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Abstract

In this paper we define Tchebycheffian spline spaces over planar T-meshes and we address the problem
of determining their dimension. We extend to the Tchebycheffian spline context the homological
approach previously used to characterize polynomial spline spaces over T-meshes, and we exploit this
characterization in the study of the dimension. In particular, we give combinatorial lower and upper
bounds for the dimension, and we show that these bounds coincide if the dimensions of the underlying
extended Tchebycheff section spaces are large enough with respect to the smoothness, under some
mild conditions on the T-mesh. Finally, we illustrate that the dimension of Tchebycheffian spline
spaces over T-meshes can be unstable, which means that it can depend on the exact geometry of the
T-mesh. These results are extensions of those known in the literature for polynomial spline spaces over
T-meshes.

Keywords: Tchebycheffian splines; T-meshes; dimension formula; dimension bounds; instability

1. Introduction

Tchebycheff spaces, or more precisely extended Tchebycheff spaces, are natural generalizations of
algebraic polynomial spaces [18, 31]. They are a popular tool in approximation theory, in particular
because they form a very flexible substitute for algebraic polynomial spaces to solve Hermite inter-
polation problems. Besides algebraic polynomial spaces, important examples of extended Tchebycheff
spaces are the null spaces of differential operators with real constant coefficients.

Univariate Tchebycheffian splines are smooth piecewise functions with sections in extended Tcheby-
cheff spaces. They have several advantages over classical (algebraic) polynomial splines, mainly due
to the wide variety that extended Tchebycheff spaces offer. Despite this flexibility, many results of
the polynomial framework extend in a natural way to the larger Tchebycheffian spline framework,
ranging from approximation theory to geometric modelling, see [24, 28, 31]. In particular, Tchebychef-
fian splines admit a representation in terms of basis functions with similar properties as polynomial
B-splines. Moreover, the elegant blossoming approach and classical algorithms (like degree elevation,
knot insertion, differentiation formulas, etc.) can be rephrased for them [15, 22, 28].

Multivariate extensions of Tchebycheffian splines can be easily obtained via the tensor-product
approach and have been applied in different contexts. For example, tensor-products of so-called gener-
alized splines (which are a special class of Tchebycheffian splines) are a promising problem-dependent
tool in isogeometric analysis, a recent paradigm for the numerical treatment of partial differential
equations [26].

Adaptive local refinement is important for both geometric modelling and numerical simulation.
However, a simple tensor-product spline structure lacks adequate local refinement. This triggered the
interest in alternative spline structures supporting local refinement. Confining the discussion to local
tensor-product structures, we mention (analysis-suitable) T-splines [21, 33], hierarchical splines [13, 14],

Email addresses: cesare.braccoQunifi.it (Cesare Bracco), tom@math.uio.no (Tom Lyche),
manni@mat.uniroma2.it (Carla Manni), fabio.roman@unito.it (Fabio Roman), speleers@mat.uniroma2.it (Hendrik
Speleers)

Preprint submitted to Elsevier December 22, 2015



to

1

to

t3

ty

S0 S1 S92 S3 S4 S5 Se

Figure 1: An unstable T-mesh.

and locally refined (LR-) splines [12]. All of them can be seen as special cases of polynomial splines
over T-meshes [9, 10, 32]. In the more recent literature we also find some specific generalizations to the
Tchebycheffian spline setting. For example, generalized T-splines [3, 4], hierarchical generalized splines
[27] and generalized splines on T-meshes [5, 6] have been addressed. A multiresolution approach based
on specific tensor-product Tchebycheffian splines has been considered in [23]. However, Tchebycheffian
splines in their wide generality over T-meshes have not been previously investigated.

In this paper we consider Tchebycheffian spline spaces over T-meshes. As in the polynomial case,
a complete understanding of these spline spaces requires the knowledge of the dimension of the spline
space defined on a prescribed T-mesh for a given smoothness. Of course, it is of particular interest
to understand when the dimension only depends on combinatorial quantities of the T-mesh (such as
number of vertices, edges and faces), on the given smoothness, and on the componentwise dimensions
(say p; + 1) of the underlying extended Tchebycheff section spaces. The dimension of the spline space
is said to be unstable if it depends on the exact geometry of the T-mesh. Spline spaces with unstable
dimensions are not robust for practical use. Hence, it is important to detect whether or not there are
instabilities in the dimension and to identify stable families of spaces. This instability phenomenon
can be illustrated with the T-mesh in Figure 1: the dimension of the C! quadratic spline space over
the depicted T-mesh is 37 but reduces to 36 if, for example, the value s3 is slightly perturbed.

The dimension of polynomial spline spaces on a prescribed T-mesh for a given componentwise
degree p; and smoothness r; has been addressed by several authors using different techniques, see
[9, 12, 20, 29, 32, 35] and references therein, and it turns out to be a very challenging problem. Lower
and upper bounds for the dimension are known, and an explicit expression has been determined in
some special cases. In particular, the dimension is known for spline spaces over so-called quasi-cross-cut
T-meshes [29] — these are meshes where each edge extends to the boundary — and for spline spaces with
p; > 2r; + 1 under some mild conditions on the T-mesh [9, 29, 32]. On the other hand, instability in the
dimension can occur if the degree is not large enough with respect to the smoothness, see [20] for the
case p; = 1; + 1 and [1] for some specific examples with a larger gap between degree and smoothness.

The dimension problem of spline spaces over T-meshes faces the same difficulties as the dimension
problem of polynomial spline spaces of total degree p over triangulations, see [19] and references therein.
In this case, the dimension is known for spline spaces over quasi-cross-cut partitions [7, 30], and for
spline spaces with p > 3r+2 [16, 17]. Instability in the dimension has been illustrated for p = 2r in [11].
Some similar results are known for spline spaces of total degree p over general rectilinear partitions,
see [7, 25] and references therein.



Among the various techniques to tackle the dimension problem, one can use the homological ap-
proach proposed in [29], where the technique introduced in [2] and developed in [30] for polynomial
splines over triangulations has been fine-tuned for polynomial splines over planar T-meshes. In this
paper we address the problem of finding the dimension of Tchebycheffian spline spaces over planar
T-meshes. To this end, we generalize the techniques and the results presented in [29]. More precisely,
besides characterizing the Tchebycheffian spline space as a suitable homology space,

e we provide a dimension formula in terms of combinatorial quantities of the T-mesh, the smooth-
ness, the dimensions of the underlying extended Tchebycheff spaces, and homology quantities;

e we derive lower and upper bounds for the dimension (under a specific assumption on the under-
lying extended Tchebycheff spaces);

e we provide an explicit expression for the (stable) dimension of spline spaces over quasi-cross-cut
T-meshes, and of spline spaces with p; > 2r; + 1 under some mild conditions on the T-mesh;
the latter conditions are usually satisfied by T-meshes of interest in applications and identify a
family of T-meshes larger than the one considered in [29];

e we illustrate that the dimension of Tchebycheffian spline spaces over T-meshes can be unstable,
by generalizing the examples given in [20].

As mentioned above, this paper is a generalization of [29] from the polynomial spline setting to the
Tchebycheffian spline setting, and the reading of this paper should go hand in hand with the reading
of [29]. Nevertheless, it is worth pointing out that the extension is not so straightforward because
the ring structure of algebraic polynomials cannot be used anymore in this general setting. Besides
the stated results on the dimension, this new interpretation of the approach in [29] is an additional
contribution of the paper and it strengthens the structural similarity between algebraic polynomial
and general Tchebycheffian spline spaces.

We recall that generalized spline spaces are a special class of Tchebycheffian spline spaces. Results
on the dimension of generalized spline spaces over T-meshes have been provided in [6] by extending
the approach based on so-called minimal determining sets, see [32]. The homological approach for
the dimension problem has been considered in [5] in the case of generalized spline spaces over T-
meshes. More precisely, only the characterization of the dimension in terms of homology quantities
has been given in [5]. To the best of our knowledge, there are no other results about the dimension of
Tchebycheffian spline spaces over T-meshes in the literature.

The remainder of the paper is divided into five sections. In Section 2 we give the definition of
a Tchebycheffian spline space over T-meshes, and we provide their characterization in terms of the
homology of a suitable complex. Section 3 collects several technical results to be used in Section 4 for
determining the dimension of the considered Tchebycheffian spline spaces. Examples of instability in
the dimension of Tchebycheffian spline spaces over T-meshes are provided in Section 5. Finally, we
end in Section 6 with some concluding remarks.

2. Tchebycheffian spline spaces over T-meshes

In this section we formulate the definitions of the meshes and of the spaces we are dealing with.

2.1. T-meshes and smoothness

Let us consider a region 2 C R? which is a finite union of closed axis-aligned rectangles, called cells,
with pairwise disjoint interiors. We assume that € is simply connected and its interior {2° is connected;
see Figure 2 for an illustration. The smallest rectangle containing €2 is denoted by [ay,, br] X [av, by].

We now define a T-mesh on 2 using the notation and definition given in [5, 29].

Definition 2.1 (T-mesh). A T-mesh T := (72,71, To) on 2 is defined as:

e T3 is the collection of cells in Q;
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Figure 2: (a) A simply connected region with connected interior. (b) A region which is not simply connected. (c) A
region where the interior is not connected.

o 71 = TP UTY is a finite set of closed axis-aligned horizontal and vertical segments in UaeTZ Jdo,
called edges;

e Ty:= UT€T1 0T is a finite set of points, called vertices;
such that
o for each o € Ta, 0o is a finite union of elements of Ty ;
e for o,0’ € Tz with o # o', c No’ = 0o NId’ is a finite union of elements of Ty U To;
o form, 7' € Ty witht # 7', 7N =0rNor’ C Ty;
o for each v € Ty, v = T N7y, where Ty, is a horizontal edge and T, is a vertical edge.

We denote by T,° the set of interior edges, i.e., the edges intersecting the interior of 2. Analogously,
Ty represents the set of vertices in Q°, called interior vertices. The elements of the sets 71 \ 7;° and
To\ 7y are the boundary edges and the boundary vertices, respectively. We say that an interior vertex
is a crossing vertex if it belongs to 4 distinct edges; it is a T-vertex if it belongs to exactly 3 edges.
Moreover, Tf’h and 7;7" indicate the sets of the horizontal and vertical interior edges of T, respectively,
and we set 7? := 77" U T, Then, the interior T-mesh is given by T° := (73, 7%, T2).

A segment of T is a connected union of edges of 7 belonging to the same straight line. Given any
T € T, we denote by p(7) the maximal segment composed of edges of 7;° containing 7. Moreover,
we denote by Ms(7) the set of all such maximal segments. If p € MS(7) does not intersect the
boundary of the T-mesh, we say that p is a maximal interior segment. The set of all horizontal
(respectively vertical) maximal interior segments is denoted by MiS,(7T) (respectively Mi1s, (7)), and
we set MIS(T) := Misy,(T) UMis, (7). Given any v € T, we define pp,(7) := p(m,) and p,(y) := p(7p),
such that v = 7, N7, and 75, € Tf’h, T € T

Finally, we denote by fo the number of rectangles, by fI' and f{ the number of horizontal and
vertical interior edges, respectively, and by fo the number of interior vertices of T.
Example 2.1. Consider the T-mesh T depicted in Figure 3. In this case, we have

e T2 ={01,02,03,04,05,06,07}, fo=1T;

® 7—1O,h = {TlhﬂTQhaTb]’Lan’Tgl’Tél’T#}: flh =7

0,V

o« T = {8 T Y =T

° 7—0O = {’71)’}/2"735743’755763’77578}7 fO =38.

MIS(T) = {p1 := Ty UTY, po := 7 UTY, p3 := 71 }.

For some other examples, we refer to [5, Section 2]. Since we are interested in (non-polynomial)
spline spaces over T-meshes where the smoothness of the elements of the space across the edges of the
T-mesh is given, we also need to define what we mean by smoothness.
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Figure 3: Example of a T-mesh.

Definition 2.2 (Smoothness). With each edge T € T°, we associate an integer v(1) > —1. We say
that f € C™)(1) if the partial derivatives of f up to order r(T) are continuous across the edge T.
We assume that r(1) = r(7') for all ,7" lying on the same straight line, and we refer to this as the
constant smoothness (along lines) assumption. Letting

r:={r(r),Vre T’}
we call r a smoothness distribution on T. We define the following class of smooth functions on Q:
C"(T)={f:Q>R: feC"(r),Vre T}

Given a smoothness distribution r on 7, with each vertex v € 7T, we associate two integers
1 (), 7o (), where r(7) := (7)) and 7, (7) := r(74) such that y = 7, N 7, and 7, € T, 7, € T,
Moreover, with each maximal segment p € MS(7T), we associate an integer 7(p) := r(7), where 7 is
any interior edge belonging to p. Note that the integers r,,(7),7,(y) and r(p) are well defined by the
constant smoothness (along lines) assumption.

2.2. Tchebycheffian spline spaces
We start by defining extended Tchebycheff spaces on a certain interval [18].

Definition 2.3 (Extended Tchebycheff space). Given an integer p > 0 and an interval J, a space
T,(J) C CP(J) of dimension p+1 is an extended T'chebycheff space on J if any Hermite interpolation
problem with p+ 1 data on J has a unique solution in Ty,(J). In other words, for any integer m > 1,
let Z1,...,Ty, be distinct points in J and let di,...,dy, be integers such that p+1 = >"" (d; + 1),
then for any set {fix € R}i—o,...d;,i=1,....m there exists a unique g € Tp(J) such that

DEq(%;) = fir, k=0,....d;, i=1,....m.

From the definition it follows that any non-trivial element in T, (.J) has at most p roots in J counting
multiplicities. It is clear that if T, (.J) is an extended Tchebycheff space, then T, (.J’) is also an extended
Tchebycheff space for any J' C J.



Example 2.2. The space P, := (1,x,...,2P) of algebraic polynomials of degree less than or equal to
p is an extended Tchebycheff space on the real line.

Example 2.3. The space of trigonometric functions Eq,, := (1,sinz, cosz,...,sin(nx), cos(nz)) is an
extended Tchebycheff space on any interval [a,b] with 0 < n(b—a) < 7.

Example 2.4. The kernel (null space) L, of a differential operator L, := Zfiol ¢; Dt with real co-

efficients and cpy1 := 1 is an extended Tchebycheff space of dimension p 4 1. If the characteristic
polynomial has only real roots then L, is an extended Tchebycheff space on the real line. On the other
hand, if some of the roots are not real then L, is an extended Tchebycheff space on a suitable interval J.
Note that the space P, (see Example 2.2) is a special case with L, = DP' and also the space Ea, (see
Ezample 2.3) with Loy, = Dy H?:1(Dg + 52I).

Example 2.5. The space Gg’v = (1,x,...,2P72, U(x),V(2)) is an extended Tchebycheff space on J,
under the assumption that (DP~1U (z), D2~V (z)) is an extended Tchebycheff space on J, see [5, 6, 8.
Noteworthy cases are the spaces

e GOPi=(l,z,...,2P7% e e ), 0 <aeR, J=R;
. G;fif = (1,z,...,2P72 sin(ax), cos(ar)), 0 < a(b—a) < 7, J = [a,b];

o Gy = (L, 2?2 (325)", (522)"), p <, J = (a,0).

b—a b—a

Extended Tchebycheff spaces are a natural extension of the space of algebraic polynomials, because
they enjoy the same structural properties as polynomial spaces. In particular, from Definition 2.3 it
follows that for any z € J the extended Tchebycheff space T, (.J) admits a Taylor-like basis {¢z;}7_,
such that

D:wi,i(‘f)zéika k:Oa"'ap7 i:Oa"'ap7

where d;, stands for the classical Kronecker delta.
In the following, we denote by ¢ either h or v. Let py € N with py > 0, and let Tf;[([ag, b)) be an
extended Tchebycheff space of dimension py + 1 on [ag, be]. Then, we define the tensor-product space

PY =T}, ([an, bu]) @ T}, ([av, by]), (2.1)

where p := (pp,py) and T := (T, T,) := (T}, , Ty ). If the space (2.1) is the space of bivariate

algebraic polynomials of bi-degree p, then it will be denoted by IP,. We are now ready to define the
Tchebycheffian spline space over a T-mesh.

Definition 2.4 (Tchebycheffian spline space over a T-mesh). Let T be a T-mesh with a smoothness
distribution r, and let py,p, € N with pp,p, > 0. We define the space of Tchebycheffian splines over
the T-mesh T, denoted by Sg”“(’T), as the space of functions in C™(T) such that, restricted to any cell
o € Ta, they belong to ]P’;‘f, ie.,

SET(T):={seC™(T):s, €PL, 0T }.
In particular, in the case of bivariate algebraic polynomials,

Sp(T) = {s eC™(T): 50 €Pp,0€Ts }

Note that, since ']T};h is an extended Tchebycheff space, if the smoothness r(7,) > pp associated
with a vertical edge 7, € T,”"" then for any two cells o, 0" adjacent to 7, we have

S|lous’ € ]P);I;, ENS S’II;’T(T)
A similar property holds for horizontal edges. Therefore, in the following we assume

(1) < pn, V1, €T, r(mh) < po, ¥ € T



2.3. A homological characterization of Tchebycheffian spline spaces over T-meshes

In this section we describe an alternative characterization of the spline space Sg”"(T) which will
play a fundamental role in our analysis of the dimension of SZ”’(T). This characterization is based on
a homological approach similar to the one used in [5, 29]. To this end, we first recall the definition of
complex and homology.

Definition 2.5 (i-homology). A complex is a sequence of objects and morphisms

A ..._>Ai+16i>lAi%Ai_1...

where im d;+1 C kerd;. The i-homology of A is defined as H;(A) := kerd;/imd;+1. The complex is
exact at position i if H;(A) = 0.

We now define some subspaces of IP’Z that will be used in the alternative characterization of SZ”’(T)
as the kernel of a suitable linear map. For each vertical edge 7 of T we consider the following subspace

of Pg:

]IT’" —{qGIP’T Dkq(ac y) =0, Vye[av,bv],k’:0,...,r(7)}, (2.2)
where T is the abscissa of any point of 7. Analogously, for each horizontal edge T we set

]IT’" —{qGIP’T qu(x §) =0, Vz € [ap, by, 1 =0,...,7(7) }, (2.3)
where § is the ordinate of any point of 7. Moreover, for each vertex v := (Z, §) we define the subspace

D7 (y) == {qePL : DEDLq(z,9)=0,k=0,...,m(7), {=0,...,7(7) }. (2.4)

As done in [29] in the algebraic polynomial case, we define the following complexes, see also [2, 5, 34]:

0 0
ATy (o - 5 . 5 . 5
T (Te) - 0 3 P S P A0
TETY YETS
+
0 a: d ) a
PR 0% DEp % DE - Dr =0 (25)
o€ reTye VETE
1 1 1
. 5. B B B
eI (70): 0 =% PPY 3 Prr/mrir) 3 P Pr/T(y) %o
oETs rETY ~ETP
1 3 1
0 0 0
The maps of the complex ‘I?Z;(TO) are induced by the usual boundary maps, so they are defined
as follows. We consider all the edges 7 € 77 oriented, and we use the notation 7 = [y1y2], where
1,72 € To. The opposite edge is denoted by [y2v1], and by convention we set [y172] = —[vam1]-

e The map 03 is the identity map.
e The map 0 : @, o7, PL — 69767’0 PT is given by

- D Z . ac PP

TETL o€S(T o€T2

where, for each 7 € T°, S(7) is the set of cells in 75 which contain 7, and for each cell o € T,
whose counter-clockwise boundary is formed by the edges 71 = [v17y2],..., 71 = [vi71], ¢o is the
component of g associated with the cell ¢ if the boundary of o contains 7 and its opposite if the
boundary of o contains the opposite of 7.



e The map 01 : @, cro PT — @767—0 PT is given by

=D > . D,
V€Tg TEE(7) TeTY?
where, for each v € T, E(v) is the set of edges in 7;° which have v as one of the endpoints, and,

for each oriented edge T = [y172] € T, ¢- is the component of ¢ associated with 7 if v = 2 and
its opposite if v = ~1.

e For each g € @WGTOO PZ,", do(q) =0

The maps of the complex jg”’(’To), denoted by &, 8; and 9, are obtained from s, 8; and 9,
by restriction. Indeed, for each 7 € 7;° and v € 7, an element ¢, of Hg’T(T) also belongs to ]I;";”’(’y),
provided that the edge 7 has an endpoint in v, and therefore ZTEE(v) g- belongs to ]I;";”‘('y) as well.
As a consequence, the image of the restriction of 01 to €, o 7" (7) is included in D, e L5 ().

The maps of GZ;”’ (T°), denoted by 0, 01 and 9, are naturally induced since the considered vector
spaces are quotients of the ones of BT (7).

Note that, by construction, we have d; o &-H =0,0;00i41=0,0,0041=0,i=0,1.

The vertical maps in each column of the diagram in (2.5) are the inclusion and the quotient map,
respectively.

We will now study the homology of the complexes in (2.5). Our interest is motivated by the fact
that the homology of the cells in 617;”"(7'0) is related to the space S};”’(T). More precisely, we have
the following proposition. Its proof is completely analogous to the proof of [5, Proposition 1] which
extends the result in [29, Proposition 2.9].

Proposition 2.1. For the complez &1 " (T°) in (2.5), we have
Hy(&5(T°)) =ker 0y = SE (7). (2.6)

In order to determine the dimension of the space SZ;”"(T), we can consider the Euler characteristic
of the complex

eTn(1o): 0% PP B @) B @ eIy % o,

o€To reTy ~ETS
namely

dim(@ Pg) -~ dim( ép P /1" (7) ) +d1m( ey Pg/ﬂg”"(v))

o€T2 TETY YETY
= dim(Hy(827(7°))) — dim(Hy (&2 (T°))) + dim (Ho (S} " (T°))).
Taking into account the equality (2.6) we get the relation

aim(557(7) = i @) P )~ aim (@) FE/1E7 (1)) + i €D PE/ET ()

oc€T2 TETY YETS
+ dim(H (827(T°)) — dim(Ho(657(T°)). (2.7)

In the next section we will investigate the different terms in (2.7). Afterwards, in Section 4 we
will give combinatorial lower and upper bounds for the dimension of SZ"T(’T), and we show that these
bounds coincide in some special cases.

3. A deeper look at the terms in (2.7)

In this section we study in more detail the terms in the formula (2.7). Our arguments are based
on homological techniques, extending the ones used in [29] for investigating the dimension of the
space Sp,(T). First, we address the three terms in (2.7) related to the section space PL, and then we
investigate the two homology terms in (2.7).



3.1. Properties of the section space ]P’;";

We now analyze the subspaces of IP’Z; appearing in the dimension formula (2.7). The next proposition
extends the results in [29, Lemma 1.5] and [5, Lemma 1] to the Tchebycheffian setting.

Proposition 3.1. The following dimension formulas hold:

L dim(P]) = (pn + 1)(po + 1);

(BT /T (1)) — (pn + D)(r(7) + T horizontal
2. d (]P)p/]lp ( )) {( (r ) 1)( v+1) T+ vertical
3. dim(PZ/]IzT,"’"('y)) = (rn(v) + D(ro(v) +

Proof. Proving the first formula is trivial. In order to prove the second formula, we note that a general
element of P}; can be written as

Ph  Dv

=D a2y ), (3.1)

i=0 j=0
where {1/1271-}? o and {1y}, are Taylor-like bases of the spaces T;. and T3, , respectively, such that

Diwg,l(‘i‘)zélk) kZO,...’ph, ’L’:O’_._,ph’
Dy (y) = b1, 1=0,....ps, 5=0,....p0.

Let us assume that 7 is vertical where Z is its abscissa (the proof for 7 horizontal is analogous). An
element belonging to Hg”'(T) must then satisfy the conditions

Ph  Dv

0= D¥q(z,y) = ZZa”Dkd) ) Zakﬂ/) k=0,...,7(7r),

1=0 5=0

for some § € [ay,by] and for all y € [ay,b,]. This implies that ay,; = 0 for &k = 0,...,r(7) and
j=0,...,py. As a consequence,

dim(I5°" (7)) = (pn +1)(po +1) = (r(7) + 1)(po +1). (3-2)

Then, dim(IP’Z;/HZ;""(T)) = dim(IP’zT,') — dim(HZ’T(T)) = (r(7) + 1)(py + 1). Finally, we prove the third
item of the lemma. Let us assume that (Z, ) are the coordinates of v. An element belonging to Hg”"(y)
can be expressed in the form (3.1) and must satisfy the following conditions

Do

Ph
0= DF qu ZZa”Dkd) fDl (_) Qo s E=0,....,rn(7), 1=0,...,1m(7),
1=0 5=0

which means that
dim (I3 (7)) = (pn + 1)(po + 1) = (r(7) + 1) (ro(3) + 1)
Then, since dim(PZ;/]IZ;”"('y)) = dim(IP’Z;) — dim(ﬂg”"('y)), the proof is complete. O

Consider an extended Tchebycheff space T, (J) of dimension p+1 on J. Given d € Nand z € J,
we define
I54(z) == {q € Tp(J) : Diq(z) = .d}, (3.3)

where T' := T,. We note that

o [T (1) =Th ® HT”’T(Th)( ), if 75, is a horizontal edge and ¥ is the ordinate of any point of 7p;

o IT"(r,) = 12 (z) & Ty , if 7, is a vertical edge and Z is the abscissa of any point of 7;



o IT7(y) =IE7 () + IL7(7,) if 7 is a vertex such that v = 7, N 7.

The following property is an important ingredient for the dimension results later on in Section 3.2 and
Section 4.

Definition 3.1 (d-sum property). Consider an extended Tchebycheff space Tp(J) of dimension p+ 1
onJ. Letd:= (di,...,dm) with0<d; <p,d; €N, i=1,...,m. We say that T,(J) has the d-sum

property if for any set of m distinct points T1,...,Zm € J we have
m m
dim (Z 5 (:zi)) = min (p +1,) p- dz-> ; (3.4)
i=1 i=1

where I7-% (z;) is defined in (3.3).

Example 3.1. The space of algebraic polynomials P, has the d-sum property for any d == (d1, ..., dm)
with 0 < d; <p,d; €N, i=1,...,m and for any m € N; see [29, Proposition 1.8].

Proposition 3.2. Consider an extended Tchebycheff space T,(J) of dimension p+ 1 on J. Let
d:=(dy,...,dpn) with0<d;, <p,d; N, i=1,...,m. It holds

o ifm=1, then T,(J) has the d-sum property;
o if p>di+d+1 for at least a pair k,1 € {1,...,m}, then T,(J) has the d-sum property.

Proof. The first item immediately follows from Definition 2.3. Let us now prove the second item, for
which it suffices to consider m > 2. From the Grassmann formula for the dimension of vector spaces
we deduce

dim (zm: 15 (xi)) > dim (7% () + 7% (7))
i=1
= dim (I} (Z4)) + dim (L% (7)) — dim (L)% (z) NI (2))).
Moreover, from Definition 2.3 we get
dim(ﬂg’di (T:)) =p — di,
dim (L% (Z) NI (30)) = (p+ 1 = (de +1) = (di +1))4 = (p — di — di = 1),

where (z)4+ = max(z,0). Since p > dj, + d; + 1, we deduce

ptlz dim(zﬂi’”’i(m) >(p—di)+(p—d)—(p—d—d = 1) =p+1.
i=1
This gives the value in (3.4) for dim(}_1", 174 (z,)). O

Inspired by the polynomial case (see Example 3.1), we make the following conjecture.

Conjecture 3.1. Any extended complete Tchebycheff space T,(J) has the d-sum property for any
d:=(dy,...,dpn) with0<d; <p,d; €N, i=1,...,m and for any m € N. For the formal definition
of an extended complete Tchebycheff space we refer to [31, Chapter 9].

3.2. Properties of the homology spaces

In Proposition 3.3 we address the exactness of ‘Bg (7°). These results can be proved with the same
line of arguments as considered in [29] to prove Propositions D.1-D.3 for the algebraic polynomial case.
Indeed, their proofs are just based on general properties of complexes and on the topological features
of the T-mesh. For this reason, we omit the corresponding technical proofs.
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Proposition 3.3. For the complex BL-"(T°) in (2.5), we have

Ho(BE(T°) =0,  H(PL(T°) =0,  Hy(BL(T°) =PL.

The next proposition extends [29, Lemma 2.2 and Proposition 2.7] to the case of Tchebycheffian
splines. Their proofs are again based on general properties of complexes and on the topological features
of the T-mesh, just like in [29]; therefore we omit them.

Proposition 3.4. For the complezes GL"(T°), P (T°) and IL7(T°) in (2.5), we have
Ho(&5"(T?)) = Ho(P5 (T°)) = 0;

H\(65"(T?)) = Ho(35 " (T°))-

From Proposition 3.4 and the formula in (2.7) we see that is important to study more in detail
Ho(JF7(T°)) and its dimension. In the remainder of this section we will address this point.

For any ~ := (Z,9) € T, let Ep(7y) and E,(y) be the sets of horizontal and vertical interior edges
containing . We also set E(v) := Ex(v) U Ey(y). Moreover, let P, () and P,(7) be the sets of pairs
(7,7") of horizontal and vertical interior edges containing «y, and P(v) := Pr(y)UP, (7). We now define
the map

o7 @ 1) —I5T(y), (3.5)

TEE(y)

which relates an element ¢ € B, ¢ () IT-"(7) with the element ¢T'(¢) € IX'" () identified by

(bg‘(Q) = Z dr,
TEE(y)

where ¢, stands for the component of ¢ associated with the edge 7. In the polynomial case we denote
this map by

b0 @D L) — I, (3.6)

TEE(Y)

for which the following proposition has been proved in [29, Proposition 2.3]. Note that in [29] the
corresponding map (denoted by ¢) is defined on a set isomorphic to @, ¢ () Ip(7)-

Proposition 3.5. For the map ¢ in (3.6), we have

ker (bv = Z KT,T’ + Z KT,T/)

(m,7)EP(7) TELR(Y),T'E€E(7)
where
K, .= {q € @ I5(7) : ¢- = =g and gz =0 for each 7 ¢ {7, T’}}.
FEE(Y)
We will now prove an analogous proposition for the case of extended Tchebycheff spaces.
Proposition 3.6. For the map (bg' in (3.5), we have
kero?T = > KT+ > KT,
(r,7)EP(7) TEER(Y),T'EEy(Y)

where
KZ?T, = {q € @ HE’T(%) tqr = —qr and gz =0 for each 7 & {r, T’}}.

TEE(y)

11



Proof We first recall that v := (Z,y). Let {7,/)’1 br, and {3 ;152 be Taylor-like bases of the spaces
Ph and T , respectively. Then, we can write every component qT of any g € @, E(y) ]I}; (7) in the
form (3.1) More precisely,

Pv Phr
Z Vy.5(Y) Z o :}ELz(x) if 7 € Ep(7),
i=0

j=r(r)+1

and
Z Y, Z Te i) T e By(y).
i=r(1)+1 7=0

As a consequence, we have

Pv

=22 2 i@y, W)

=0 j=0 r€ E(y)

taking o ;=0 for j =0,...,7(7), 7 € Exn(y), and o] ; := 0 for i = 0,...,7(7), 7 € Ey(7). Therefore,
an element belongs to ker qﬁz; if and only if it satlsﬁes

DD (6T (@) (@) = Y, af, =0, k>ra(y), 1<r.(y), (3.7)
TEE,(Y)

DEDL (6T ()@ 9) = Y of, =0,  k<m(y), 1>7.(y), (3.8)
TEER(Y)

DEDL (% () (2, 5) = > af, =0, k>ru(y), 1>r(7). (3.9)
TEE(Y)

From its definition it is clear that any element of KZ?T, satisfies the conditions in (3.7)—(3.9). It
follows that any element of }> ). p( KT + D e B () B () KT, satisfies these conditions as
well, and that this set is included in ker (bz. Hence, it is sufficient to prove that

ker ¢T C Z KT + > KT (3.10)

(r,7)EP(7) TEER(Y),T'€EEL(7)

Suppose now q € @TeE(,Y) ]I;I;’T(T) satisfying (3.7)—(3.9). Moreover, suppose v is a crossing vertex

with Ep(v) = {1, 72} and E,(y) = {73,74}. Then, we can decompose ¢ as

_ P, E
q=q +q,
where the coefficients of ¢© are given by
Pre . Ty _ ; ;
a; =gk, k=1,2,3,4, i<rp(y)orj<ry,(y),
Pryo _ T2 Pry _ T Py _ T4 Pry T4 ; ;
=A==l = —all, =l i>rp(y) and § > ry(y),

and the coefficients of ¢© are given by

ol =, k=1,2,3,4, i<rp(y)orj<ry,(v),

4J

ot i=aly el o7 =0, ol =alitall, o =0, 0> () and j > ().
We see that q € K, + KL _, because (3.7)-(3.8) hold and so a;} = —a?j and o] = —aj’.
Moreover, ¢ € KX because (3.9) holds and so ol + o’ = —a% — oY, This means that g €
K;"; . K}; T K;"; > and we may conclude that (3.10) holds for a crossing vertex . A similar
argument can be applied when ~ is a T-vertex. O

12



Note that, for each element g € K:T/ and v := (Z,7), we have

Dle qT(:E 7) =0, 1< r,(7) if 7 € {r, 7'} = Ex(v),
DDl qz(z,7) = 0, k<rn(v) if 7 € {1,7'} = E,(v),
D’;Dy =(z,9) =0, kE<rn(y) orl <ry(y) if 7 e{r, 7'}, 7€ En(y), 7 € Ey(v).

By exploiting the analogy between Propositions 3.5 and 3.6, the following result can be obtained
as a direct generalization of [29, Proposition 2.4].

Proposition 3.7. For the complex 327 (T°) in (2.5), we have

Ho(35"(T°)) —(@ P )

YETY TEE(Y)

/(X wew X KL X KLL)

(r,7")EP(v)ETY TEEL(Y),T'€Ey(7),vETY T:(%V’)GTF

Kr. = { EB @ 0" (7) : Gyr = —Qy,r and g5,z =0 for each (3,7) € {(7,7) (%T’)}},

Kz:%v/ = { @ @ ]ITT Ly = —Qyr if 1,7 €TY

nd g5 =0 for cach (3,7) € {(2,7), (7,7} .

and where q., » stands for the component of q associated with the vertex v and the edge T.

We can further simplify the expression of HO(JZ’T(T")) by using the concept of maximal interior
segments. The next proposition generalizes [29, Proposition 2.5] and can be proved with the same line
of arguments by taking into account the analogy between Proposition 3.7 and [29, Proposition 2.4].

Proposition 3.8. For the complex 35" (T°) in (2.5), we have

m@En T = (D E0) /(X KT).

peMIs(T) YETY

where 127 (p) := 12" (1) for any T C p,

= {q € ]IT’r(p) :dg € I?,T such that q, = g, for each p},
peMIs(T)

I?f = {(j S HZ’T(P) : (iph('y) = 7(jpu(v) and (ip =0 fO’f’ each P ¢ {ph(’}/)vpv(’}/)}}a
peMS(T)

and where q, stands for the component of g associated with the mazimal segment p.

Example 3.2. Consider the T-mesh T in Figure 3, and the constant smoothness r(1) = 1 for every
T € T?. Moreover, let T = (P3,P3), so pn, = p, = 2. Then, the space K$ for v8,73,72, is given,
respectively, by

o KT ={(0,0,0)};

° K;"; = {(a(x —x2)*(y — y3)%,0,0):a € R};
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o KT ={(a(z —x2)*(y — 12)%,0, —a(z — 22)*(y — y2)?) : a € R}.

We are now going to bound dim (Ho(J3X""(7°))) for general T-meshes (sce Theorem 3.1). Let ¢ be
a given ordering of MIS(7). For any p € MIS(7 ), we denote by I',(p) the set of vertices of p which do
not belong to p’ € M1s(7") with ¢(p") > ¢(p). The cardinality of such a set is denoted by A, (p).

Definition 3.2 (Weight of MIS). Given an ordering v of Mis(T), the weight of a maximal interior
segment p € MIS(T) is defined as

w@%{Z%n@@thD,UﬁEMBMT)
' ZVGFL(p) (po —70(7)),  if p € MISy(T)

Example 3.3. Consider the T-mesh T in Figure 3 and Exzample 2.1. The ordering ¢ of MIS(T) is
given by u(p;) =7, 7 =1,2,3. In this case, we have

Lu(pr) = {v,73} Tulp2) = {7} Tulps) = {1275},

s0 A (p1) = A(p2) = A(p3) = 2. Moreover, let p, = p, = 2 and let rp(y) = ro(y) = 1 for every
v €Ty. Then, the corresponding weights of the mazimal interior segments are

(1) = w(p2) = wi(ps) =22~ 1) =2,
Indeed, pg —r¢(y) =2 —1=1 for every p € Mis¢(T), £ = h,v.

Definition 3.3 (r-sum property on 7). Given a smoothness distribution v on T, we say that T :=
(T};h,T;U) has the r-sum property on T, if each of its components ']Tf;[([ag,bg]) with £ = h,v has the
d-sum property (see Definition 3.1) for any subvector d of the vector r¢ := (r¢(7)) eTe-

In the next theorem we give bounds for the dimension of Ho(jg”‘(T")). Its proof makes use of the
characterization of the space provided in Proposition 3.8, and is a slightly reformulated version of the
proof in [29, Theorem 3.7].

Theorem 3.1. Let ¢ be a given ordering of Mis(T ), and assume that T has the r-sum property on T.
It holds

0 <dim(Ho(Ip"(T°)) < > (pn+1—wi(p)4 (0o —r(p))

peMIs, (T)
+ Z (pn = 7(p)) (Po + 1 = wi(p))+,
pEMIS, (T)
where (z)4 := max(z,0).
Proof. The lower bound is trivial, so we just focus on the upper bound. Let p1, ..., pn be the maximal
interior segments of 7 where the indices are ordered according to the given ordering ¢.
Any element g € @pems(ﬂ Hg”‘(p) =: RT can be seen as a vector (q,,,...,qyy) Where q,, €

Hg”’(pi). Note that the space K;f defined in Proposition 3.8 is a subspace of RT consisting of the
elements ¢ whose components satisfy the following conditions:

o if v = (Z,7) is the intersection of the maximal interior segments p; and p;, then
qdp = 0 for each P ¢ {p’bvpj}a and dp; = —4p;,
DyDyg,,(7,5) = DiDyap, (2,5) =0, 0<k<ru(y) or 0 <1< 7ry();

e if v = (Z,y) is the intersection of the maximal interior segment p; with a maximal segment
intersecting 0f2, then
gp =0 for each p # p;,

DiDLa, (z,5) =0, 0<k<rp(y)or0<1<r(y).
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For any ¢ € RT, we define F(q) as the element in RT having all zero components except Qpiaes
which is the component of ¢ with the maximal index such that g,, # 0. Let F(KT) be the space
spanned by {F(q) : ¢ € KT} where KT := =Y e7e K. Tt is clear that dim(F(KT)) < dim(KT), so

by Proposition 3.8 we have
dim (Ho(I57(T°))) = dim(RT/KT) < dim(RT/F(KT)). (3.11)

Moreover, for each p; € Mis(T), the space F(KT) contains the vectors

(0, ..., 0, ..., 0, gp, 0, ..., 0),
1 f (3.12)
J 1
where ¢,, satisfies
DiDla, (Z,5) =0,  0<k<ru(y)or 0<1<r,(y), (3.13)

for some v = (Z,7) € I'(p;). Note that ~ is either the intersection of the maximal interior segments
pi and p; with ¢ > j or the intersection of the maximal interior segment p; with a maximal segment
intersecting 9. Let Q; be the space spanned by the vectors of the form (3.12)—(3.13). More precisely,
if p; € M1S,(T) belongs to the line y = § then

Qi{qE

= X mrom) e

v=(Z,9)€T (p:)

@ HZ;’T( 1) P*O lfp#pl and Qpl(x y) S Qz}

pemIs(T)

where

A similar characterization holds if p; € M1S, (7). As a consequence, by Definition 3.1, the dimension
of Q; is given by

)

(0. = dim(O.) — d minEa + 1w (p))(po —r(pi)), if pi € MISK(T)
dim(Q;) = dim(Q;) = {min(pv + 1w, (p)(pn —7(p:)), if pi € M1S,(T)

and from (3.2) we get

e Ay ) P L= wlp) 1 (pe — 7(pi)), if pi € MISH(T)
Al 0/ Q)‘{@hr(pi»(pﬁlm(pm, it i € w1s,(T) 314

Since Y, Q; € F(KT) and dim(3Y, Q;) = Y1, dim(Q;), we obtain

aim(r?/F(ET) < dim( (D 7)) / (V]é@)) Zdnn "0)/Q). (319)

peMis(T)
By combining (3.11) and (3.15), we arrive at the upper bound for dim(Hy(3Z-"(7°))) by taking into
account (3.14). O
4. Dimension formulas for Tchebycheffian spline spaces over T-meshes

In this section we address the dimension problem in case of Tchebycheffian spline spaces over T-
meshes. First, we state a general dimension formula involving a homology term, and we give a lower
and upper bound. Then, we consider certain conditions on the T-mesh and/or the Tchebycheffian
spline space so that the homology term vanishes.
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4.1. A dimension formula with a homology term

Using the results in the previous sections, we are able to state a general dimension formula for any
Tchebycheffian spline space SZ”’(’T) defined over a T-mesh 7.

Theorem 4.1. We have

dim(ST™(T)) = > (on+ Dpo+1) = > (on+D)r(m) +1) = D> (r(r) + 1)(ps +1)

o€Ts TETO’h TETlo’v
+ > (rn() + D (ro(y) +1) + dim (Ho (337 (T°))). (4.1)
v€Ty

Proof. By combining Propositions 3.1 and 3.4 with the equality (2.7), we arrive at the formula (4.1). O

Since dim(Ho(J3"(7°))) > 0, we immediately get the same lower bound for the dimension of
SFT(T) as in the algebraic polynomial case, see [29, Section 3]:

dim (ST (T) = > (o + Do +1) = D (o + V(1) +1) = > (r(7) + 1)(py + 1)

0'673 7_67—10,)1 Te7—10,v
+ ) ra() + D)(ro(y) + D). (4.2)
YETY

Moreover, given an ordering ¢ of MIS(7), from Theorem 3.1 we also obtain an upper bound for the
dimension of S;";""(’T), under the assumption that T has the r-sum property on 7

dim (ST (T) < > (o + Do +1) = D (oa + V(1) +1) = > (r(7) + 1)(py + 1)

o€T2 7_67—10,)1 Te7—10,v
+ )M+ D+ D+ Y (a1 —wi(p)t (po —7(p))
YETY pewmisy, (T)
+ Y (n =) (o + 1 —wi(p))+- (4.3)
PEMIS, (T)

We say that a smoothness distribution r on T is constant if there exist p := (un, piy) such that
r(m0) = pn, V1, €T, r(1h) = po, V7 € TN (4.4)

Example 4.1. Given a T-mesh T with a constant smoothness distribution v as in (4.4), the dimension
formula (4.1) simplifies to

dim (S5 (T)) = (pn + 1) (0o + 1) f2 = (pr + 1) (1o + D fT = (un + 1) (o + 1 7
+ (g + 1) (o + 1) fo + dim (Ho(3T7(T2))). (4.5)

The formula (4.5) corresponds to the formula found in [29] for the algebraic polynomial spline space
defined on the same T-mesh. In this case, the homology term can be bounded as

0 <dim(Ho(3F"(T°)) < > (on+1—(n— mn)\(p)+ (o — 110)
peMisy (T)

+ > (on =) (P + 1= (po = )M (p)) 4
pEMIS, (T)

under the assumption that T has the r-sum property on T .
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(a) (b)

Figure 4: (a) A T-mesh with no cycles of MIS but with cycles. (b) A T-mesh with no cycles but with cycles of MIS.

4.2. Dimension formulas without homology term

Under certain conditions on the T-mesh and/or the Tchebycheffian spline space, the homology
term in the dimension formula (4.1) is zero, so that the dimension of ST-"(T) agrees with the lower
bound in (4.2). In the following we discuss some noteworthy cases and examples. The first is a direct
consequence of Proposition 3.8.

Corollary 4.1. If the T-mesh T has no mazimal interior segments, then dim(Ho(JZ-"(T°))) = 0.

Note that a T-mesh with no maximal interior segments is a so-called quasi-cross-cut partition of
the domain Q (see, e.g., [7]). Indeed, in such a T-mesh each edge 7 € T;° extends to the boundary 9.
An edge that extends to the boundary is referred to as a pseudo-boundary edge in [30].

Example 4.2. Let T be a tensor-product mesh defined on the domain [ap, b X [ay, by] by the partitions
ap =xg < - < X1 = by and a, = yo < -+ < Y41 = by. One can easily check that there are no
maximal interior segments. As a consequence, the dimension of Sg”’(T) agrees with the lower bound
in (4.2). For instance, taking a constant smoothness distribution v as in (4.4), the dimension formula
(4.5) simplifies to

dim(S2 (7)) = ((pn + D)(k+ 1) = k(un + 1)) ((po + DI+ 1) = Ly + 1)).

In the algebraic polynomial context, it is known (see [29, 32]) that if the degree is large enough
with respect to the smoothness, then the dimension of S;(7) agrees with the lower bound in (4.2).
This extends to the setting of Tchebycheffian splines, as stated in Corollary 4.2 and Corollary 4.3. To
this end, we recall, respectively from [29] and [32], the concepts of hierarchical T-mesh and cycle. Note
that the former is also referred to as LR-mesh in [5, 12]. In addition, we define the concept of cycle of
MIS.

Definition 4.1 (Hierarchical T-mesh). A hierarchical T-mesh is either an azis-aligned rectangular
domain  or a T-mesh obtained by splitting a cell of another hierarchical T-mesh along a vertical or
horizontal line.

Definition 4.2 (Cycle). A segment o of a T-mesh is called a composite edge if all the vertices lying
in its interior are T-vertices and if it cannot be extended to a longer segment with the same property.
A sequence p1,...,0n of composite edges in a T-mesh is said to form a cycle if each o; has one of its
endpoints in the interior of g;+1 (we assume gni1 = 01).

Definition 4.3 (Cycle of MIS). A sequence p1,...,pn of mazimal interior segments in a T-mesh is
said to form a cycle of MIS if each p; has one of its endpoints in the interior of p,y1 (we assume

Prt1 = p1).

17



The above three definitions lead to three different families of T-meshes: the family of hierarchical
T-meshes, the family of T-meshes without cycles, and the family of T-meshes without cycles of MIS.

Remark 4.1. The families of T-meshes without cycles and of T-meshes without cycles of MIS do not
coincide and none of them includes the other. In fact, there are T-meshes having no cycles of MIS but
having cycles, and vice versa (see Figure /). On the other hand, the family of hierarchical T-meshes
is strictly included in both the family of T-meshes without cycles and the family of T-meshes without
cycles of MIS. The T-mesh in Figure /(a) has no cycles of MIS and is not hierarchical; the T-mesh in
Figure 4(b) has no cycles and is not hierarchical as well.

We observe that a T-mesh 7 without cycles of MIS allows us to define an ordering ¢ of MIS(T)
such that p,p’ € Mi1s(T) with p having one endpoint in the interior of p’ implies that t(p") < t(p).
For instance, the ordering of MIS(7) in Example 3.3 satisfies this condition. The following algorithm
generates such an ordering.

Algorithm 4.1. Given a T-mesh T without cycles of MIS, the ordering v of MIS(T) is constructed as
follows. Initialize A =M1S(T) and B = 0. Then, repeat as long as A is not empty:

1. select any p € A such that for each endpoint of p belonging to p' € MiS(T) we require p’ € B;
2. set u(p) =n+ 1 with n the cardinality of the set B;
3. remove p from the set A and insert it in the set B.

It is clear that the algorithm starts the ordering by selecting a maximal interior segment whose
both endpoints do not belong to any other maximal interior segment.

Lemma 4.1. Algorithm 4.1 terminates in a finite number of steps, and it generates an ordering v of
MIS(T) such that p, p’ € M1S(T) with p having one endpoint in the interior of p’ implies that t(p’) < (p).

Proof. We show by contradiction that the algorithm terminates in a finite number of steps. Suppose
the set A is not empty and A does not contain any element that satisfies the condition in Step 1. This
would imply that each p € A has at least one endpoint belonging to another p’ € A. Since the number
of elements in A is finite, this means that there must be a cycle of MIS, which contradicts with the
assumption on the T-mesh 7. Finally, it is easy to see from Step 1 that the algorithm generates an
ordering satisfying the stated condition. o

Note that the above algorithm terminates in a finite number of steps if and only if there are no
cycles of MIS in the T-mesh. Indeed, from Lemma 4.1 we know that the algorithm terminates in a
finite number of steps when there are no cycles of MIS in the T-mesh. On the other hand, if there is a
cycle of MIS, say p := {p1,...,pn}, then the set A can never become empty (and so the algorithm does
not terminate) because, by Definition 4.3, none of the elements of p satisfies the condition in Step 1.
As a consequence, the algorithm can also be used to check whether or not there are cycles of MIS in a
T-mesh.

In the next corollary we address certain Tchebycheffian spline spaces defined over T-meshes with-
out cycles of MIS. It is a generalization of [29, Proposition 4.3] in two directions, namely to the
Tchebycheffian spline setting and to a family of T-meshes which includes hierarchical T-meshes (see
Remark 4.1).

Corollary 4.2. Let T be a T-mesh without cycles of MIS, and let v be a smoothness distribution on
T. Then, assuming that py, > 2r(7) + 1 for all 7 € T"" and p, > 2r(7) + 1 for all T € Tlo’h, we have
dim (Ho (32" (T°))) = 0.

Proof. Let ¢ be an ordering of Mis(7T) generated by Algorithm 4.1. Therefore, both endpoints of
any p € MIs(T) belong to I',(p), which must contain at least 2 elements. As a consequence, for any
p € Mis,(T) we have

2w, (p) = Z 2(pn —rn(7)) = Z Ph+pr—2ra(Y) 2 Z prn+12>2pp +2,
YET.(p) v€T.(p) YET.(p)

which means that w,(p) > pr + 1. Similarly, we deduce that w,(p) > p, + 1 for any p € MIS,(T).
From Proposition 3.2 we see that T has the r-sum property on 7, and so Theorem 3.1 completes the
proof. O
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Example 4.3. Consider the T-mesh T in Figure 3, and the constant smoothness distribution r on T as
in (4.4) with p = (1,1). The space SE"(T) with p = (3,3) has dimension 32. This immediately follows
from the mesh numbers in Example 2.1, the dimension formula in Example 4.1 and Corollary 4.2.

An analogous result for T-meshes without cycles was implicitly proved in [32] for the algebraic
polynomial setting. The result can be generalized to our non-polynomial setting by following the same
line of arguments as in [6] for spaces of generalized splines over T-meshes, which are Tchebycheffian
splines belonging piecewisely to tensor-products of the spaces considered in Example 2.5. Although
the original formulation was given for a constant smoothness distribution on 7, its proof can be easily
extended to a general smoothness distribution on 7.

Corollary 4.3. Let T be a T-mesh without cycles, and let r be a smoothness distribution on T.
Then, assuming that p, > 2r(7) + 1 for all 7 € T and p, > 2r(7) + 1 for all 7 € T", we have
dim (Ho(32-"(T°))) = 0.

Finally, we observe that the properties of the subdivision algorithm presented in [29, Algorithm 4.4]
hold in our Tchebycheffian spline context too. Let us start by recalling the algorithm.

Algorithm 4.2. Given a T-mesh T and two positive integers kp, ky, the (kp, k,)-weighted subdivision
rule is defined as follows. For any cell o € To marked to be subdivided:

1. split o by adding the new edge T;

2. if inserting T does not extend an existing edge, then extend T so that the maximal segment
containing T, say p(T), either intersects O or satisfies w,(p(T)) > kp with p(1) € MISR(T) or
w,(p(7)) > ky with p(T) € MIS,(T).

It is clear that applying the (kp, k, )-weighted subdivision rule to T-meshes satisfying

w,(p) > kn, Vp € mis,(T),
w,(p) > ky, Vp € M1S,(T), (4.6)

always gives T-meshes satisfying (4.6). In particular, if we choose k, > pp + 1 and k, > p, + 1,
then Theorem 3.1 implies that dim(Ho(3%-"(7°))) = 0, under the assumption that T has the r-sum
property on 7. Therefore, the dimension of the corresponding space depends only on the number of
cells, interior edges and interior vertices. Note that the study of this algorithm allows us to obtain the
dimension formula for spaces of LR Tchebycheffian splines, i.e., the extension of LR-splines (see [12]
and also [5]) to the setting of Tchebycheffian splines.

Example 4.2 and Corollaries 4.2-4.3 show that for a large class of Tchebycheffian spline spaces we
have

dim (S} " (7)) = dim(S,,(T)). (4.7)

Even though there are cases where this equality does not hold (see Section 5), we make the following
conjecture inspired by the concept of generic embeddings used in [2] in the context of dimensions of
polynomial spline spaces on triangulations.

Conjecture 4.1. The equality in (4.7) holds generically for all Tchebycheffian spline spaces on T-
meshes. This means that if for a given space ]P’;‘f and a T-mesh T with a smoothness distribution r the
equality in (4.7) does not hold, then there exists an arbitrarily small perturbation of the vertices of T
making the equality true.

5. Instability in the dimension of Tchebycheffian spline spaces over T-meshes

In this section we show that the dimension of the Tchebycheffian spline space Sg”‘(T) can depend
not only on the topological information of 7 but also on the geometry of the T-mesh. This particular
behavior is usually referred to as instability in the dimension of the considered space. Examples of in-
stability in the dimension are well known for polynomial spline spaces either defined over triangulations
[11] or over T-meshes [1, 20].
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We focus on the T-mesh in Figure 1, which was already considered in [20] in the case of polynomial
splines. For this T-mesh we have

fo=24, fl=fl=22 fo=2L

Moreover, we take p = (2,2) and a constant smoothness distribution r as in (4.4) with p = (1,1).
From (4.5) we obtain
dim (SE7(T)) = 36 + dim (Ho (32" (T7))). (5.1)

So, we still have to determine dim(Ho(J%""(7°))). For this, we can use the characterization of
Ho(3F"(T°)) provided in Proposition 3.8.

Let {7/’:%,1'}12:0 and {1? ;}7_, be Taylor-like bases of the spaces T% and T3, respectively. From (2.2)
and (2.3) we know that every element in IT""(p,) can be written as

[

h N
(Jpv(xvy): f,z(x)z%p,j ;,j(y),

Jj=0

for some g, if p, is a vertical maximal interior segment and x = Z is the abscissa of any point of p,.
Similarly, every element in Hg”’(ph) can be written as

2
Qo (2, 9) = V0, (y) Y alstbl (x),
1=0

for some Z, if pj, is a horizontal maximal interior segment and y = 7 is the abscissa of any point of py,.
Therefore, requiring

U, (2,Y) = —ap, (%, Y)

implies that Z?:o ay’y ;(y) is a multiple of ¥ 5(y) and S af’ypl (x) is a multiple of ¢ ,(z). In

other words, there exists a coefficient a”»#» € R such that

G, (T, Y) = —qp, (x,y) = aP Pl 5 ()02 4 (y).

The T-mesh in Figure 1 has two horizontal maximal interior segments belonging to the straight
lines y = t3 and y = t4, respectively, and two maximal vertical interior segments belonging to the
straight lines x = s3, x = s4, respectively. The maximal interior segments are ordered as follows

y:tl’n X = 83, y:t4; T = 54.

We denote by ~; ; the vertex obtained by intersecting the lines * = s; and y = t;. The vertices
belonging to the maximal interior segments are ordered as follows

V4,3, 71,3, 72,3, 73,3, V3,1, V3,2, V3,4, V2,45 V5,4, V4,4, V4,25 V4,5

From Proposition 3.8 it follows that

dim (Ho (32" (T°))) = dim( P ]I;-f"’(p)> - dim< > K3"> =4-3— dim< > Kf). (5.2)

peMis(T) YETY YETY
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The elements of 3 veTe K ;"1 are linear combinations of the rows of the following matrix

1/154 2( )Q/Jts, (?J) 0 0 ¢s4, (fﬂ)wfg,z(y)
sl 2(95) ts, 2(y) 0 0 0
52, 2($)7/1t3 2(y) 0 0 0
53, ($)¢t3, (v) *T/JQS,Q(ZE)“/’ZJB,Q(Z/) 0 0
0 *7/1&,2(5”)7/’?1,2(9) 0 0
0 - i‘s,z(iﬁ)%, (y) 0 0
0 s3, 2(5’3)%4 2(y) (x)l/h 2() 0
0 0 sz 2(95)1/&1 2(y) 0
0 0 5, 2(50)1/%4 2(y) 0

0 0 22 (@)Y, 2 (y) *1/)54, (@)7, 2(y)

0 0 0 —¢54, (@), 2(y)

0 0 0 —¢54 2(5’3)%5,2(?/)

Hence, the dimension of ) yeTo K 3 is given by the dimension of the space spanned by the rows of the
following matrix

24,2@) 0 0 7/’213,2(9)
Ul o (@) 0 0 0
Ui 0(r) 0 0 0
1/123,2(35) 1/’1?3,2(?/) 0 0
0 Q/Jfﬂgy% 0 0
,_ 0 Vi 2(Y 0 0

M= 0 ) a0 >3

0 0 Y (@) 0
0 0 ¢y 0

0 0 1/124,2(@ 1/’?4,2(9)

0 0 0 Vi, 2(Y)

0 0 0 Ui, 2(y)

In the polynomial case, i.e. Th = T4 = Py, we have
_ 7\ — )
rw) =T @ = 0,

and the dimension of 2767—0 K T with T = (IPy,IPy) is given by the dimension of the space spanned by
the rows of the following matrlx

1 s4 842 0 0 0 0 0 0 1 t3 t3?
1 51 52 0 0 0 0 O 0 0 0 0
1 s9 552 0 0 0 0 O 0 0 0 0
1 S3 832 1 tg t32 0 0 0 0 0 0
0 O 0 1 t1 12 0 0 0O 0 0 0
2
T R I R SR
0 0 0 0 0 0 1 s3 s2 0 0 0
0 0 0 0 0 0 1 s5 s52 0 0 O
0 O 0 0 0 0 1 s4 842 1 tg t4°
0 O 0O 0 0 0 0 O 0 1 ty to2
0 O 0O 0 0 0 0 o 0 1 t5 ts2

It is clear that rank(Mpoly(s1,---,855t1,...,%5)) > 11. The matrix Mpoly(s1,---,Ss5;t1,...,t5) has
been analyzed in [20] where it has been proved that det(Mpory(s1, ..., 85;t1,...,t5)) =0 if and only if
(83 —51)(s5 — 54) (84— 51)(s5 — 83)

(ts — t1)(ts —ta)  (fa—t1)(ts —fa) (5.4)
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tl tl
to to
t3 t3
ty ty
t

5 ts
t6 tg

S0 S1 S2 53 S4 S5 Se So  S1 S2 S3 S4 S5 S6

(a) (b)

Figure 5: (a) A T-mesh such that (5.4) holds but (5.6) does not. (b) A T-mesh such that (5.6) holds but (5.4) does not.
In both cases oo = 1.

see Figure 1 and Figure 5(a) for two examples. Therefore, from the formula (5.2) with T' = (P2, P2)
we get
1, if (5.4) holds
dim (Ho(327(T°))) =< ’
(Ho(3,"(T7))) {0, otherwise.
In other words, the dimension of the quadratic C* polynomial spline space over the T-mesh in Figure 1
depends on the geometry of T according to the validity of (5.4). This result has also been obtained in
[20] by means of a different approach, the so-called smoothing cofactor method.
Let us now consider the following space of exponential functions,
Gyy = (1,e*",e77), 0<aeR
It is easy to check that this space is the kernel of the differential operator D, (D2 — o?I), so it is an
extended Tchebycheff space on R (see Example 2.4 or Example 2.5). A Taylor-like basis for G;’fg is
given by

7/10,2(50) = 17
1 ~ 1 -

B — _— sa(e=z) _ -~ —a(z-T)

V() 2ae 2ae ’
1 1 = 1 _

_ _ = - o(z—z = . —a(z—7)

Va.2(@) = a2 * 2a2° '+ 2a2° ( '
Therefore, we may conclude from (5.3) that the dimension of 37, . KT with T = (G35, G5'%) is
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given by the dimension of the space spanned by the rows of the following matrix

1 e*% 74 0 0 0 0 0 1 e%ts eots

1 e*1 e= @1 0 0 0 0 0 0 0 0

1 e*2 =2 0 0 0 0 0 0 0 0

1 e¥%3 e7@3 1 3 g7tz () 0 0 0 0

0 0 0 1 et e~ 0 0 0 0 0

0 0 0 1 eX2 ez 0 0 0 0 0
Mexp(Sl,...,85;t1,...,t5) = 0 0 0 1 eo‘t“ e_at4 1 ea53 e—Oéss 0 0 0

0 0 0 0 0 0 1 e*%2 e=%%2 () 0 0

0 0 0 0 0 0 1 e*5 e % () 0 0

0 o0 0 0 0 0 1 e¥%1 e7@s1 ] eota gm0l

0 0 0 0 0 0 0 0 0 1 eot2 et

0 0 0 0 0 0 0 0 0 1 e ebs
Again it is easy to see that rank(Mexp(s1,--.,S5;t1,...,t5)) > 11. Moreover, when considering the
substitution

xpi=e®i y=ei i=1,...,5,

it can be verified that
5
(Izyz szyz> det(Mexp(s1;- - -, 85it1,- -+, t5)) = det(Mpory (1, - -+, T53 Y1, - -, Y5))-
i=1
Taking into account (5.4), this means that in the exponential case the condition for rank deficiency is

(eOLSg _ easl)(ea55 _ eOLS4) (ea54 _ easl)(ea55 _ eOLSg)

(eatg _ eatl)(eat5 _ eat4) - (eat4 _ eatl)(eatg, _ eatg) )

(5.5)

see Figure 1 and Figure 5(b) for two examples. Therefore, from the formula (5.2) with T' = (G5, G5'Y)
we get
1, if (5.5) holds,

0, otherwise.

dim (Ho(37"(T°))) = {

Note that the space G5 is equal to (1,sinh(ax), cosh(ax)) and the condition in (5.5) is equivalent to

sinh(@) sinh(a(s52_s4)) _ sinh(@) sinh(@) (5.6)

sinh(@) sinh(a(t52_t4)) sinh(@) sinh(ia(tz_m) -

Indeed, the above relation can be obtained by multiplying both sides of (5.5) by

e—(s1+sstsatss)/2

e—a(tl +ta+tatts)/2

and by using the identity sinhy = (e¥ —e™¥)/2.
Finally, let us consider the following space of trigonometric functions,

Gy = (1,sin(ax), cos(ax)), 0 <a(b—a)<m,

which is an extended Tchebycheff space on the interval [a,b]. By following the same arguments as
before, we can show that there is an instability in the dimension of the space Z,YGTUO K;f with T' =

(G;fi'f, Gg‘f) characterized by the condition

Sin(a(832—sl)) Sin(a(552—34)) _ Sin(a(842—s1)) Sin(a(852—33)) (57)

sin(a(tSQ_tl)) sin(a(t52_t4)) sin(a(t“;tl)) sin(a(tsgts)) -
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As a consequence,
1, if (5.7) holds,

0, otherwise.

dim (Ho(33"(T°))) = {

We remark that both rank deficiency conditions in (5.6)—(5.7) approach (5.4) as the parameter «
tends to 0. On the one hand, we see that there exist special geometric configurations of 7 such that the
0-homology term in (5.1) exceeds 0 for the polynomial, exponential and trigonometric case (see, e.g.,
Figure 1). On the other hand, there also exist geometric configurations of 7 such that the 0-homology
term in (5.1) exceeds 0 for the polynomial case but not for the exponential /trigonometric case and vice
versa (see, e.g., Figure 5).

6. Conclusions

In this paper we have defined Tchebycheffian spline spaces over planar T-meshes and we have
addressed the problem of determining their dimension. We have provided combinatorial lower and
upper bounds for the dimension, and we have shown that these bounds coincide if the dimensions of
the underlying extended Tchebycheff section spaces are large enough with respect to the smoothness,
under some mild conditions on the T-mesh. Moreover, we have illustrated that the dimension of
Tchebycheffian spline spaces over T-meshes can depend on the exact geometry of the given T-mesh.

Some of the results have been proved under a technical assumption on the underlying extended
Tchebycheff spaces, see Definition 3.1 and Definition 3.3. However, as conjectured in Section 3.1, we
think that any extended (complete) Tchebycheff space possesses this property, just like the algebraic
polynomial space does. This means that the assumption should not restrict our results in practice.

As expected, it turns out that Tchebycheffian spline spaces and polynomial spline spaces over planar
T-meshes behave completely similarly from the dimension point of view. Even stronger, we conjecture
in Section 4.2 that the dimensions of these two spline spaces agree generically.

The main ingredient of the paper is the extension of the homological characterization proposed in
[29] to the Tchebycheffian spline context. This extension is non-trivial because the ring structure of
algebraic polynomials cannot be used anymore in this general setting. Nevertheless, basically all the
results obtained for polynomial splines have been rephrased, and sometimes improved, for T'chebychef-
fian splines. This strengthens the structural similarity between polynomial and Tchebycheffian spline
spaces, which originates in the same upper bounds on the number of (real) roots of any non-trivial
element of the space.
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