĝ(y) and ĥ(y) respectively, they are given by

f(y)= f̂(y) + δf̂(y) =
m
∑

i=0

ai

(

m

i

)

(1− y)m−iyi, (13)

g(y)= ĝ(y) + δĝ(y) =
n
∑

i=0

bi

(

n

i

)

(1− y)n−iyi,

h(y)= ĥ(y) + δĥ(y) =
m+n
∑

j=0

cj

(

m+ n

j

)

(1− y)m+n−jyj, (14)

where

6

ai = âi + δâi and cj = ĉj + δĉj , (15)

and normalisation of the coefficients ai and cj by, respectively, the geometric
means λ and µ, which are defined in (8) and (11), is implicitly included. This
normalisation by the geometric means of the coefficients of f(y) and g(y)
follows from the discussion in Section 2.

It follows from (12) that it is necessary to compute the LS solution of

(

D−1T (f)Q
)

p ≈ c, (16)

where

p =
[

b0 b1 · · · bn

]T

and c =
[

c0 c1 · · · cm+n

]T

.

The vector c does not lie in the column space of D−1T (f)Q, but the ap-
proximation (16) can be transformed to an equation by perturbing T (f) by
a Tœplitz matrix B(z) that has the same structure as T (f), and perturbing
c by a vector t. A structure-preserving matrix method yields, therefore, a
polynomial solution to the deconvolution problem because (16) is replaced by

(

D−1 (T (f) +B(z))Q
)

p = c+ t, (17)

where the entries of B(z) and t are the coefficients of the polynomials s(y)
and e(y) respectively,

s(y) =
m
∑

i=0

zi

(

m

i

)

(1− y)m−iyi, (18)

and

e(y) =
m+n
∑

i=0

ti

(

m+ n

i

)

(1− y)m+n−iyi, (19)

and the matrix B(z) and vector t are given by, respectively,

7

B(z) =

z0
(

m

0

)

z1
(

m

1

)

z0
(

m

0

)

... z1
(

m

1

) . . .
...

...
. . . z0

(

m

0

)

zm
(

m

m

) ...
. . . z1

(

m

1

)

zm
(

m

m

) . . .
...

. . .
...

zm
(

m

m

)

, t =

t0

t1
...
...

tm+n

.

If the matrix B(z) and vector t are chosen such that c+ t lies in the column
space of D−1(T (f) + B(z))Q, then (17) has an exact solution, and thus the
solution vector p contains the coefficients of the polynomial formed from the
deconvolution,

h(y) + e(y)

f(y) + s(y)
=

∑m+n
i=0 (ci + ti)

(

m+n

i

)

(1− y)m+n−iyi

∑m
i=0(ai + zi)

(

m

i

)

(1− y)m−iyi
. (20)

An infinite number of pairs of polynomials (s(y), e(y)) satisfy (17), but it is
desired to compute the coefficients zi and ti of minimum magnitude, that is,
the solution of (17) that is nearest the solution defined by the given inexact
data is sought. This is expressed mathematically as an LS minimisation with
an equality constraint, the LSE problem,

min ‖z‖2 + ‖t‖2 such that
(

D−1 (T (f) +B(z))Q
)

p = c+ t, (21)

where ‖·‖ = ‖·‖2,

z =
[

z0 z1 · · · zm

]T

and z =
{

z0, z1, · · · , zm

}

. (22)

It follows from (21) that a structure-preserving matrix method perturbs the
given inexact polynomials the minimum amount, such that the perturbed
polynomials satisfy the exact divisor condition. This is desirable because the
computed solution satisfies a property of the theoretical solution, which is
different from the LS solution, which does not satisfy this condition.

8

4 The method of STLN for the deconvolution of two polynomials

This section considers the application of the method of structured total least
norm (STLN) [6] to the deconvolution h/f , such that the result is a polyno-
mial and not a rational function. This method is therefore used to obtain the
solution of (21).

The residual associated with an approximate solution (z,p, t) of (17) is

r(z,p, t) = (c+ t)−
(

D−1 (T (f) +B(z))Q
)

p, (23)

and thus

r̃ := r(z+ δz,p+ δp, t+ δt)

= (c+ (t+ δt))−
(

D−1 (T (f) +B(z + δz))Q
)

(p+ δp).

It therefore follows that, to first order,

r̃= r(z,p, t) + δt−
(

D−1 (T +B)Q
)

δp−

(

D−1

(

m
∑

i=0

∂B

∂zi
δzi

)

Q

)

p,

(24)

where the last term on the right hand side represents the polynomial multi-
plication δs(y)g(y), and s(y) is defined in (18). The simplification of this term
requires that the polynomial multiplication

g(y)s(y) =

(

n
∑

i=0

bi

(

n

i

)

(1− y)n−iyi
)(

m
∑

i=0

zi

(

m

i

)

(1− y)m−iyi
)

,

which can also be expressed as

s(y)g(y) =

(

m
∑

i=0

zi

(

m

i

)

(1− y)m−iyi
)(

n
∑

i=0

bi

(

n

i

)

(1− y)n−iyi
)

,

be considered. These polynomial multiplications can be expressed in matrix
forms as, respectively,

(

D−1Y (p)R
)

z and
(

D−1B(z)Q
)

p, (25)

where z and z are defined in (22), Y (p) ∈ R
(m+n+1)×(m+1) is a Tœplitz matrix,

9

p =
{

b0, b1, · · · , bn

}

and R = diag
[

(

m

0

) (

m

1

)

· · ·
(

m

m

)

]

.

It therefore follows from (25) that

(Y R) z = (BQ)p,

and the differentiation of both sides of this equation with respect to z yields

(Y R)δz =

(

m
∑

i=0

∂B

∂zi
δzi

)

Qp,

and thus (24) simplifies to

r̃= r(z,p, t) + δt−
(

D−1 (T (f) +B(z))Q
)

δp− (D−1Y R)δz. (26)

The jth iteration in the Newton-Raphson method for the calculation of z,p
and t is obtained from (26),

[

Hz Hp Ht

](j)

δz

δp

δt

(j)

= r(j), (27)

where r(j) = r(j)(z,p, t),

Hz =D−1Y R ∈ R
(m+n+1)×(m+1),

Hp=D−1 (T +B)Q ∈ R
(m+n+1)×(n+1),

Ht=−I ∈ R
(m+n+1)×(m+n+1),

and the values of z,p and t at the jth iteration are

z

p

t

(j)

=

z

p

t

(j−1)

+

δz

δp

δt

(j)

,

z

p

t

(0)

=

0

p0

0

.

The initial values of z and t are z(0) = 0 and t(0) = 0 because the given data
is the inexact data, and the initial value p0 of p is calculated from (23),

10

p0 = argmin
w

∥

∥

∥

(

D−1T (f)Q
)

w− c
∥

∥

∥ . (28)

Equation (27) is of the form

C(j)δy(j) = q(j), q(j) = r(j) ∈ R
m+n+1, (29)

where C(j) ∈ R
(m+n+1)×(2m+2n+3), δy(j) ∈ R

2m+2n+3, and

C(j) =
[

Hz Hp Ht

](j)

, δy(j) =

δz

δp

δt

(j)

, y(j) = y(j−1) + δy(j). (30)

It follows from (21) that, of all the solutions that satisfy the constraint equa-
tion, the solution that is nearest the LS solution defined by the given inexact
data is required. The function to be minimised is therefore

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

z(j) − z(0)

p(j) − p0

t(j) − t(0)

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

z(j−1) + δz(j)

p(j−1) + δp(j) − p0

t(j−1) + δt(j)

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

:=
∥

∥

∥δy(j) −w(j−1)
∥

∥

∥ , (31)

where δy(j) is defined in (30), δy(0) = w(0) = 0 and

w(j−1) = −
(

y(j−1) − y(0)
)

= −

z(j−1)

p(j−1) − p0

t(j−1)

∈ R
2m+2n+3. (32)

The minimisation of (31) subject to (29) yields the LSE problem,

min
δy(j)

∥

∥

∥δy(j) −w(j−1)
∥

∥

∥ subject to C(j)δy(j) = q(j), (33)

which can be solved, at each iteration, by the QR decomposition [5], where
C(j),q(j) and w(j−1) are updated between successive iterations.

Algorithm 1 shows the application of the method of STLN to the deconvolution
of two Bernstein polynomials.

11

Algorithm 1: Deconvolution of two Bernstein polynomials

Input Inexact polynomials f and h, which are of degrees m and m + n re-
spectively.

Output The polynomial g = h/f .

Begin

(1) Preprocess f and h as shown in Section 2.
(2) % Initialise the data

(a) Set z = z(0) = 0, which yields B = B(0) = 0, and t = t(0) = 0.
(b) Calculate T, Y (0) and the initial value p0 of p, which is defined in

(28). Calculate r(0), the initial value of the residual,

q(0) = r(0) = r
(

z(0) = 0,p0, t
(0) = 0

)

= c−
(

D−1T (f)Q
)

p0.

(c) Define C(0) and set w(0) = 0.
(3) % Use the QR decomposition to solve the LSE problem at each iteration.

Set j = 0. % Initialise the iteration counter
repeat

(a) Set j = j + 1. % Increment the iteration counter
(b) Compute the QR decomposition of C(j−1)T ,

C(j−1)T = (QR)(j−1) =

Q

R1

0

(j−1)

.

(c) Set w
(j−1)
1 =

(

R−T
1 q

)(j−1)

.

(d) Partition Q(j−1) as

Q(j−1) =
[

Q1 Q2

](j−1)

,

where Q
(j−1)
1 ∈ R

(2m+2n+3)×(m+n+1) and Q
(j−1)
2 ∈ R

(2m+2n+3)×(m+n+2).

(e) Compute z
(j−1)
1 =

(

QT
2w

)(j−1)

where w(j−1) is defined in (32).

(f) Compute the solution

δy(j) =

Q

w1

z1

(j−1)

.

12

(g) Set z(j) = z(j−1)+ δz(j), p(j) = p(j−1)+ δp(j) and t(j) = t(j−1)+ δt(j),
and thus calculate y(j) and w(j).
(h) Update B(j) and Y (j), and therefore C(j), from z(j) and p(j). Compute

the residual q(j) = r(j)
(

z(j),p(j), t(j)
)

from (23),

r(j)
(

z(j),p(j), t(j)
)

=
(

c+ t(j)
)

−
(

D−1
(

T +B(j)
)

Q
)

p(j).

until
‖r(j)‖

‖c+t(j))‖
≤ 10−12

End

Optimality conditions for the method of STLN, its formulation for the 1- and
∞-norms, and its relation to the Newton-Raphson iteration, are considered
in [6]. The method can be extended to non-linear structures in the coefficient
matrix and/or right hand side vector, which yields the method of structured
non-linear total least norm [7]. This method has been used for the computation
of a structured low rank approximation of the Sylvester resultant matrix [9].

5 Convergence analysis

This section considers the convergence of Algorithm 1 for the iterative solution
of the LSE problem, which is defined in (21). It follows from steps (3c)-(3f) of
this algorithm, and (32), that the jth iteration of this LSE problem yields

δy(j)=

Q

R−T
1

0

q+Q

0

z1

(j−1)

=

Q

R−T
1

0

q+
[

Q1 Q2

]

0

QT
2

w

(j−1)

=
(

Q1R
−T
1 q

)(j−1)
+
(

Q2Q
T
2

)(j−1) (

−y(j−1) + y(0)
)

.

It follows from (30) that Algorithm 1 converges if

lim
j→∞

∥

∥

∥y(j) − y(j−1)
∥

∥

∥= lim
j→∞

∥

∥

∥δy(j)
∥

∥

∥

= lim
j→∞

∥

∥

∥

∥

(

Q2Q
T
2

)(j−1) (

y(0) − y(j−1)
)

+
(

Q1R
−T
1 q

)(j−1)
∥

∥

∥

∥

=0,

13

and thus the convergence of (33) is dependent on the matrices and vectors
at each iteration, and its a priori determination is therefore difficult. Compu-
tational experiments showed, however, that convergence is achieved in fewer
than 5 iterations, even for high degree polynomials that are corrupted by noise
and have multiple roots.

6 Examples

This section contains two examples that illustrate the application of the method
of STLN to the computation of g = h/f , and the solution of each example is
compared with the LS solution of (16). Also, it was stated in Section 2 that
it is numerically advantageous to include the diagonal matrix Q of combina-
torial factors in the coefficient matrix, and this is confirmed numerically by
including the solutions obtained when (16) is written as

(

D−1T (f)
)

b ≈ c, b = Qp. (34)

Three error measures and two condition numbers were computed for each
example:

The error r1 between the theoretically exact solution, that is, the coefficients
of ĝ(y), and the solution of the LSE problem (33). If this solution defines
the polynomial g1(y), then the forward error in the coefficients of g1(y) is

r1 =
‖g1 − ĝ‖

‖ĝ‖
. (35)

The error r2 between the theoretically exact solution and the LS solution of
(16). If this solution defines the polynomial g2(y), then the forward error in
the coefficients of g2(y) is

r2 =
‖g2 − ĝ‖

‖ĝ‖
. (36)

The error r3 in the satisfaction of the constraint equation in the LSE problem.
The residual of the computed solution of the constraint is, from (23),

r3 =
‖r(z,p, t)‖

‖c+ t‖
. (37)

Condition number 1: The condition number κ
(

C(j)
)

of the coefficient matrix

of the constraint equation in the LSE problem (33) at termination of the

14

iterative procedure, for Q included in the coefficient matrix, and Q included
in the solution vector.
Condition number 2: The condition numbers κ(D−1T (f)Q) and κ(D−1T (f))
of the LS problem, for Q included in the coefficient matrix and Q included
in the solution vector, respectively.

Also, the number of iterations N required for the solution of the LSE problem
was recorded.

Noise was added in the componentwise sense to the coefficients of f̂(y) and
ĥ(y), and it therefore follows from (13) and (14) that the coefficients of the
polynomials δf̂(y) and δĥ(y) are, respectively,

δâi = εriâi, i = 0, . . . , m; δĉj = εrj ĉj, j = 0, . . . , m+ n, (38)

where ri and rj are uniformly distributed random variables in the interval
[−1, 1], and ε is the reciprocal of the upper bound of the componentwise
signal-to-noise ratio. The normwise error models follow easily from these com-
ponentwise error models,

‖δâ‖ ≤ ε ‖â‖ and ‖δĉ‖ ≤ ε ‖ĉ‖ , (39)

and thus ε is also the upper bound of the reciprocal of the normwise signal-
to-noise ratio.

Example 6.1 Noise with componentwise signal-to-noise ratio 108 was added
to the coefficients of the Bernstein forms of the exact polynomials,

f̂(y) = (y − 0.30)5(y − 0.70)4(y − 1.40)5(y − 7.00)6,

and

ĥ(y)= (y − 0.30)8(y − 0.70)7(y − 1.40)8(y − 7.00)6(y + 1.80)3 ×

(y + 0.90)4,

and these inexact polynomials were then normalised, thereby obtaining the
polynomials f(y) and h(y), which are defined in (13) and (14). The results are
shown in Table 1 and it is seen that r1 = r2, and thus the relative errors of
the solutions in the LS and LSE problems are equal. The error r3 is approxi-
mately equal to 10−16, and it therefore follows from (37) and the discussion in
Section 3 that the computed solution is a polynomial, and not a polynomial
approximation of a rational function. This value of r3 must be compared with
the values of r1 and r2, which are about eight orders of magnitude larger, and

15

thus the difference between the solutions from the LS and LSE problems is
clear.

Table 1 shows that the inclusion of Q in the coefficient matrix causes a re-
duction of about three orders of magnitude in κ

(

C(j)
)

with respect to its

value when Q is included in the solution vector, as shown in (34), which is in
accord with the results in [11,12]. The table also shows that, for Q included

in the coefficient matrix, κ
(

C(j)
)

is about one order of magnitude larger than

the condition number of D−1T (f)Q, which is the coefficient matrix of (16).
Also, one iteration is required for the convergence of the LSE problem when
Q is included in the coefficient matrix, but four iterations are required for
convergence when Q is included in the solution vector. �

Q in coefficient matrix Q in solution vector

r1 3.20 × 10−8 3.20 × 10−8

r2 3.20 × 10−8 3.20 × 10−8

r3 1.41 × 10−16 5.53× 10−16

κ(C) κ
(

C(1)
)

= 6.92 × 104 κ
(

C(4)
)

= 3.45× 107

κ(D−1T (f)Q) = 7.49 × 103 κ(D−1T (f)) = 2.66 × 107

N 1 4

Table 1
The results of Example 6.1. The first column shows the results when (16) is solved,
and the second column shows the results when (34) is solved.

Example 6.2 The procedure described in Example 6.1 was implemented for
the polynomials,

f̂(y) = (y − 0.30)6(y − 0.40)4(y − 0.50)4(y − 0.60)5(y − 0.70)4,

and

ĥ(y)= (y − 0.30)8(y − 0.40)6(y − 0.50)6(y − 0.60)6(y − 0.70)6 ×

(y − 0.80)3(y − 0.90)4(y − 0.99)4.

The results are shown in Table 2 and they are similar to the results in Table
1 because better results are obtained when Q is included in the coefficient
matrix. It is also seen that

κ
(

C(1)
)

κ(D−1T (f)Q)
=

7.19× 102

5.83× 103
≈ 0.1,

16

Q in coefficient matrix Q in solution vector

r1 2.80 × 10−6 2.82 × 10−6

r2 2.82 × 10−6 2.82 × 10−6

r3 1.27 × 10−15 7.55× 10−15

κ(C) κ
(

C(1)
)

= 7.19 × 102 κ
(

C(54)
)

= 1.35 × 106

κ(D−1T (f)Q) = 5.83 × 103 κ(D−1T (f)) = 4.94 × 108

N 1 54

Table 2
The results of Example 6.2. The first column shows the results when (16) is solved,
and the second column shows the results when (34) is solved.

and thus the condition number of the coefficient matrix of the constraint
equation in the LSE problem (33) is about one order of magnitude smaller
than the condition number of the coefficient matrix of (16). Also, only one
iteration is required for the solution of the LSE problem when Q is included
in the coefficient matrix, but 54 iterations are required when Q is included in
the solution vector. �

7 Discussion

Tables 1 and 2 show that κ
(

C(j)
)

, the condition number of the coefficient
matrix of the constraint equation in the LSE problem, is significantly smaller
when Q is included in the coefficient matrix than when it is included in the
solution vector. This result, which confirms the remarks in Section 2, shows
that large combinatorial factors in matrices associated with computations on
Bernstein basis polynomials must be considered carefully, such that adverse
numerical effects are minimised. Also, fewer iterations are required for the
iterative solution of the LSE problem when Q is included in the coefficient
matrix. The discussion in this section is therefore restricted to this situation,
and the results obtained when Q is included in the solution vector are not
considered.

Tables 1 and 2 show that the errors r1 and r2, which are defined in (35) and
(36) respectively, are equal for Example 6.1, and for Example 6.2. It therefore
follows that the relative errors in the solutions of the LS and LSE problems
are the same, but the advantage of the solution of the LSE problem can be
seen from the error r3 in the tables. Since it is approximately equal to 10−16

for both examples, it follows that the solution of the LSE problem defines a
polynomial, and not a polynomial approximation of a rational function.

17

A computed solution is acceptable if its backward error is less than or equal
to the error in the given data, and it must therefore be checked that the
solutions satisfy this condition. This calculation requires the data in Table 3,
which shows the norms of the vectors of the coefficients of f(y), h(y), s(y) and
e(y), which are defined in (13), (14), (18) and (19) respectively.

Example 6.1

f(y) ‖a‖ = 7.16 × 104

s(y) ‖z‖ = 1.18 × 10−9

h(y) ‖c‖ = 3.39× 103

e(y) ‖t‖ = 2.16 × 10−7

Example 6.2

f(y) ‖a‖ = 2.04 × 103

s(y) ‖z‖ = 1.31× 10−5

h(y) ‖c‖ = 7.27 × 103

e(y) ‖t‖ = 1.85 × 10−5

Table 3
The norms of the vectors of the coefficients of f(y), s(y), h(y) and e(y) for Examples
6.1 and 6.2.

It follows from Table 3 that

‖z‖

‖a‖
= 1.65× 10−14 and

‖t‖

‖c‖
= 6.37× 10−11, (40)

for Example 6.1, and

‖z‖

‖a‖
= 6.42× 10−9 and

‖t‖

‖c‖
= 2.54× 10−9, (41)

for Example 6.2, and these normwise errors must be checked against the norm-
wise bounds (39) in order to verify that the computed solutions are acceptable.
In particular, the random variables ri and rj in (38) are uniformly distributed
in the interval [−1, 1], and thus the random variables |ri| and |rj| are uniformly
distributed in the interval [0, 1] with mean value 1/2. It therefore follows from
(38) that

‖δâ‖ ≈
ε

2
‖â‖ and ‖δĉ‖ ≈

ε

2
‖ĉ‖ . (42)

The normwise backward errors of the solutions also require that the structured
perturbations zi and unstructured perturbations ti be considered. In particu-
lar, it follows from (13), (14), (15) and (20) that the corrected forms of the
exact polynomials f̂(y) and ĥ(y) are, respectively,

f(y) + s(y) =
m
∑

i=0

(âi + δâi + zi)

(

m

i

)

(1− y)m−iyi,

18

and

h(y) + e(y) =
m+n
∑

i=0

(ĉi + δĉi + ti)

(

m+ n

i

)

(1− y)m+n−iyi,

and thus the squares of the backward errors of the coefficients of f(y) and
h(y) are, respectively,

m
∑

i=0

(δâi + zi)
2 = ‖δâ‖2 + ‖z‖2 + 2δâTz,

and

m+n
∑

i=0

(δĉi + ti)
2 = ‖δĉ‖2 + ‖t‖2 + 2δĉT t.

It follows from (38) that the average values of δâi and δĉj are zero, and thus
(42) shows that η(f) and η(h), the average values of the squares of the back-
ward errors of the coefficients of f(y) and h(y) satisfy

η(f)2 ≈
(

ε

2

)2

‖â‖2 + ‖z‖2 and η(h)2 ≈
(

ε

2

)2

‖ĉ‖2 + ‖t‖2 .

Since ε = 10−8 in Examples 6.1 and 6.2, the errors in the equations ‖a‖ = ‖â‖
and ‖c‖ = ‖ĉ‖ are negligible, and thus η(f)2 and η(h)2 can be approximated
by

η(f)2 ≈
(

ε

2

)2

‖a‖2 + ‖z‖2 and η(h)2 ≈
(

ε

2

)2

‖c‖2 + ‖t‖2 .

The substitution of (40) and (41) into these approximations yields

η(f) ≈
ε

2
‖a‖ ≈

ε

2
‖â‖ and η(h) ≈

ε

2
‖c‖ ≈

ε

2
‖ĉ‖ ,

for Example 6.1, and

η(f) ≈ ε ‖a‖ ≈ ε ‖â‖ and η(h) ≈ ε ‖c‖ ≈ ε ‖ĉ‖ ,

for Example 6.2, and thus the average values of the normalised backward errors
are bounded, approximately, by ε/2 and ε, and they are therefore acceptable.

19

The condition number κ
(

C(j)
)

is not the condition number of the jth iteration
in the LSE problem because it does not consider the constraint equation.
The inverse of the upper triangular matrix R

(j)
1 is computed in step (3c) of

Algorithm 1, and since

κ
(

C(j)
)

= κ
(

R(j)
)

= κ
(

R
(j)
1

)

,

it is desirable to minimise κ
(

C(j)
)

. This minimisation is achieved by including
Q in the coefficient matrix, rather than in the solution vector.

The method used in Algorithm 1 is analysed in [1], where it is shown that
it is numerically stable. The sensitivity of the solution of the LSE problem
to perturbations in C(j),q(j) and w(j−1) is also considered in [1], and it is
shown that the forward error r1 is of the form r1 . εκLSE, where κLSE is the
condition number of the LSE problem. Computational results in [1] show that
an approximation to this bound may overestimate the forward error achieved
in examples, and that this is due to the use of worst case bounds, which cannot
be improved.

8 Summary

This paper has considered the method of STLN for the deconvolution of two
Bernstein basis polynomials. This method preserves the Tœplitz structure
of the coefficient matrix of the equation that defines the deconvolution of
two polynomials, and it therefore returns a polynomial. This solution was
compared with the solution of a LS problem, and it was shown that this
solution defines a polynomial approximation of a rational function, and not a
polynomial. It was shown that the method of STLN yields the LSE problem
that is solved iteratively by the QR decomposition.

Improved answers were obtained when the coefficient matrix of the equation
that defines the deconvolution operation includes the diagonal matrix Q of
combinatorial factors. This improvement manifests itself in the requirement
for fewer iterations for the solution of the LSE problem, and a smaller condition
number of the coefficient matrix of the constraint equation in the LSE problem.

References

[1] A. Cox and N. J. Higham. Accuracy and stability analysis of the null space
method for solving the equality constrained least squares problem. BIT,

20

39(1):34–50, 1999.

[2] R. T. Farouki and T. N. T. Goodman. On the optimal stability of the Bernstein
basis. Mathematics of Computation, 65(216):1553–1566, 1996.

[3] R. T. Farouki and V. T. Rajan. Algorithms for polynomials in Bernstein form.
Computer Aided Geometric Design, 5:1–26, 1988.

[4] R. Goldman. Pyramid Algorithms: A Dynamic Programming Approach to

Curves and Surfaces for Geometric Modeling. Morgan Kaufmann Publishers,
Academic Press, San Diego USA, 2002.

[5] G. H. Golub and C. F. Van Loan. Matrix Computations. John Hopkins
University Press, Baltimore, USA, 1996.

[6] J. Ben Rosen, H. Park, and J. Glick. Total least norm formulation and solution
for structured problems. SIAM J. Mat. Anal. Appl., 17(1):110–128, 1996.

[7] J. Ben Rosen, H. Park, and J. Glick. Structured total least norm for nonlinear
problems. SIAM J. Mat. Anal. Appl., 20(1):14–30, 1998.

[8] J. V. Uspensky. Theory of Equations. McGraw-Hill, New York, USA, 1948.

[9] J. R. Winkler and M. Hasan. An improved non-linear method for the
computation of a structured low rank approximation of the Sylvester resultant
matrix. Journal of Computational and Applied Mathematics, 237(1):253–268,
2013.

[10] J. R. Winkler, M. Hasan, and X. Y. Lao. Two methods for the calculation of the
degree of an approximate greatest common divsior of two inexact polynomials.
Calcolo, 49:241–267, 2012.

[11] J. R. Winkler and N. Yang. Methods for the computation of the degree
of an approximate greatest common divisor of two inexact Bernstein basis
polynomials, 2013. Submitted.

[12] J. R. Winkler and N. Yang. Resultant matrices and the computation of the
degree of an approximate greatest common divisor of two inexact Bernstein
basis polynomials. Computer Aided Geometric Design, 30(4):410–429, 2013.

21

