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Abstract

Optimal recursive decomposition (or DR-planning) is crucial for analyzing, designing, solving or finding
realizations of geometric constraint sytems. While the optimal DR-planning problem is NP-hard even for
general 2D bar-joint constraint systems, we describe an O(n3) algorithm for a broad class of constraint
systems that are isostatic or underconstrained. The algorithm achieves optimality by using the new notion
of a canonical DR-plan that also meets various desirable, previously studied criteria. In addition, we leverage
recent results on Cayley configuration spaces to show that the indecomposable systems—that are solved at
the nodes of the optimal DR-plan by recombining solutions to child systems—can be minimally modified
to become decomposable and have a small DR-plan, leading to efficient realization algorithms. We show
formal connections to well-known problems such as completion of underconstrained systems. Well suited to
these methods are classes of constraint systems that can be used to efficiently model, design and analyze
quasi-uniform (aperiodic) and self-similar, layered material structures. We formally illustrate by modeling
silica bilayers as body-hyperpin systems and cross-linking microfibrils as pinned line-incidence systems. A
software implementation of our algorithms and videos demonstrating the software are publicly available
online1.

Keywords: rigidity, geometric constraint solving, configuration spaces, self-similar structures, layered
materials

1. Introduction

Geometric constraint systems have well-established, mature applications in mechanical engineering and
robotics, and they continue to find emerging applications in diverse fields from machine learning to molecular
modeling. Solving or realizing geometric constraint systems requires finding real solutions to a large multi-
variate polynomial system (of equalities and inequalities representing the constraints); this requires double
exponential time in the number of variables, even if the type or orientation of the solution is specified.
Thus, to realize a geometric constraint system, it is crucial to perform recursive decomposition into locally
rigid subsystems (which have finitely many solutions), and then apply the reverse process of recombining
the subsystem solutions. With the use of decomposition-recombination (DR-) planning, the complexity is
dominated by the size of the largest subsystem that is solved, or recombined, from the solutions of its child
subsystems, i.e. the maximum fan-in occurring in a DR-plan. In addition, navigating and analyzing the
solution spaces, as well as designing constraint systems with desired solution spaces, leads to the optimal
decomposition-recombination (DR-) planning problem [1, 2, 3].

For a broad class of geometric constraint systems, local rigidity is characterized generically as a sparsity
and tightness condition of the underlying constraint (hyper)graph [4, 5, 6, 7]. This allows the generic DR-

1Visit http://cise.ufl.edu/~tbaker/drp/index.html.
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planning problem to be stated and treated as a combinatorial or (hyper)graph problem as we do in this
paper.

We additionally conjecture that versions of Frontier, a previously given, bottom-up, polynomial time
method for obtaining DR-plans with various desired properties [2, 3, 8, 1], in fact generate an optimal
DR-plan for non-overconstrained systems.

Näıvely, the optimal DR-plan is used as follows. Each decomposed subsystem—a node of the DR-plan—
is treated and solved as a polynomial system of constraints between its child subsystems. However, even
in an optimal DR-plan, there can be arbitrarily many children at a node. In other words, even in the
recursive decomposition given by an optimal DR-plan, the size of the maximal indecomposable subsystem
could be arbitrarily large. It represents a bottleneck that dictates the complexity of solving or realizing
the constraint system [9, 10, 11]. We address this problem using the recently developed concept of convex
Cayley configuration spaces [12, 13, 14, 15, 16, 17]. This allows for even greater reduction of the complexity
by realizing large, indecomposable systems in a manner that avoids working with large systems of equations.
Specifically, we give an efficient technique for optimally modifying large indecomposable subsystems in a
manner that reduces their complexity while preserving desired solutions; the modification ensures a convex
Cayley configuration space, and the space can be efficiently searched to find a realization that satisfies the
additional constraints of the original system. This optimal modification problem is a generalization of the
previously studied problem of optimal completion of underconstrained systems [1, 18].

DR-plans are especially useful for constraint systems that exhibit some level of self-similarity and quasi-
uniformity, in addition to isostaticity. These properties can be leveraged to further reduce the complexity of
both optimal DR-plan construction and recombination. We consider 3 different types of constraint systems—
which we collectively call qusecs—that are used to model, design, and analyze quasi-uniform or self-similar
materials. In the remainder of this section, we motivate the materials application and give the contributions
and organization of the paper.

1.1. Introducing Qusecs

A large class of constraint systems that we call qusecs, a contraction of “quasi-uniform or self-similar
constraint system”, (a) can be treated combinatorially as described above and (b) occur as independent
(isostatic or underconstrained) systems in materials applications. We discuss these next. Some natural and
engineered materials can be analyzed by treating them as two dimensional (2D) layers. As illustrated by the
examples below, the structure within each layer is often: self-similar2 [19], spanning multiple scales; gener-
ally aperiodic and quasi-uniform within any one scale; and composed of a few repeated motifs appearing in
disordered arrangements. Note that a 2D layer is not necessarily planar (genus 0), it can consist of multiple,
inter-constraining planar monolayers. Furthermore, a layer is often either isostatic or underconstrained (not
self-stressed/overconstrained, see 2.1 for definitions). These properties, as well as quasi-uniformity, aperi-
odicity, self-similarity, and layered structure, are natural consequences of evolutionary pressures or design
objectives such as stability, minimizing mass, optimally distributing external stresses, and participating in
the assembly of diverse and multifunctional, larger structures.

The importance of an optimal DR-plan is particularly evident for a qusecs. The quasi-uniform or self-
similar properties mean that the decomposition and solution for one subsystem can be used as the de-
composition and solution for other subsystems, thus causing further reduction in the complexity of both
DR-planning and recombination. This is shown in Figures 3 and 9.

Some materials that are readily modeled as qusecs include:

1. Cross-sections of microtubule structures [23] (Figure 1a), e.g., in ciliary membranes and transitions [24].

2. Cross-sections of organic tissue with hierarchical structure, e.g., compact bone and tendon (Figure
1b).

3. Crosslinked cellulose or collagen microfibril monolayers, e.g., in cell-walls [25, 26], as well as crosslinked
actin filaments in the cytoskeleton matrix. See Section 6.

2In this manuscript we only study finite 2D structures. Self-similarity refers to the result of finitely many levels of hierarchy
or subdivision in an iterated scheme to generate self-similar structures.
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(a) (b) (c)

Figure 1: (1a) Cross section of the Chlamydomonas algae axoneme, a cilia composed of microtubules [20].
(1b) Cross section of a tendon displaying the hierarchical structure [21]. (1c) A DNA array exhibiting the
Sierpinski triangle [22].

4. More recent, engineered examples, including disordered graphene layers [27, 28] sometimes reinforced
by microfibrils; and DNA assemblies including a recent Sierpinski gasket [29] (Figure 1c), bringing
other self-similar structures [30] within reach.

5. Silica bi-layers [31], glass [32], and materials that behave like assemblies of 2D particles under non-
overlap constraints, i.e. like jammed disks on the plane [33]. See Section 5.

1.2. Organization and Contributions

In Section 2, we provide basic definitions in combinatorial rigidity theory, and formalize the new notion
of qusecs [9, 10, 11]. In addition, we define DR-plans and what it means for a DR-plan to be complete
or optimal. We survey previous work on DR-planning algorithms, discussing other desirable criteria of
DR-plans and their relation to the NP-hard optimality property of DR-plans.

In Section 3, we define a so-called canonical DR-plan and prove a strong Church-Rosser property: all
canonical DR-plans for isostatic or underconstrained qusecs are optimal. In so doing, we navigate the NP-
hardness barrier present in the general form of the DR-planning problem; the canonical DR-plan elucidates
the essence of the NP-hardness of finding optimal DR-plans when a system is over-constrained. Further-
more, our optimal/canonical DR-plan satisfies desirable properties such as the previously studied cluster
minimality [2]. Also in this section, a polynomial time (O(n3)) algorithm is provided to find a canonical
DR-plan for isostatic bar-joint graphs. While this and the next section focus on bar-joint graphs, the the-
ory is easily extended to other qusecs used to model the abovementioned types of materials, as shown in
subsequent sections.

In Section 4, we give a method to deal with the algebraic complexity of recombining the realizations
or solutions of child subsystems into a solution of the parent system [9, 10, 11]. Specifically, we define the
problem of minimally modifying the indecomposable recombination system so that it becomes decomposable
via a small DR-plan and yet preserves the original solutions in an efficiently searchable manner. When the
modifications are bounded, we obtain new, efficient algorithms for realizing both isostatic and undercon-
strained qusecs by leveraging recent results about Cayley parameters in [12, 13, 14] (see Sections 4.3 and
4.4). In Section 4.5, we show formal connection to well known problems such as optimal completion of
underconstrained systems [18, 1, 34] and to find paths within the connected components.

In Section 5 and 6, we briefly describe applications of the above techniques to modeling, analyzing, and
designing specific properties in 2D material layers [35]. We explicitly model these materials as qusecs. For
Examples 4 and 5, we discuss boundary conditions for achieving various desired properties of body-hyperpin
systems. For Example 3, we discuss canonical and optimal DR-plans for pinned line incidence systems [36].

The last Section 7 concludes the paper, and Section 7.1 lists open problems and conjectures. In particular,
we conjecture that the methods of Section 3 extend in fact to a large class of (hyper)graphs, formally those
with an underlying abstract rigidity matroid in which independence corresponds to some type of sparsity,
and maximal independence (rigidity) is a tightness condition.

Throughout this paper, an asterisk after a formal statement indicates that its proof appears in Appendix
A.
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A software implementation of our algorithms and videos demonstrating the software are publicly available
online3.

2. Preliminaries and Background

We first give basic definitions and concepts in combinatorial rigidity, leading to a definition of a DR-plan,
its properties, and how they relate. The section ends with a discussion of previous work on DR-plans.

2.1. Geometric Constraint Systems and Combinatorial Rigidity

In this paper, a geometric constraint system is a multivariate polynomial (usually bilinear or quadratic)
system G(x, δ) = 0, representing constraints with parameters δ between geometric primitives in R2 repre-
sented collectively as x ∈ Rn. When the type of constraint (system) is fixed, the system is simply represented
as (G, δ), where G is the underlying constraint (hyper)graph G = (V,E) with the vertices V representing
the geometric primitives in R2 and (hyper)edges E representing the constraints, each with an associated
parameter δ. For example, a bar-joint system or linkage (G, δ), is a graph G = (V,E) with fixed length bars
as edges, i.e. δ : E → R; this represents the distance constraint system ‖xu − xv‖2 = δu,v for (u, v) ∈ E,
where xu ∈ R2 represents the coordinates of u ∈ V .

In all types of geometric constraint systems we consider in this paper, a Cartesian realization or solution
G(p) of (G, δ) is an assignment of coordinates or Euclidean transformations (poses), p : V → R2 or R3,
to the vertices of G satisfying the constraints with parameters δ, modulo orientation preserving isometries
(Euclidean rigid body motions).

Although the realization space itself depends on the constraint parameters δ, many relevant generic
properties of the constraint system G(x, δ) are defined to be properties of the constraint (hyper)graph G
and do not depend on δ (or they hold for all but a measure zero set of δ values). Many of these are properties
of the Jacobian ∆xG(x, δ), often called the appropriate rigidity matrix of G (a matrix of indeterminates).
For example, the bar-joint rigidity matrix of the graph G = (V,E) is a matrix of indeterminates representing
the Jacobian of the distance map ‖xu − xv‖2 for (u, v) ∈ E. The matrix has 2 columns per vertex in V and
one row per edge in E, where the row corresponding to edge (u, v) contains the 2 coordinate indeterminates
for xu − xv (resp. xv − xu) in the 2 columns for u (resp. v), i.e. 4 non-zero entries per row.

One important property of a generic constraint system or (hyper)graph4 is rigidity, i.e. the realizations
or solutions of the corresponding constraint system being generically isolated and zero-dimensional. The
result by Asimow and Roth [37] shows a constraint (hyper)graph is rigid if and only if it is generically
infinitesimally rigid, i.e. the number of independent rows of its appropriate rigidity matrix is at least the
number of columns less the number of rigid body motions, which is 3 for 2D bar-joint systems.

Geometric constraint systems can also have inequalities in addition to equations, where the parameters
in δ are small intervals rather than exact values. In this case, the definition of rigidity is approximate; the
solutions are isolated, small, full-dimensional connected components.

Other generic constraint system or (hyper)graph properties are mentioned here. A constraint (hy-
per)graph G is independent if its appropriate rigidity matrix of indeterminates has independent rows (i.e.
the determinant of some square submatrix is not identically zero). It is isostatic (minimally rigid, well-
constrained) if it is both rigid and independent. It is flexible if it is not rigid, underconstrained if it is
independent and not rigid, or overconstrained if it is not independent.

Defining the combinatorial independence of a subset of edges E′ ⊆ E to be the independence of cor-
responding rows in the rigidity matrix of indeterminates, we obtain the rigidity matroid of a constraint
(hyper)graph G = (V,E). There are various results on combinatorial characterization of independence,
rigidity, and rigidity matroids for different types of (hyper)graphs. For bar-joint rigidity matroids, the fa-
mous Laman’s theorem [4] states that the underlying graph is isostatic if and only if |E| = 2|V | − 3 and
|E′| ≤ 2|V ′| − 3 for every induced subgraph with at least 2 vertices. The result by Lovasz and Yemini [38]

3See footnote 1.
4We refer to these as properties of the constraint system or as properties of the underlying (hyper)graph interchangeably
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Gdemo =

(a)

Gdemo

(b)

Gdemo

(c)

Figure 2: (2a) A graph, Gdemo, used to illustrate concepts throughout this and the next section. (2b) The
complete DR-plan of Gdemo, i.e. ComDRP (Gdemo). Dashed lines indicate that the children repeat the same
pattern as the others shown on this level. The children of triangles (3 edges) are omitted. (2c) The canonical
DR-plan of Gdemo, which is optimal (see Section 3), i.e. OptDRP (Gdemo). The children of triangles are
omitted.

shows that all 6-vertex-connected graphs are rigid in the plane. For bar-body rigidity matroids, Tay [6]
proved that the underlying multigraph is isostatic if and only if it can be decomposed as 3 edge disjoint
spanning trees. White and Whiteley [7] gave the same characterization using a different technique to study
the algebraic-geometric conditions of genericity, called pure condition. Lee, Streinu and Theran [39] defined
the (k, l)-sparsity matroid, where a hypergraph G is called (k, l)-sparse if |E′| ≤ k|V ′| − l for any induced
subgraph (V ′, E′) with at least 2 vertices, and (k, l)-tight if it is (k, l)-sparse and |E| = k|V | − l. In general,
given a d-uniform hypergraph, a (k, l)-sparsity condition is matroidal as long as l ≤ dk − 1.

In this paper, a qusecs is any independent geometric constraint system of one of 3 types: bar-joint
(defined formally in 2.1), body-hyperpin (defined formally in Section 5), and pinned line-incidence (defined
formally in Section 6).

We note that the remainder of this section and Sections 3 and 4 we only consider bar-joint qusecs and
graphs. Relevant formal analogies for the other 2 types of qusecs and (hyper)graphs are given along with
their materials applications in Sections 5 and 6.

2.2. Decomposition-Recombination (DR-) Plans

Definition 1. The decomposition-recombination (DR-) plan [2] of graph G, DRP(G), is defined as a forest
that has the following properties:

1. Each node represents/contains/is a rigid subgraph of G.

2. The children C1, . . . , CN of a node C satisfy
⋃N
i=1 Ci = C.

3. A leaf node is a single edge. A trivial graph is empty or a single vertex. Note that a trivial graph is
not isostatic.

4. A root node is a vertex-maximal rigid subgraph of G.

A DR-plan is complete if it satisfies an additional property: for a non-leaf node C, its children are all of
the rigid vertex-maximal proper subgraphs of C. This makes Property 2 implicit. We denote a complete
DR-plan of G as ComDRP(G).

A DR-plan is optimal if it minimizes the maximum fan-in over all nodes in the tree. The maximum
fan-in is called the size of the DR-plan. We denote an optimal DR-plan of G as OptDRP(G).

Remark 2. More than one node (leaf) in a DR-plan forest may represent the same subgraph (vertex) of
G. For a given graph, there could be exponentially many DR-plans—and even optimal DR-plans—in the
size of the graph. A complete DR-plan is unique but may not be (and is usually not) optimal. DR-plans of
self-similar graphs are self-similar.

See Figures 2, 3, 4, 5, and 9 for examples of DR-plans and how their properties relate to each other.
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2.3. Previous Work on DR-Plans

We now briefly survey existing techniques for detecting rigidity and creating DR-plans of 2D constraint
systems. The limitations of these techniques directly motivate the contributions of the next section.

2.3.1. Finding (Vertex)-Maximal, Generically Rigid Subsystems

Fast, graph-based algorithms exist (pebble-game [40, 41, 42, 43]), for locating all maximal, generically
rigid subsystems (formally defined in 2.1). When the input itself is rigid, these algorithms do nothing, i.e.
compute the identity function.

However, both for self-similar or just aperiodic 2D qusecs, it is imperative to recursively decompose
rigid systems into their rigid subsystems, down to the level of geometric primitives, in order to understand
or design properties at all scales, such as (formally defined in 2.1) rigidity, flexes, distribution of external
stresses, boundary conditions for isostaticity, as well as behavior under constraint variations.

2.3.2. Optimal Recursive Decomposition (DR-Planning)

Recursive decomposition of geometric constraint systems has been formalized [2, 3] and well-studied
[8, 1, 42] as the Decomposition-Recombination (DR-) planning problem (formally defined in Section 2.1).
For the abovementioned classes of 2D qusecs, generic rigidity is a combinatorial property and hence each
level of the decomposition should, in principle, be achievable by a graph-based algorithm without involving
the geometric information in the constraint system. Since many such decompositions can exist for a given
constraint system, criteria defining desirable or optimal DR-plans and DR-planning algorithms were given
in [2].

However, for overconstrained 2D qusecs, even when restricted to bar-joint systems, the optimal DR-
planning problem was shown to be NP-hard [8, 1]. The NP-hardness of the optimal DR-planning problem
for 2D bar-joint graphs is partly the consequence of possibly exponential number of DR-plans. On the other
hand, although the complete DR-plan is unique it could have large average fan-in and exponentially many
nodes making it far from optimal.

2.3.3. DR-plans for Special Classes and with Other Criteria

For a special class of 2D qusecs, namely tree-decomposable systems [44, 45, 46] common in computer aided
mechanical design (which includes ruler-and-compass and Henneberg-I constructible systems), all DR-plans
turn out to be optimal. This satisfies the Church-Rosser property, leading to highly efficient DR-planning
algorithms. For general 2D qusecs, alternate criteria were suggested such as cluster minimality requiring
parent systems to have a minimal set of at least 2 rigid proper subsystems as children (i.e. the union of no
proper subset of size at least 2 child subsystems forms a rigid system); and proper maximality, requiring
child subsystems to be maximal rigid proper subsystems of the parent system. See 2.1 for formal definitions.

While polynomial time algorithms were given to generate DR-plans meeting the cluster minimality
criterion [8], no such algorithm is known for the latter criterion.

3. Main Result: Canonical DR-Plan, Optimality, and Algorithm

3.1. Canonical DR-Plan

In this section, we define a canonical plan to capture those aspects of an optimal DR-plan that mimic
the uniqueness of a complete DR-plan, and we show that the nonunique aspects do not affect optimality for
independent (underconstrained or isostatic) graphs. Furthermore, we give an efficient O(n3) algorithm to
find the canonical DR-plan of any independent graph. The definition is as follows:

Definition 3. The canonical DR-plan of a graph G satisfies the following three properties: (1) it is a DR-
plan of G; (2) children are rigid vertex-maximal proper subgraphs of the parent; and (3) if all pairs of rigid
vertex-maximal proper subgraphs intersect trivially then all of them are children, otherwise exactly two that
intersect non-trivially are children.
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In this section and in section 4, any reference to a graph G is assumed to be isostatic (i.e. well-constrained
or (k, l)-tight).

Definition 3 gives the canonical DR-plan a surprisingly strong Church-Rosser property, which is made
explicit in Theorem 4, the main result of this section.

Theorem 4. A canonical DR-plan exists for a graph G and any canonical DR-plan is optimal if G is
independent.

Proof. We show the existence of a canonical DR-plan by constructing it as follows:
Begin with ComDRP(G) of a rigid 2D bar-joint graph G, for all nodes C with children C1, . . . , CN retain

children nodes according to the following rules:

1. If Ci ∩ Cj is trivial then retain all C1, . . . , CN as children.

2. If Ci ∩ Cj is rigid then select any two out of C1, . . . , CN as children.

This directly satisfies Properties (2) and (3) of a canonical DR-plan (see Definition 3), because all the
nodes in ComDRP(G) are rigid vertex-maximal proper subgraphs, which we shorten to clusters. To show
Property (1) holds (that this constitutes a DR-plan): for Case 1 above, since we start with a complete
DR-plan, if we preserve all the children it is still a DR-plan; for Case 2 above, we know that the union must
be rigid as well and it cannot be anything other than C, otherwise we would have found a larger rigid proper
subgraph of C, contradicting vertex-maximality.

Note that if we begin with an isostatic graph, “rigid” can be replaced with “isostatic” throughout the
construction and preserve the above properties. The rigid proper subgraphs of an isostatic graph must be
isostatic themselves.

Next we show that a canonical DR-plan is optimal.
First, note that any DR-plan R without the Property (2) of a canonical DR-plan can always be modified

(by introducing intermediate nodes) to satisfy Property (2) without increasing the max fan-in, since any
rigid proper subgraph of a graph C (a child of node C of the DR-plan R) is the subgraph of some cluster
of C. Thus without loss of generality, we can assume that an optimal DR-plan satisfies Property (2) of a
canonical DR-plan.

The proof of optimality of a canonical DR-plan is by induction on its height. The base case trivially
holds for canonical DR-plans of height 0, i.e. for single edges. The induction hypothesis is that canonical
DR-plans of height t are optimal for the root node. For the induction step consider a canonical DR-plan
R of height t + 1 rooted at a node C. Notice that R represents a canonical DR-plan R(C) for the graphs
C corresponding to each of its descendant nodes. Thus, from the induction hypothesis, we know that the
R(Ci) is optimal for Ci.

Thus it is sufficient to demonstrate a set of nodes S that must be present in any DR-plan R for C that
satisfies Property (2), including a known optimal one; and furthermore, for any such DR-plan R, either
(Claim 1) S must be the set of children of C; or (Claim 2) for all the ancestors A of S, R has the minimum
possible fan-in of 2.

We show the two claims below. The first claim is that for a node C whose clusters have trivial pairwise
intersections, any DR-plan of C that satisfies Property (2) must also satisfy Property (3) at C, i.e. the
set of children S of C consists of all clusters of C. Because this is the only choice, it is the minimum
fan-in at C for any DR-plan for C with Property (2), including a known optimal one. The second claim
shows that in the case of nodes C whose rigid, vertex-maximal proper subgraphs have non-trivial pairwise
intersections, every canonical DR-plan of C that uses any possible choice of two such subgraphs of C as
children results in a minimum possible fan-in of 2 in the ancestor nodes A leading to the same maximal
antichain S of descendants D of C. The antichain is maximal in the partial order of rigid subgraphs of
C under containment. I.e. S satisfies the property that every proper vertex-maximal rigid subgraph of C
is a superset of some D in S; this follows from properties of maximal antichains that no element of S is
contained in the union of other elements of S; and the union of elements of S is C. Thus any DR-plan that
satisfies Property (2) and hence contains two or more of the rigid vertex-maximal proper subgraphs of C
as children must also contain every element of S. The two claims complete the proof that every canonical
DR-plan is optimal.
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Claim 1: A set of clusters C1, . . . , CN whose pairwise intersection is trivial, must be children of C in an
optimal DR-plan.

We prove this claim by showing that the union of no subset of the children can be C, thereby requiring
all of them to be included as children.

We prove by contradiction. Assume to the contrary that the strict subset S ( {1, . . . , N} such that
U =

⋃
i∈S Ci is isostatic. If U 6= C, then we found a larger proper subgraph contradicting vertex-maximality

of the Ci. So, it must be that U = C. However, since Ci ∩ Cj is trivial then for k /∈ S we know, by Lemma
6, Item 3, U ∩ Ck must be one or more trivial, i.e. disconnected vertices. By definition of a DR-plan,
Ck = C ∩Ck and we know that U = C so Ck = U ∩Ck. Thus, Ck is (i) a collection of disconnected vertices,
and (ii) an isostatic subgraph of C, which is impossible. As C is isostatic, this means the union of no proper
subset of C1, . . . , CN is isostatic, nor is it equal to C, proving Claim 1.

Furthermore, since a canonical DR-plan has nodes with proper rigid vertex-maximal subgraphs as chil-
dren, if, as in this case, their pairwise intersection is trivial, it follows that any node has at most as many
children as a DR-plan without this restriction, because the union of the children must contain all edges of
the parent. Therefore, the canonical DR-plan is the optimal choice in this case of trivial intersections.

Claim 2: If some pair in the set of child clusters C1, . . . , CN of C has an isostatic (nontrivial) intersection,
then choosing any two as children (minimum possible fan-in) will result in the same maximal antichain of
descendants of C.

To prove Claim 2, notice that if Ci∩Cj is isostatic, then, by Observation 5, Ci∪Cj is also isostatic. This
means that, by Lemma 6, Point 2, the union of any two children of C is C itself. Thus, any two children can
be chosen to make a canonical DR-plan and that is the minimum fan-in possible for a node of the DR-plan.

However, to guarantee that any two are the optimal choice, it must ensure minimum fan-in over all
descendants leading up to a common maximal antichain S of subgraphs.

To prove this holds, take the set [N ] = {1, . . . , N}, and denote I =
⋂
k∈[N ] Ck and Rk = C \ Ck.

Suppose Ci and Cj , where i 6= j, are the children. For convenience, we will assume all subgraphs are
induced subgraphs of C. We know that C = I∪

⋃
k∈[N ]Rk and Ci = I∪

⋃
k∈[N ]\{i}Rk. The isostatic vertex-

maximal subgraphs of Ci are (I∪
⋃
k∈[N ]\{i,1}Rk), . . . , (I∪

⋃
k∈[N ]\{i,i−1}Rk), (I∪

⋃
k∈[N ]\{i,i+1}Rk), . . . , (I∪⋃

k∈[N ]\{i,N}Rk) all of whose pairwise intersections are isostatic subgraphs. So any two of these are viable

children for Ci. This continues for N − 1 levels, always with fan-in of two (the minimum possible), at which
point every descendant of C is some I ∪ Rk for k ∈ [N ], with every k appearing at least once. At the last
level, there are exactly two rigid proper vertex-maximal subgraphs, and hence a unique choice of pair of
children. Thus, regardless of the sequence of choices of Ci and Cj , and of their descendants at each level,
the DR-plan has the optimal fan-in of two for every node for N levels, and the collection of last level nodes
contain the same maximal antichain of subgraphs (for all choices).

This proof of this theorem relies on the following crucial observation and lemma. These will be used
again in the application sections (5 and 6) of the paper, with modifications to work for other types of qusecs.

Observation* 5. If Fi and Fj are non-empty isostatic graphs then the following hold:
(1) Fi ∪ Fj is not trivial; (2) Fi ∪ Fj is underconstrained if and only if Fi ∩ Fj is trivial; (3) Fi ∪ Fj is
isostatic if and only if Fi ∩ Fj is isostatic; and (4) Fi ∩ Fj is not underconstrained.

The following key properties hold at the nodes of a canonical DR-plan.

Lemma* 6. Let C be an isostatic node of a canonical DR-plan, with distinct children C1, C2, . . . , Cm.
Assume i 6= j. Then

1. Ci ∪ Cj is isostatic if and only if Ci ∪ Cj = C.

2. If Ci∪Cj is isostatic, then ∀k : Ci∪Ck is isostatic. Alternatively, if Ci∪Cj = C, then ∀k : Ci∪Ck = C.

3. If Ci ∩ Cj is trivial, then ∀k : Ci ∩ Ck is trivial.

Remark 7. The first item in the above lemma generalizes to the union of any number of children, C1, . . . , Ck,
resulting in the desirable property of cluster minimality (defined in [2] and in Section 2.3) holding for
canonical-optimal DR-plans.
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a1

a2

b1
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c1

c2

(a)

G

G\{a1,b1,c1} G\{aN,bN,cN}

G\{a1,b1,c1,
      aN,bN,cN}

G\{a1,b1,c1,
      a2,b2,c2}

G\{aN-1,bN-1,cN-1,
            aN,bN,cN}

{a1,b1,c1,
  a2,b2,c2}

{aN-1,bN-1,cN-1,
       aN,bN,cN}

....................{aN-2,bN-2,cN-2,
  aN-1,bN-1,cN-1}

{a1,a2} {b1,b2} {c1,c2}{a1,b1,c1}

K3,3 on
(a1, b1)

K3,3 on
(b1, c1)

K3,3 on
(c1, a1)

{a2,b2,c2}

(b)

Figure 3: (3a) A sequence of doublets (C2 × C3) intersecting on triangles, where the edges of the triangles
are replaced by K3,3’s. This pattern continues inwards for a total of N triangles, indicated by the dashed
arrows. (3b) The canonical DR-plan of G, drawn as a DAG. G \ {ai, bi, ci} is shorthand for G difference
those nodes and all of the nodes in the corresponding K3,3 subgraphs. Below the third level, the obvious
pattern continues until only the individual doublets are present (fourth level) with the ellipses indicating the
remaining doublets between those shown. Decomposition of one of these doublets is shown. The dashed lines
indicated that this exact decomposition (of the similar nodes on the level) is repeated. Further decomposition
of K3,3 subgraphs into the separate 9 edges is omitted from the figure.

Example 8 (DR-plan for self-similar structure). This example details the decomposition of the graph in Figure
3, the canonical DR-plan of G. It begins with the whole (isostatic) graph as the root. The graph G has only
two isostatic vertex-maximal subgraphs: G without the outermost triangle composed of K3,3 graphs (triangle
1) and G without the inner triangle (triangle N). These intersect on G without triangle 1 and N which
is clearly isostatic. As explained in the proof of Theorem 4, since there are only 2 possible children, their
intersection must be a node 2 levels below the parent. As expected, it is on the third level, as a child of both
of G’s children.

Both of G’s children are similar to G, but containing only N − 1 triangles. Therefore, the canonical
DR-plans of these children follow the same pattern. This continues downward until the individual doublets
are reached (there will be multiple occurrences of the same doublets at this level, but they can be represented
as the same node in a DAG).

Further decomposition of one of these doublets is shown. The three edges between the triangles and the
triangles themselves all intersect trivially pairwise. By Theorem 4, part 1, they must all be children in the
DR-plan. Similarly, the triangles decompose into their three trivially intersecting K3,3’s. Then the K3,3

subgraphs decompose into their separate 9 edges.
The self-similar nature of this graph is evident in the canonical DR-plan. Many structures are repeated

throughout the DR-plan, allowing for shared computation in both decomposition and recombination.

3.2. Algorithm

Theorem 9. There exists an O(|V |3) algorithm to find a canonical DR-plan for an input graph.

Proof. We first describe the algorithm. The first step of the algorithm, which we call CanDRP (G), is finding
the isostatic vertex-maximal proper subgraphs (clusters) of the input isostatic graph G. One of many ways
to do this is by first dropping arbitrary edge e from the edge set and running the pebble game algorithm [40]
on this subgraph, which is O(|V |2). The output of this will be a list of cluster-candidates. The next step is
to isolate the set of true-clusters by running the Frontier algorithm [3] [8] (O(|V |)) on each candidate along
with edge e, to find the minimal subgraph D that contains the candidate and e. If D = G, the candidate is
moved (before adding e) to the true-cluster list and removed from the candidate-cluster list. If D ( G, all
candidates that are subgraphs of D are removed from the candidate-cluster list and D is added back to the
list. The next candidate is considered until all candidates are exhausted.
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Gdemo

Figure 4: The sequential canonical DR-plan of Gdemo from Figure 2a, which is optimal (as explained in the
proof of Theorem 9). The children of the triangle are omitted. Compare to to the typical canonical DR-plan
shown in Figure 2c. Also, note that the bottom-left node, the triangle, is the intersection of the 3 children
of Gdemo in ComDRP (Gdemo), shown in Figure 2b.

The next step is to check the intersection of any two of the true-components. If the intersection is trivial,
the entire list becomes the children, and the algorithm is recursively applied to each child. If the intersection
is non-trivial (necessarily isostatic), the decomposition is computed down to I =

⋂N
k=1 Ck. (This is discussed

in detail in the proof of Theorem 4). We construct a DR-plan whose node set is that of a canonical/optimal
DR-plan. Begin with the parent C. Its children are S1 and CanDRP (T1), where S1 = C \ R1 and T1 is
R1, together with all incident edges. Observe that these edges are incident on vertices from I and that T1
is underconstrained so its DR-plan is a forest where each root becomes a child of C. The children of S1 are
S2 and CanDRP (T2), where S2 = C \ (R1 ∪R2) and T2 is R2 together with all incident edges. The process
iterates. At N levels down, the children are SN = I and CanDRP (TN ), where TN is RN together with
all incident edges. Apply the algorithm recursively to both children. Thus we obtain an efficient method
for the case of DR-plan nodes whose rigid proper vertex-maximal subgraphs have non-trivial intersections,
avoiding recomputation of the isostatic components of C. See Figure 4 for an example.

To summarize the above step of the algorithm: if the intersection is trivial, recursively apply CanDRP
to the entire list of true-components and set the resulting trees as the children. Else, the intersection is
non-trivial, and the children of the node are CanDRP (C1) and CanDRP (T ), where C1 is the first true-
component of the parent C (chosen arbitrarily, could be any child) and T is the underconstrained graph
formed by C \ C1 together with all incident edges and the associated nodes in C1.

The DR-plan output by this algorithm is a tree where each node is a distinct subgraph. The leaves of
this tree are the edges of the starting graph G. Therefore, the number of nodes in the tree is O(|E|) which,
for isostatic input graphs, is O(|V |) and the complexity of the algorithm is O(|V |3).

3.3. Overconstrained Graphs and NP-Hardness of Optimal DR-Planning

For overconstrained (not independent) graphs, a canonical DR-plan is still well-defined. However, it may
be far from optimal. The proofs of Theorem 4, Observation 5, and Lemma 6 all fail for overconstrained
graphs. It is important to note that, regardless whether the graph is overconstrained, if every node in a
canonical DR-plan R has clusters whose pairwise intersection is trivial, then the DR-plan is the unique one
satisfying Property (2), and since we know that there is an optimal DR-plan that satisfies Property (2), R is
in fact optimal. The problem arises when some node in a DR-plan has clusters whose pairwise intersection is
non-trivial. In this case, an arbitrary choice of a pair of clusters as children of an overconstrained node in a
canonical DR-plan may not result in an optimal DR-plan. This is in contrast to independent graphs, which,
as shown in Theorem 4, exhibit the strong Church-Rosser property that any choice yields an optimal DR-
plan. A good source of examples of overconstrained graphs with canonical DR-plans that are not optimal
are graphs whose cluster-minimal DR-plans that are not optimal. The example shown in Figure 5 is a
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(a) (b)

Figure 5: Both figures are canonical and cluster-minimal DR-plans of the same singly overconstrained rigid
graph. Decomposition of triangles are omitted and dashed lines indicate a decomposition similar to the
other nodes on the same level. (5a) is an optimal DR-plan, with a fan-in of 5. (5b) has a fan-in of 9 and is
non-optimal, shown by the preceding counter-example.

canonical, cluster-minimal DR-plan that is not optimal; an optimal DR-plan is also shown in the figure.
The root cause of the NP-hardness is encapsulated in this figure: because the different choices of vertex-
maximal subgraphs for overconstrained input do not incur the same fan-in, finding the optimal DR-plan
becomes a search problem with a combinatorial explosion of options.

As mentioned earlier, the Modified Frontier algorithm version given in [8] runs in polynomial time and
finds a cluster-minimal DR-plan for any graph. Similarly, the algorithm given above finds a canonical DR-
plan also for any input graph. However neither of these DR-plans may be optimal for overconstrained graphs
as shown in Figure 5.

While the canonical DR-plan is optimal only if the input graph is independent, when there are only k
overconstraints for some fixed k, we can still find the optimal DR-plan using a straightforward modification
of the above algorithm. However, the time complexity is exponential in k.

This exponential growth of time complexity for overconstrained graphs is in fact captured in the proof
of NP-hardness of optimal DR-planning in [1, 8].

4. Recombination and Problem Relationships

In this section, we consider the optimal recombination problem of combining specific solutions of sub-
systems in a DR-plan into a solution of their parent system I (without loss of generality, at the top level of
the DR-plan). In the case of isostatic qusecs, the parent system I is isostatic (the root of the DR-plan), and
we seek solution(s) (among a finite large number of solutions) with a specific orientation or chirality. In the
case of underconstrained qusecs the subsystems are the multiple roots of the DR-plan, the parent system I
is underconstrained, and we typically seek an efficient algorithmic description of connected component(s) of
solutions with a specific orientation or chirality.

The main barrier in recombination when given an optimal DR-plan (of smallest possible size or max fan-
in) for a system S, is that the number of children of the root (resp. number of roots of the DR-plan)—and
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correspondingly the size and complexity of the (indecomposable) algebraic system I to be solved—could be
arbitrarily large as a function of the size of S. This difficulty can persist even after optimal parametrization
of the indecomposable system I as in [9] to minimize its algebraic complexity.

4.1. Previous Work

We now briefly survey existing techniques for handling the complexity of recombination of DR-plans for
qusecs. The limitations of these techniques directly motivate the contributions in this section.

4.1.1. Optimal Recombination and Solution Space Navigation

For the entire DR-plan, finding all desired solutions is barely tractable even if recombination of solved
subsystems is easy for each indecomposable parent system in the DR-plan. This is because even for the
simplest, highly decomposable systems with small DR-plans, the problem of finding even a single solution
to the input system at the root of the DR-plan is NP-hard [47] and there is a combinatorial explosion of
solutions [48]. Typically, however, the desired solution has a given orientation type, in which case, the crux
of the difficulty is concentrated in the algebraic complexity of (re)combining child system solutions to give
a solution to the parent system at any given level of the DR-plan. For fairly general 3D constraint systems,
there are algorithms with formal guarantees that uncover underlying matroids to combinatorially obtain an
optimal parameterization to minimize the algebraic complexity of the indecomposable parent (sub)systems
that occur in the DR-plan [9, 10, 11], provided the DR-plan meets some of the abovementioned criteria.

However, the generality of these algorithms trades-off against efficiency, and, despite the optimization, the
best algorithms can still take exponential time in the number of child subsystems (which can be arbitrarily
large even for optimal DR-plans) in order to guarantee all solutions of a given orientation type, even for
a single (sub)system in a DR-plan. They are prohibitively slow in practice. We note that, utilizing the
DR-plan and optimal recombination as a principled basis, high performance heuristics and software exists
[49] to tame combinatorial explosion via user intervention.

4.1.2. Configuration Spaces of Underconstrained Systems

For underconstrained 2D bar-joint and body-hyperpin qusecs obtained from various subclasses of tree-
decomposable systems, algorithms have been developed to complete them into isostatic systems [18, 1, 34, 12]
and to find paths within the connected components [13, 50] of standard Cartesian configuration spaces.
Most of the algorithms with formal guarantees leverage Cayley configuration space theory [12, 13, 14] to
characterize subclasses of graphs and additional constraints that control combinatorial explosion, and provide
faithful bijective representation of connected components and paths. These algorithms have decreasing
efficiency as the subclass of systems gets bigger, with highest efficiency for underlying partial 2-tree graphs
(alternately called tree-width 2, series-parallel, and K4 minor avoiding), moderate efficiency for 1 degree-of-
freedom (dof) graphs with low Cayley complexity (which include common linkages such as the Strandbeest,
Limacon, and Cardioid), and decreased efficiency for general 1-dof tree-decomposable graphs. While software
suites exist [51, 52, 53, 54], no such formal algorithms and guarantees are known for non-tree-decomposable
systems.

4.2. Optimal Modification for Recombination

In the following, we formulate the problem of optimal modification of an indecomposable algebraic system
I at some node of a (possibly optimal) DR-plan into a decomposable system with a small DR-plan (low
algebraic complexity). Leveraging recent results on Cayley configuration spaces, our approach to the optimal
modification problem achieves the following:

(a) Small DR-plan. We obtain a parameterized family of systems IλF
—one for each value λF for the

parameters F , all of which have small DR-plans. Thus, given a value v for λF , the system Iv can
potentially be solved or realized easily once the orientation type of the solution is known (when the
DR-plan size is small enough).

(b) Solution preservation. Moreover, the union of solution spaces of the systems in the family IλF
is

guaranteed to contain all of I’s solutions.
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(c) Efficient search. Finally, the so-called Cayley or distance parameter space λF is convex or otherwise
easy to traverse in order to search for I’s solution (or connected component) of the desired orientation
type. For the case when the modification (number of Cayley parameters) is bounded, this approach
provides an efficient algorithm for recombination. We first define the decision version of the problem of
optimal modification for decomposition. The standard optimization versions are straightforward.

Optimal Modification for Decomposition (OMD) Problem. Given a generically independent graph
G = (V,E) with no non-trivial proper isostatic subgraph (indecomposable) and 2 constants k and s, does
there exist a set of at most k edges E1 and a set of non-edges F such that the modified graph H =
(V,E \ E1 ∪ F ) has a DR-plan of size at most s? The OMDk problem is OMD where k is a fixed bound
(not part of the input). We say that such a tuple (G, s) is a member of the set OMDk. We loosely refer to
graphs G as OMD with appropriately small k and s or OMDk with appropriately small s.

It is immediately clear that indecomposable graphs G that belong in OMDk for small k and s lend
themselves to modification into decomposable graphs satisfying Criteria (a) and (b) above. However, it is
not clear how Criterion (c) is met by OMD graphs. Before we consider this question, we discuss previous
work on recombination of DR-plans.

4.3. Using Convex Cayley Configuration Spaces

Next we provide the necessary background to describe a specific approach for achieving the requirements
(a)–(c) mentioned above, by restricting the class of reduced graphsG′ = G\E1 and their isostatic completions
H in the above definition of the OMD problem, and using a key theorem of Convex Cayley configuration
spaces [12]. This theorem characterizes the class of graphs H and non-edges F (Cayley parameters), such
that the set of vectors λF of attainable lengths of the non-edges F is always convex for any given lengths
δ for the edges of H (i.e. over all the realizations of the bar-joint constraint system or linkage (H, δ) in 2
dimensions). This set is called the (2-dimensional) Cayley configuration space of the linkage (H, δ) on the
Cayley parameters F , denoted ΦF (H, δ) and can be viewed as a “projection” of the cartesian realization space
of (H, δ) on the Cayley parameters F . Such graphs H are said to have convexifiable Cayley configuration
spaces for some parameters F (short: H is convexifiable).

To state the theorem, we first have to define the notion of 2-sums and 2-trees. Let H1 and H2 be two
graphs on disjoint sets of vertices V1 and V2, with edge sets E1 and E2 containing edges (u, v) and (w, x)
respectively. A 2-sum of H1 and H2 is a graph H obtained by taking the union of H1 and H2 and identifying
u = w and v = w. In this case, H1 and H2 are called 2-sum components of H. A minimal 2-sum component
of H is one that cannot be further split into 2-sum components. A 2-tree is recursively obtained by taking
a 2-sum of 2-trees, with the base case of a 2-tree being a triangle. A partial 2-tree is a 2-tree minus some
edges. Partial 2-trees have an alternate characterization as the graphs that avoid K4 minors, and are also
called series-parallel graphs.

Theorem 10. [12] H has a convexifiable Cayley configuration space with parameters F if and only if for
each f ∈ F all the minimal 2-sum components of H ∪F that contain both endpoints of f are partial 2-trees.
The Cayley configuration space ΦF (H, δ) of a bar-joint system or linkage (H, δ) is a convex polytope. When
H ∪ F is a 2-tree, the bounding hyperplanes of this polytope are triangle inequalities relating the lengths of
edges of the triangles in H ∪ F .

The idea of our approach to achieve the criteria (a)–(c) begins with the following simple but useful
theorem.

Theorem 11. Given an indecomposable graph G, let G′ be a spanning partial 2-tree subgraph in G with k
fewer edges than G. Then (G, 2) belongs in the set OMDk.

Proof. The proof follows from the fact that 2-trees are well decomposable and have simple DR-plans of size
2. We know that G can be reduced by removing k edges to create a partial 2-tree G′ which can then be
completed to an (isostatic) 2-tree by adding some set of non-edges F . Thus the modified graph H = G′ ∪F
has a DR-plan of size 2, proving the theorem.
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Figure 6: (6a) The K3,3 with two labeled edges, e1 and e2. (6b) The K3,3 with e1 and e2 removed (dashed
lines) and rearranged to illustrate that it is now a partial 2-tree. (6c) The K3,3 with {e1, e2} removed and
{f1, f2} (bold lines) added to make a 2-tree, showing that the K3,3 is at least OMD2. (6d) The K3,3 with
only e2 removed (dashed line). (6e) The K3,3 with e2 removed and f3 (bold line) added to make a low
Cayley complexity graph, showing that the K3,3 is OMD1.

We refer to such graphs G in short as k-approximately convexifiable, where the reduced graphs G′

and isostatic completions H are convexifiable. As observed earlier, since graphs such as G are in OMDk,
Criteria (a) and (b) are automatically met for small enough k. Criterion (c) is addressed as described in
the following efficient search procedure which clarifies the dependence of the complexity on the number and
ranges of Cayley parameters F .

Theorem* 12 (Efficient search). For an indecomposable, k-approximately convexifiable graph G = (V,E), let
G′ = (V,E′ = E \D) be a spanning partial 2-tree subgraph where |D| ≤ k. Let F be a set of non-edges of
G such that H = (V,E′ ∪ F ) is a 2-tree. Each solution p (or connected component of a solution space) of
(G, δ) of an orientation type σp can be found in time O(log(W )) where W is the number of cells of desired
accuracy (discrete volume) of the convex polytope ΦF (G′, δ′E). The (discrete) volume W is exponential in
|F | and polynomial in the (discrete range) of the parameters in F .

Note: A major advantage of the convex Cayley method is that it is completely unaffected when δ are
intervals of values rather than exact values [12].

Example 13 (Using Cayley configuration space). A graph G = K3,3 cannot be decomposed into any nontrivial
isostatic graphs, i.e. its DR-plan has a root and 9 children corresponding to the 9 edges. Solving or recom-
bining the system (G, δ) corresponding to the root of this DR-plan involves solving a quadratic system with
8 equations and variables. Instead of simultaneously solving this system, we could instead use the fact that
G = K3,3 is in OMD2: remove the edges e1, e2 in Figure 6 to give a partial 2-tree G′. Now add the non-edges
f1, f2 to give a 2-tree H with a DR-plan of size 2. The Cayley configuration space Φf (G′, δE\e) is a single
interval of attainable length values λF for the edge f . When δ is generic, i.e. does not admit collinearities or
coincidences in the realizations of (G, δ), the realization space of (H,

〈
δE\e, λf

〉
) has 16 solutions qpλf

(mod-

ulo orientation preserving isometries), with distinct orientation types σp (two orientation choices for each
of the 4 triangles) that can be obtained by solving a sequence of 4 single quadratics in 1 variable (DR-plan
of size 2). By subdivided binary search in the interval λf ∈ Φf (G′, δE\e), the desired solution p of (G, δ) is
found when the length of the nonedge e in the realization qpλf

is δe.

In fact, we can show that G = K3,3 is in OMD1 by removing a single edge to reduce (as shown in Figure
6) to a tree-decomposable graph of low Cayley complexity (which includes the class of partial 2-trees). In the
next Section 4.4, we discuss this issue of why the largest class of reduced graphs is desirable.

4.4. Optimized Modification by Enlarging the Class of Reduced Graphs

It is possible in principle to decrease k for a OMDk graph (i.e. the number of edges to be removed to
ensure an isostatic completion that is decomposable with a small DR-plan) by considering reduced graphs
G′ (and modified graphs H) that come from a larger class than partial 2-trees but nevertheless have convex
Cayley configuration spaces at least when the realization space is restricted to a sufficiently comprehensive
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orientation type. In particular, the so-called tree-decomposable graphs of low Cayley complexity [13, 14]
include the partial 2-trees and many others that are not partial 2-trees. See an illustration in Figure 6.
These too result in DR-plans of size 2 or 3, putting G in the class OMDk and thus meeting Criteria (a)
and (b). The Criterion (c) is met—for example when k = 1—because 1-dof Cayley configuration spaces
of linkages based on such graphs G′ are known to be single intervals when a comprehensive orientation
type σp of the sought solution p is given. In addition, the bounds of these intervals are of low algebraic
complexity. More precisely, the bounds can themselves be computed using a DR-plan of size 2 or 3, i.e. the
computation of these bounds is tree-decomposable. Alternatively, the bounds are in a simple quadratic or
radically solvable extension field over the rationals, or they can be computed by solving a triangularized
system of quadratics.

4.5. Problem Relationships

In this section we provide a unified view of the various problems studied in the previous 2 sections, along
with formal reductions between them. We discuss their relationship to other known problems and results
as well as open questions.

4.5.1. Special Classes of Small DR-Plans

As seen in the previous section, 2-trees and tree-decomposable graphs have not only small, but also
special DR-plans that permit easy solving—essentially by solving a single quadratic at a time.

The restricted optimal DR-planning problem requires DR-plans of one of these types, which reduces to
recognizing if the input graph is a 2-tree or a tree-decomposable graph for which simple near-linear time
algorithms are available [55, 45] and the DR-plan is a by-product output of the recognition algorithm.

In the recombination setting, the corresponding restricted OMDk problem requires the reduced graph
G′ and its isostatic completion H to be 2-trees as in Section 4.3 or to be a low Cayley complexity tree-
decomposable graph as in Section 4.4. Clearly these problems have deterministic polynomial time algorithms
in n, but the algorithms run in time exponential in k.

We discuss the complexity of the restricted OMD problem (when k is part of the input) in the open-
problem Section 7.1.

4.5.2. Optimal Modification, Completion and Recombination: Previous Work and Formal Connections

The OMD problem is closely related to a well-studied problem of completion of an underconstrained
system to an isostatic one with a small DR-plan.

Observation 14. The (decision version of) the optimal completion problem (OC) from [1, 18, 56] is
OMD0.

In fact, a restricted OC problem was studied by [18] requiring the completion to be tree-decomposable.
We now connect the OMD problem to the informal optimal recombination (OR) problem mentioned as

motivation at the beginning of Section 4.
In order to connect the OR problem to OMD, when the input graph is the isostatic graph at the DR-plan

root, we do not consider the case where the two child solved subgraphs (corresponding to already solved sub-
systems) have a nontrivial intersection (in this case the recombination is trivial). We only consider the case
where no two child solved subgraphs (resp. two root subgraphs when the input graph is underconstrained)
share more than 1 vertex. We replace such solved subgraphs by isostatic graphs as follows. If a solved
subgraph shares at most one vertex with the remainder of the graph, simply replace it by an edge one of
whose endpoints is the shared vertex. Otherwise, replace it by a 2-tree graph of the shared vertices. Finally,
we add the additional restriction to the OM problem that when any edge in a solved subgraph is chosen
among the k edges to be removed, in fact the entire solved subgraph must be removed and all of its edges
must be counted in k.

This reduction is used also for adapting algorithms for optimal DR-planning, recombination, completion,
OMD, and other problems from bar-joint systems to so-called body-hyperpin, defined in Section 5, by showing
that the problems for the latter are reduced to the corresponding problems on bar-joint systems.
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Figure 7: Example of a single monolayer of a silica (silicon and oxygen) glassy structure. This can be viewed
as a triangle-multipin qusecs where the silicon atoms are the triangles and the oxygen atoms are the pins.
Not shown here are other monolayers stacked on this one. Each silicon atom has the structure seen to the
right, and so binds to another oxygen atom in an adjacent monolayer. Pictures taken from [57] and [58].

→

(a) (b)

Figure 8: Examples of self-similarity via repeated subdivision. In (8a) [59], there is a simple subdivision
scheme that does not guarantee isostaticity. In (8b), a more complicated scheme is used, ensuring that the
resulting graph is isostatic but not tree-decomposable.

5. Application: Finding Completions of Underconstrained Glassy Structures from Undercon-
strained to Isostatic

We can use qusecs DR-plans to design materials such as disordered graphene and silica bi-layers [31]
[32]. We investigate a more specific problem in a somewhat more general setting: the problem of finding
boundary conditions (additional constraints) to add to an underconstrained monolayer to make it isostatic.
This can be done in a number of ways: (1) pin together 2 underconstrained monolayers in such a way that the
resulting bi-layer becomes isostatic (see Figure 7); (2) pin the boundary of (or in general, add constraints
to) a layer (possibly a genus 0 monolayer) so that it becomes isostatic; or (3) design a broader class of
structures to ensure they are isostatic, self-similar (via some subdivision rule) and in addition isostatic at
each level of the subdivision (see Figure 8).

In all cases, we are specifically interested in how to add additional constraints such that the resulting
isostatic structure has a small DR-plan; this way a realization can be found, allowing efficient stress, flex
and other property design related to the rigidity matrix. To answer these questions, we first introduce the
qusecs’ that are used to model these materials. In this section, we discuss Item (2) in detail.

5.1. Body-Hyperpin Qusecs

Definition 15. A body-hyperpin qusecs is a constraint system where the objects are rigid bodies, subsets of
which are pinned together by pins; i.e, are incident at a common point.

Remark* 16. A body-hyperpin qusecs is a special case of bar-joint qusecs of the previous sections of the
paper. As such, the DR-planning for isostatic systems discussed in Section 3 is unchanged and the results
of Section 4 still go through with minor modifications.

For the remainder of this section, we deal only with the DR-plan of such qusecs. Hence, we refer only to
the combinatorics or underlying hypergraph of the qusecs. We now introduce 2 sub-classes of body-hyperpin
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graphs for modeling Examples 4 and 5 in Section 1, for which the optimal completion problem is significantly
easier.

Definition 17. A body-pin graph is a body-hyperpin graph with the following conditions: (1) each pin is
shared by at most two bodies; and (2) no two bodies share more than one pin

Such a body-pin graph, GBP , can also be seen as a body-bar graph, GBB, where the bodies of GBB are
the original bodies of GBP and each pin between bodies in GBP are replaced with 2 bars in GBB between
the same bodies. Such body-bar graphs with 1 and 2-dof can be characterized by being (3, 4) and (3, 5)-tight
respectively [43] [5] (defined in 2.1). See Figure 9b.

Definition 18. A triangle-hyperpin graph is a body-hyperpin graph where each body is a triangle, i.e., it
shares pins with at most 3 other bodies. This is also represented as a hyper-graph where each pin is a vertex
and each triangle represents a tri-hyperedge. For such hypergraphs, 1 and 2-dof can be characterized by (2, 4)
and (2, 5)-tightness respectively [43] [5].

Body-pin graphs are of particular interest to us in the context of Example 4 in Section 1. Triangle-
multipin graphs can be used to represent the silica bi-layers and glassy structures described in Example 5 of
Section 1, where each triangle is the junction of “disks” in the plane (see Figure 7). Typically, these systems
are not isostatic, so to relate the work of this paper to the systems, we define a slightly different kind of
DR-plan using the notion of (k, l)-sparsity and tightness.

Definition 19. A (k, l)-tight DR-plan is one in which each child node is either a vertex maximal proper
(k, l)-tight sub-graph of the parent node or it is trivial. In our case, the trivial nodes are the bodies.

Provided such (k, l)-sparse graphs are matroidal (conditions given in [43]), the notion of a canonical
DR-plan extends directly to the case when the hypergraph is (k, l)-sparse (i.e., independent) using the
straightforward notion of trivial and non-trivial intersections and (k, l)-tightness conditions as in Section
3. In particular, we define canonical DR-plans with similar properties for the 1 and 2-dof body-pin and
triangle-hyperpin systems defined above.

Observation* 20. For the 1-dof body-pin graphs described above that are (3, 4)-sparse, a (3, 4)-tight canonical
DR-plan exists where every node of a (3, 4)-sparse graph satisfies one of the following: (1) its children are 2
proper vertex-maximal 1-dof graphs that intersect on another 1-dof graph; or (2) its children are all of the
proper maximal 1-dof sub-graphs, pairwise sharing at most one body.

As in Section 3, a strong Church-Rosser property holds, making all canonical DR-plans optimal:

Observation* 21. When the input is independent, all (3, 4)-tight canonical DR-plans are optimal. We can
find such a DR-plan in the same time complexity as the (2, 3)-tight case for bar-joint graphs discussed in
Section 3.

The above-mentioned algorithm exists because such (3, 4)-tight graphs are matroidal and have a pebble
game [43].

The above discussion leads to the main theorem:

Theorem* 22. Given a 1-dof body-pin or triangle-multipin graph and corresponding 1-dof DR-plan, there is
a quadratic algorithm for the 1-dof optimal completion problem of Section 4.

Observation* 23. For the 2-dof case, provided an analogous statement to Observation 21 holds, then The-
orem 22 holds for the 2-dof systems.

Remark 24. While the proof for Theorem 22 gives us a DR-plan for the isostatic completion with minimum
fan-in, (a reasonable measure of algebraic complexity), a more nuanced measure that treats solutions of 1-dof
and 2-dof systems as 1 or 2 parameter families would no longer be optimized by the algorithm given in that
proof. In particular, the complexity of the standard algorithm in the k-dof case would be exponential in k
(even if the case were matroidal and an optimal DR-plan is known).
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Figure 9: (9a) A 1-dof body-pin graph. (9b) The corresponding body-bar graph, explained in Definition 17.
(9c) The 1-dof DR-plan for the graph. In this case, to obtain an isostatic system, we would need to add a
body and 2 pins to one of the nodes in the second level. (9d) The result of adding one such body to the
bold-faced node.
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Figure 10: (10a) Microfibrils of carboxymethylated nanocellulose adsorbed on a silica surface [25]. 10b
Cross-linking of cellulose microfibrils [26]. 10c An isostatic pinned line-incidence graph, representing fibrils
and their attachments.

6. Application: Finding Optimal DR-Plans and Realizations for Cross-Linking Microfibrils

The canonical DR-plan of Section 3 can additionally be applied to analyze and solve the structure of
cross-linking collagen microfibrils in animals, cellulose microfibrils in plant cell walls, and actin filaments in
the cytoskeleton by modeling these structures as a third type of qusecs, pinned line-incidence systems.

Collagen is an important protein material in biological tissues with highly elastic mechanical properties
[60]. Cellulose is the most important constituent of the cell wall of plants (see Figure 10a) [61, 62]. Both of
these substances consist of a large number microfibrils, each of which is cross-linked at 2 places with usually
3 other fibrils, where the cross-linking is like an incidence constraint that the crosslinked fibrils can slide
against each other while remaining incident (see Figure 10b).

6.1. Modeling the Fibrils as a Pinned Line-Incidence System

The cross-linking microfibrils can be modeled as a pinned line-incidence constraint system in R2, where
incidence constraints are used instead of distance constraints.

A pinned line-incidence system (G, δ) is a graph G = (V,E) together with parameters δ specifying |E|
pins with fixed positions in R2, such that each edge is constrained to lie on a line passing through the
corresponding pin, i.e. δ : E → R2. A pinned line-incidence graph G is rigid if |E| = 2|V | and |E′| ≤ 2|V ′|
for every induced subgraph (V ′, E′) [36]. Note that no trivial motion exists since the pins have fixed positions
on the plane. Euclidean transformations are not factored out. In particular, both a single vertex and a single
edge are underconstrained graphs.

In the case of microfibril cross-linking, each fibril is attached to some fixed larger organelle/membrane at
one site. Consequently, each fibril can be modeled as an edge of the graph, with the attachment being the
corresponding pin. The two cross-linkings in which the fibril participates are modeled as the two vertices in
V defining the edge.
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Figure 10c shows an example of a pinned line-incidence graph, where the grey ovals denote pins repre-
senting attachments of fibrils, and the vertices a1, a2, . . . , c3 represent cross-linkings. The graph is isostatic,
with 12 vertices and 24 edges/pins.

6.2. Optimal DR-Plan for Pinned Line-Incidence Systems

In this section, we will adapt the results in Section 3 to give the canonical DR-plan for pinned line-
incidence graphs. First, we note that an isostatic pinned line-incidence graph can be disconnected, being
the disjoint union of two or more isostatic subgraphs. This is because the pins have fixed positions on the
plane. We define a trivial graph to be a single vertex and make the following modification to the definition
of the canonical DR-plan:

Definition 25. The DR-plan of a pinned line-incidence graph G is one in which (1) each child node of a
non-leaf node C is either a connected rigid vertex-induced subgraph of C, or an edge not contained in any
proper rigid subgraph of C, and (2) a leaf node is a single edge.

The canonical DR-plan of G is one in which the child rigid subgraphs are connected, isostatic vertex-
maximal subgraphs of the parent.

Theorem 4 holds for pinned line-incidence graphs with this modified definition. The proof is similar
to the original proof (in Section 3) using the same set of lemmas and the following modified version of
Observation 5, which can be proved using a simple counting based argument.

Observation 26. Let Fi and Fj to be subgraphs of the same isostatic graph F , where each of them can be
either a single edge or a connected isostatic subgraph. There are only two possible cases: (1) at least one of
Fi, Fj is an edge, if and only if Fi ∪Fj is underconstrained, if and only if Fi ∩Fj is trivial; and (2) both Fi
and Fj are isostatic, if and only if Fi ∪ Fj is isostatic, if and only if Fi ∩ Fj is isostatic.

Given Observation 26, Lemma 6, Point 1 and 3, straightforwardly extend to pinned line-incidence graphs.
The proof of Point 2 for pinned line-incidence graphs is given in Appendix A.4.1. Thus it is straightforward
to adapt the proof of Theorem 4 to pinned line-incidence graphs. Consequently, we can efficiently find the
optimal DR-plan for pinned line-incidence graphs using basically the same algorithm as for bar-joint graphs.

Note: The recombination problem for pinned line-incidence systems is trivial. Since the pins are given fixed
positions in the plane, the solutions of a isostatic sub-system will automatically be consistent with solutions
of the remaining of the system.

7. Conclusion

We have clarified the main source of complexity for the optimal DR-plan and recombination problems.
For the former problem, when there are no overconstraints (as is the case for 2D qusecs whose realizations are
many common types of layered materials), we defined a canonical DR-plan and showed that any canonical
DR-plan is guaranteed to be optimal, a strong Church-Rosser property. This gives an efficient (O(n3))
algorithm to find an optimal DR-plan that satisfies other desirable characteristics.

We have also described a novel method of efficiently realizing a 2D qusecs from the optimal DR-plan
by modifying the otherwise indecomposable systems at nodes of a DR-plan. These results rely on a recent
theory of convex Cayley configuration spaces. Relationships and reductions between these and previously
studied problems were formally clarified.

We then modeled specific layered materials using extensions of the above theoretical results including
the motivating Examples 1-5 in the introduction.
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7.1. Open Problems

The first set of problems are from Section 3:

Open Problem 1. Is there a more efficient algorithm than O(|V |3) to find the canonical DR-plan of isostatic
2D bar-joint graphs?

Conjecture 27. The Modified Frontier Algorithm (MFA) [8] finds a canonical, and hence optimal, DR-plan.

The difficulty of proving Conjecture 27 arises from the fact that MFA, although running in time O(n3),
is a bottom-up algorithm, involving complex datastructures. However, a proof of optimality, even if it
exists, would not be possible without the new notion of a canonical DR-plan at hand. The intuition for
this conjecture comes from the similarity of the DR-plan generated by MFA to that of the sequential
decomposition described in the proof of Theorem 9. Since it is known [8] that the DR-plan generated by
MFA is cluster-minimal, an alternate conjecture is the following.

Conjecture 28. For independent graphs, cluster-minimal DR-plans are optimal. In fact, for independent
graphs, cluster-minimality and canonical are equivalent properties of a DR-plan.

Open Problem 2. Although generic rigidity is a property of graphs, and moreover, in the case of qusecs,
generic rigidity has a combinatorial sparsity and tightness-based characterization, the original definition of
independence in the rigidity matroid requires an algebraic notion of independence of vectors of indetermi-
nates over R. Thus the definition of the DR-plan requires algebra over the reals. In fact, the recursive
decomposition problem is not tied to geometric constraint graphs or an algebraic-geometric or mechanical
notion of rigidity, and can be defined for any graph using the notion of an abstract rigidity matroid [63].
This is a type of matroid with two additional matroid axioms; abstract rigidity matroids can be defined
in a purely graph-theoretic manner, with no need for algebra in their definition. However, such abstract
rigidity need not have a sparsity characterization. On the other hand, there are sparsity matroids that do
not correspond to any notion of abstract rigidity. However, when an abstract rigidity matroid is also a
sparsity matroid, then the techniques of this paper directly apply and we can obtain purely combinatorially
defined recursive decompositions of graphs.

A few natural open questions concern the following common theme that runs through the optimal
recombination and later sections of the paper:

Open Problem 3. For fixed k, we have polynomial time optimal DR-planning (Section 3), recombination
(modification) in the presence of k overconstraints, optimal modification for decomposition OMDk(G) when
at most k constraints are removed (Section 4), and also optimal completion using at most k ≤ 2 constraints in
the body-pin and triangle-multipin cases for a somewhat different optimization of the DR-plan (Section 4.5).
However, in the running time of all of these algorithms, k appears in the exponent. Can k be removed from
the exponent?

One problem in the above theme is from Section 5.

Open Problem 4. What is the complexity of the optimal completion problem when the given graph has
more than 2-dofs? Our proof for the 1 and 2-dof cases relied heavily on the matroidal properties of their
corresponding (k, l)-tightness. For higher number of dofs, the (k, l) characterization is no longer matroidal
[43]. As a result, the major obstacle is that there is no easy way of obtaining an optimal or canonical k-dof
DR-plan in general. Even assuming such a DR-plan is available, if higher dofs had the same characteristics,
Observation 24 raises questions about the correct measure of DR-plan size that captures algebraic complexity
for recombining graphs with many dofs (this is not an issue in the isostatic case). Unless some restrictions can
be found and taken advantage of, the k-dof optimal completion problem would have complexity exponential
in k.

Another problem from the above theme is from Section 4
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Open Problem 5. What is the complexity of the restricted OMD (optimal modification for decomposition)
problem? This has the potential to be difficult. For example, when the isostatic completion is required
to be a 2-tree the restricted OMD problem is reducible to the maximum spanning series-parallel subgraph
problem shown by [64] to be NP-complete even if the input graph is planar of maximum degree at most
6. However, since the OMD problem has other input restrictions such as not having any proper isostatic
subgraphs, it is not clear if the reverse reduction exists and hence it is unclear whether the OMD problem
is NP-complete.

The same holds for the restricted OMD problem where the isostatic completion is required to be a tree-
decomposable graph of low Cayley complexity (i.e. have special, small DR-plans). One potential obstacle to
an indecomposable graph G’s membership in the restricted OMDk for small k is if G is tri-connected and
has large girth. In fact, 6-connected (hence rigid) graphs with arbitrarily large girth have been constructed
in [65].

The next is the reverse direction of Observation 14 in Section 4.5.

Open Problem 6. Is the OMD (optimal modification for decomposition) problem reducible to the OC
(optimal completion) problem?

More general problem directions are the following.

Open Problem 7. Combinatorial rigidity for periodic structures is an active area of research. This paper
motivates a study of the rigidity of self-similar structures, with self-similar groups replacing periodic groups.

Open Problem 8. The pinned line incidence structures of Section 6, for example in the case of collagen
microfibrils, whose function is elastic contraction, should be considered congruent under projective transfor-
mations. I.e. the projective group should be factored out as a trivial motion in a new project for extending
the combinatorial rigidity characterization of such systems. (Currently we permit no trivial motions at all).

Open Problem 9. Experimental validation (either computationally or physical experiments) of predications
based on the material model and theory used in this paper. This can be done by modeling known materials
and putting stresses on them, seeing if the prediction is observed in the real material. Or, our theory could
be used to design new materials, which can be tested to see if they possess predicted properties.

Appendix A. Proofs

Appendix A.1. Proofs from Section 3

Appendix A.1.1. Proof of Observation 5

Proof. For (1), simply note that if Fi ∪ Fj were trivial, then, by definition, Fi and Fj must be trivial.
For the next parts, we use the quantity d(G) = 2|V | − |E|, which we call density. For (2), observe

that underconstrained subgraphs of isostatic graphs must have density less than 3. For (3), observe that,
given an isostatic graph, a subgraph with density 3 must also be isostatic. Then, use the fact that, by
definition, d(Fi) = 3 and d(Fj) = 3. Then it is straightforward application of the inclusion-exclusion
d(Fi ∩ Fj) = d(Fi) + d(Fj)− d(Fi ∪ Fj).

For (4), because subgraphs of a isostatic graph can only be trivial, underconstrained, or isostatic, all
cases have already been exhausted.

Appendix A.1.2. Proof of Lemma 6, Point 1

Proof. Assume Ci ∪ Cj 6= C. This would contradict the proper vertex-maximality of Ci, Cj . In the reverse
direction, we know C is either a non-leaf node (isostatic by definition of a DR-plan) or G itself (isostatic by
definition of the problem). Thus, Ci ∪ Cj = C is isostatic.
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Appendix A.1.3. Proof of Lemma 6, Point 2

Observation 29. Take Ri = C \ Ci and Rj = C \ Cj. If Ci ∪ Cj is isostatic, then there can be no edges in
C between the vertices of Ri and Rj.

Proof. Lemma 6, Point 1, shows that Ci ∪ Cj must equal the parent graph C.

Proof. (Of Lemma 6, Point 2)
The alternative phrasing is as in Lemma 6, Point 1.
Take Ri = C \ Ci, Rj = C \ Cj , and Di,j = Ci ∩ Cj = (C \ Ri) \ Rj (note that Rj ⊂ Ci, Ri ⊂ Cj

and Di,j ⊂ Ci, Cj). Furthermore, take the proper subgraphs R′i ⊂ Ri, R
′
j ⊂ Rj , and D′i,j ⊂ Di,j that are

non-empty.
Assume that there is a third isostatic vertex-maximal proper subgraph Ck (with C ′k = C \ Ck). There

are 3× 3× 3 = 27 possible cases for what this subgraph could be.
Without loss of generality, all graphs are the induced subgraphs of C.

• 3 cases: Ck cannot be C = Ri ∪Rj ∪Di,j , Ci = Rj ∪Di,j , or Cj = Ri ∪Di,j . This is by definition.

• 13 cases: Ck cannot be a proper subgraph of Ci and Cj or else Ck would not be vertex-maximal.
These are the graphs R′i ∪Di,j , R

′
j ∪Di,j , Di,j , Ri ∪D′i,j , Rj ∪D′i,j , R′i ∪D′i,j , R′j ∪D′i,j , D′i,j , Ri, Rj ,

R′i, R
′
j , and ∅.

• 2 cases: Ck cannot contain Ci or Cj as proper subgraphs, or else they are not vertex-maximal. These
are the graphs R′i ∪Rj ∪Di,j and Ri ∪R′j ∪Di,j respectively.

• 4 cases: Ck cannot be Ri ∪ Rj , R′i ∪ Rj , Ri ∪ R′j , or R′i ∪ R′j because these are all disconnected
(Observation 29) and cannot be isostatic.

• 1 case: Ck = R′i ∪ R′j ∪ Di,j is not possible. Since Ci ∪ Ck = R′i ∪ Rj ∪ Di,j 6= C we have from
Lemma 6, point 1, that Ci ∪ Ck cannot be isostatic. We also know it cannot be trivial because it
contains isostatic subgraphs. This means it must be underconstrained. From Observation 5, we know
that Ci ∩ Ck = R′j ∪ Di,j must then be trivial. This is impossible because Di,j is isostatic, thereby
contradicting the assumption that Ck is isostatic.

• 1 case: Ck = R′i∪R′j∪D′i,j is not possible. Since Ci∪Ck 6= C (and Cj∪Ck 6= C), we know by the same
logic as the previous case that the Ci∩Ck must be trivial (a single node). However, Ci∩Ck = R′j∪D′i,j .
This causes a contradiction, the intersection cannot be trivial because R′j and D′i,j are not empty sets
and are disjoint.

• 2 cases: Ck = R′i ∪Rj ∪D′i,j and Ck = Ri ∪R′j ∪D′i,j are not possible. The proof mirrors the previous
case, except here you must choose Ci and Cj respectively.

• 1 case: Ck = Ri ∪Rj ∪D′i,j is all that remains.

Since Di,j ⊂ Ci, Cj it means that Ck ∪ Ci = Ck ∪ Cj = C, thus proving the Lemma.

Appendix A.1.4. Proof of Lemma 6, Point 3

Proof. Assume there is some k such that Ci∩Ck is not trivial. By Observation 5, Ci∩Ck must be isostatic.
Then, by Lemma 6, point 2, the intersection between any two children must be isostatic. This means that
Ci ∩ Cj is isostatic. Therefore, such a k cannot exist and all intersections are trivial.
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Appendix A.2. Proofs from Section 4

Appendix A.2.1. Proof of Theorem 12

Proof. The Cartesian realization space of (H, 〈δE′ , λF 〉) is computed easily with a DR-plan of size 2, and is
the union of 2t solutions (modulo orientation preserving isometries) each with a distinct orientation type,
where t is the number of triangles in the 2-tree H; here δS is the restriction of the length vector δ to the edges
in S. A desired solution p (or connected component of a solution space) of (G, δ) of an orientation type σp
can be found by a subdivided binary search of the Cartesian realization space of (H, 〈δE′ , λF 〉) of orientation
type σp, as λF ranges over the discretized convex polytope ΦF (G′, δ′E) with bounding hyperplanes described
in Theorem 10. A solution p is found when the lengths for nonedges in D match δD.

Appendix A.3. Proofs from Section 5

Appendix A.3.1. Proof of Remark 16

Proof. We can replace each body that has only one pin by a single vertex. A body with 2 pins can be
replaced by an edge. In general, a body with n pins can be replaced by a 2-tree on n vertices. When
finding a DR-plan, we treat each body as trivial, so they become the leaves of the DR-plan. The optimal
recombination problem and approach of Section 4 are unchanged. The optimal completion via the optimal
modification problem in Section 4 now has an additional restriction that all edges in the 2-tree representation
of the bodies must be removed together, not individually.

Appendix A.3.2. Proof of Observation 20

Proof. The existence of this canonical DR-plan follows from the same arguments as in the proof of Theorem
4. The only difference is the definition of a trivial intersection. In this case, when two subgraphs share more
than 1 body, they become rigid (in fact over constrained). Sharing a pin is not considered an intersection.
Such a structure is viewed as two subgraphs each sharing 1 body with a third 1-dof subgraph which essentially
just consists of those two bodies pinned together.

Appendix A.3.3. Proof of Theorem 22

Proof. Suppose we are given a body-pin graph and its corresponding body-bar graph G and have obtained
the 1-dof DR-plan T . Each node of T is then a vertex-maximal proper 1-dof subgraph of G.

To make the graph isostatic, we need only add one body and pin it to 2 other bodies. Doing so will
cause G to become (3, 3)-tight.

We adopt the following algorithm. Choose the 2 bodies to pin to by choosing a node b in T and looking
at its children. From Observation 21, we know that the children can only share a single pin or a sub-graph.
Pin the new body to bodies in two separate children. Doing so will ensure that all children of b will have
1-dof and all ancestors of b (including b) will now be isostatic.

Such a pinning covers all possible ways of adding a new body. Assume a new body b is added to the
input graph and pin it to bi and bj to make it isostatic. Then, there is a lowest 1-dof node v in T such that
bi and bj appear in v. Thus, pinning v in the manner described yields an equivalent isostatic DR-plan to
pinning b to bi and bj .

For each node b, assign a size of the Tb denoted |Tb|. |Tb| = max
v∈Tb

fanin(v). We are looking for b that

minimizes |Tb|. Denote the sub-tree of T rooted at v by T v and the number of leaves in a tree T by nl(T ).
Note that fanin(b) = nl(T b) because no descendant of b is isostatic. Similarly, for any ancestor w of b,
fanin(w) = nl(Tw) − nl(T b′) + 1, where b′ is the child leading to b. All other nodes are not isostatic and
hence do not appear in the isostatic DR-plan.

The node to be pinned is always the the deepest nontrivial node of some path in T . Suppose a node b
is pinned that has a nontrivial child v. Then, faninb(b) = nl(T b) = nl(T v) + n, where n is essentially the
number of leaves between b and v. If we had instead chosen to pin v, then faninv(b) = nl(T b)−nl(T b′)+1 ≤
faninb(v). And for each ancestor w of b, fanin(w) is unchanged, meaning |Tv| ≤ |Tb|. Thus we only have
to check the deepest non-trivial nodes.

Running the above algorithm brute force gives running time quadratic in the number of bodies of the
given body-pin system.
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For the multi-triangle pin graphs, we can do the same thing, except we need to add a single triangle to
one of the nodes to cause it to become isostatic.

Appendix A.3.4. Proof of Observation 23

Proof. The only difference from the 1-dof case is that now we need to remove 2-dofs from our graph. Start
with a 2-dof DR-plan T . Like in the previous proof, we need to add a body and 2 pins to 2 nodes to obtain
an isostatic DR-plan.

Suppose we pin 2 distinct nodes vi and vj . Then, there must exist a common ancestor a of vi and
vj . Then, in Tvi,vj , faninvi,vj (a) = nl(T a). However, if we chose to pin one of vi and vj twice, then

faninv(a) = nl(T a)− nl(T a′) + 1 . Thus faninv(a)′ ≤ faninvi,vj (a). All ancestors of a are unchanged. So
|Tv| ≤ |Tvi,vj |.

Thus the only choice is to pin a single node twice. Hence, we can run the same algorithm as the 1-dof
case and simply pin twice instead of once.

Appendix A.3.5. Proof of Observation 24

Proof. An isostatic graph has 3 parameters that define its position and orientation. These are the Euclidean
motions. A 1-dof graph has 4 parameters: the 3 Euclidean motions and a dof parameter. A 2-dof has
5 parameters. The number of parameters roughly correlates with the algebraic complexity of obtaining a
realization.

Thus, starting with a T as described in the proof for Remark 22, when a node b is pinned, the same
structure is preserved as before. Suppose v is an isostatic node after pinning b. Then, the children of v
(except one if v 6= b) have 1-dof. The realization complexity for v is simply that of realizing each of its
children. In general, the number of parameters for v will be np(v) = 4nc1(v)+3, if v 6= b and np(b) = 4nc1(b),
where nck(v) is the number of k-dof children of v.

Minimizing the algebraic complexity requires minimizing the maximum np(v) for any node v. In this
case, it is not possible to always choose to pin a node closest to a leaf in the tree, because it could have high
fan-in. So we try brute force by pinning all nodes to pick the one with the lowest algebraic complexity. This
algorithm is still quadratic for the 1-dof case.

For the 2-dof situation, there are more cases to consider. If we pin the same node twice as above, we
have np(v) = 5nc2(v) + 3 for any ancestor v 6= b and np(b) = 5nc2(b). If we pin a node v and one of its
ancestors v′, then any nodes between v′ and v will be 1-dof, any nodes above v′ will be isostatic, and nodes
below v will be 2-dof. Note that solving or realizing v′ will also realize v. Next, we need to consider nodes
above and including v′ in our complexity: np(v′) = 5nc2(v′) + 4 and np(a) = 3 + 5nc2(a) for a an ancestor
of v′.

The only remaining case is pinning two nodes that are incomparable, i.e. do not have a descendant/ancestor
relationship. The only change from the previous case is that for the lowest common ancestor of the nodes
v′, np(v′) = 2 ∗ 4 + 5nc2(v′). For any ancestor a of v′, we still have np(a) = 3 + 5nc2(a).

Like the 1-dof case, we again cannot simply choose the nodes deepest in the tree to pin. However, neither
can we assume pinning one node twice will give us the best algebraic complexity. Hence, we will need to
check each pair of nodes to pin. This makes our brute-force algorithm O(b3), where b is the number of
bodies.

Appendix A.4. Proofs from Section 6

Appendix A.4.1. Proof of Lemma 6, Point 2 — for 2-dimensional pinned line incidence graphs

Proof. We use the same notation as in the original proof of Lemma 6, Point 2, given above. Without loss
of generality, all graphs are the induced graphs on C.

First notice that since Ci ∪ Cj is isostatic, by Observation 26, both Ci and Cj are connected isostatic
vertex-maximal proper subgraphs of C. Since Cj ∪ Cj = C, there are no edges in C that is not contained
in a isostatic subgraph, so C does not have any single-edge child node, and Ck is a connected isostatic
vertex-maximal proper subgraph of C.

We analyze all the possible cases for Ck.
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• 1 case: Ck = R′i ∪R′j ∪Di,j is not possible. Since Ck ∪Ci = R′i ∪Rj ∪Di,j 6= C we have from Lemma
6, Point 1, that Ck ∪Ci cannot be isostatic. By Lemma 26, it must be underconstrained, so one of Ci
and Ck must be an edge, contradicting the assumption that both Ci and Ck are isostatic.

• 1 case: Ck = R′i ∪R′j ∪D′i,j is not possible. The proof is similar to the previous case.

• 2 cases: Ck = R′i ∪ Rj ∪ D′i,j and Ck = Ri ∪ R′j ∪ D′i,j are not possible. The proof is similar to the
previous case.

All remaining cases are similar to the original proof for 2D bar-joint graphs.
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