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Abstract

We introduce an adaptive scattered data fitting scheme as extension of local least
squares approximations to hierarchical spline spaces. To efficiently deal with non-trivial
data configurations, the local solutions are described in terms of (variable degree) poly-
nomial approximations according not only to the number of data points locally available,
but also to the smallest singular value of the local collocation matrices. These local ap-
proximations are subsequently combined without the need of additional computations
with the construction of hierarchical quasi-interpolants described in terms of truncated
hierarchical B-splines. A selection of numerical experiments shows the effectivity of our
approach for the approximation of real scattered data sets describing different terrain
configurations.

Keywords: Scattered data fitting, Hierarchical splines, THB-splines, Local least squares,
Quasi-Interpolation.

1 Introduction

Surface reconstruction of unstructured large data sets requires suitable adaptive schemes
that facilitate the computation of high-quality approximations with an increased level of
resolution only in strictly localized areas. The resulting compact representation automatically
identifies the parts of the domain where an increased number of degrees of freedom is needed
according to the data distribution (high concentrations of data points usually define local
details to be suitably reconstructed). The problem of reconstructing scattered data of high
complexity arises in various application areas, ranging from scanner acquisitions to geographic
benchmarks, and it is a relevant component for industrial and medical purposes where the
visualization and subsequent manipulation of large random data configurations are usually
required. Note that scattered data can have significantly different distributions, e.g. data
with highly varying density, data with voids, contour data.

Standard computer aided design software tools based on the tensor-product B-spline model
do not provide local refinement capabilities. Spline adaptivity may easily be achieved by
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considering multilevel B-spline extensions, where the tensor-product structure is preserved
at any level. Hierarchical B-spline constructions of this kind were originally proposed by
[9] to define hierarchical spline surfaces in terms of a sequence of overlays. By considering
truncated hierarchical B-splines (THB-splines) [11], it is possible to define a strongly stable
basis for hierarchical spline spaces that forms a convex partition of unity [12]. THB-splines
also guarantee the so–called preservation of coefficients : truncated basis functions preserve
the coefficients of functions expressed in terms of B-splines of a certain hierarchical level, see
again [12]. This allows us to directly extend any quasi-interpolation operator defined in the
space of tensor-product B-splines to the hierarchical setting without the need of additional
computation [27]. Note that the hierarchical B-spline model may be applied in combination
with uniform and non-uniform refinement, different degrees and smoothness, and related
constructions easily extend to the general multivariate setting.

We present an adaptive scattered data fitting scheme by extension of local discrete least
squares approximations to hierarchical spline spaces. To efficiently deal with non-trivial data
configurations, the local solutions are described in terms of variable degree polynomial ap-
proximations, according not only to the number of data points locally available, but also
to the smallest singular value of the local collocation matrices. Note that the possibility
of using higher degree polynomials in each local approximation can be exploited only for
sufficiently dense data sets. These local approximations are subsequently converted in local
B–spline form and directly combined with the construction of hierarchical quasi-interpolants
described in terms of the truncated basis. The choice of defining local approximations in
terms of polynomials instead of splines makes our approach more robust when data with
highly varying density or voids are considered. Within the hierarchical framework, this local
quasi-interpolation operator is combined with an adaptive strategy that at each refinement
step identifies a set of basis functions marked for refinement. In order to do this, we devel-
oped a marking strategy to identify the subset of hierarchical basis functions to be substituted
by finer ones in the spline hierarchy. This allows us to locally improve the accuracy of the
approximation according to the scattered data distribution.

The structure of the paper is as follows. Section 2 presents a brief overview of some related
works dealing with scattered data fitting, while Section 3 recalls the definition of THB-splines
and related properties. Section 4 introduces the developed least squares local data-dependent
quasi-interpolation approach, while Section 5 introduces the strategy for the definition of
our final adaptive hierarchical approximation. A selection of numerical experiments for the
approximation of real data sets describing different terrain configurations is presented in
Section 6. Finally, Section 7 concludes the paper.

2 Related works

One possible choice for scattered data fitting relies in methods based on radial basis functions
(RBFs) since the space naturally depends on the local distribution and density of the input
data, see e.g. [8, 30]. Another classic approach to the problem is represented by partition
of unity methods, where (suitably chosen) non-negative, compactly supported and linearly
independent functions, which form a partition of unity, are combined with local approximants
of the data, see, e.g., [1, 8]. Among others, a method that combines adaptive partition of
unity with least squares fitting based on radial basis functions was proposed in [22], while [20]
presented a scattered data quasi-interpolation scheme based on RBFs.
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Focusing on splines, a two-stage method for scattered data fitting by direct extension of
local polynomials to bivariate splines was presented in [7] by considering local discrete least
squares polynomial approximations [3]. In order to increase the adaptivity of the method,
this approach was further developed in [4, 5] by considering hybrid local approximations in
terms of polynomials and of linear combinations of radial basis functions in the first stage of
the method. In both cases the final approximation is a spline (represented in local Bernstein
form) on a regular triangulation (of a suitable extension) of the domain. Scattered data fitting
can be naturally addressed with splines on irregular triangulations. Some recent theoretical
studies in this context are, for example, [21], where interpolation is proposed for exact data,
and [18] where a domain decomposition approach is introduced. In addition to discrete least
squares, minimal energy and penalized least squares are considered in the first stage of the
method in [18], which can also be listed among the two-stage approaches for scattered data
fitting. Furthermore, a quasi-interpolation scheme based on irregular triangulation has also
been recently investigated [25]. Multilevel least squares approximation of scattered data over
binary triangulations was presented in [14].

Moving to tensor-product splines, a more standard choice in computer aided applications
than splines on triangulations, a two-stage method based on extended B-splines with focus
on curvilinear domains has been recently introduced in the literature [6]. However, this work
provides theoretical results for sufficiently dense data, and, consequently, does not cover real
scattered data sets. Interpolation and approximation of scattered 3D data with hierarchical
tensor-product B-splines was addressed in [13] by following the hierarchical approach orig-
inally proposed in [9]. The method was based on a global least squares minimization with
fairing which is also the basic approximation choice adopted in [23, 15]. More precisely, in [23]
local tensor-product functions on suitable subdomains are used via repeated knot insertion,
while in [15] the THB-spline model is exploited. Interpolation and least square approximation
of gridded data with hierarchical splines was also proposed in [10] by taking advantage of the
local tensor-product structure of any overlay of the hierarchical spline surface [9]. Note that
in the multilevel approach to hierarchical B-splines followed by [9, 10, 13] the use of this kind
of global scheme on any refinement level is motivated by the natural assumption of a limited
number of degrees of freedom on a single level. When a hierarchical B-spline basis is con-
structed over the whole domain instead, the solution of the approximation problem is directly
computed in the corresponding hierarchical spline space [11, 16]. An adaptive extension of lo-
cal approximation to hierarchical splines, as the two-stage method here proposed, is then the
suitable choice in this case. Partial results related to multilevel B-spline quasi-interpolation
of unstructured data were presented in [19]. This refinement construction, however, defines a
level-by-level correction in the tensor-product B-spline space that necessarily requires suitable
data distributions. Consequently, general scattered data configurations with varying density
cannot be covered with this approach. Approximation of large terrain data sets with locally
refined B-splines was recently addressed [24].

3 THB-splines and hierarchical quasi–interpolation

In this section we briefly introduce hierarchical B-spline spaces and summarize the construc-
tion of their truncated basis, which can be conveniently used for the definition of effective
hierarchical spline quasi-interpolation operators.
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Let
V 0 ⊂ V 1 ⊂ . . . ⊂ V M−1 and

{
B0
d,B1

d, . . . ,BM−1
d

}
be a sequence of nested r-variate tensor-product spline spaces V ` defined on a hyper-rectangle
Ω ⊂ IRr and a sequence of corresponding B-spline bases B`

d of degree d := (d1, . . . , dr), for
` = 0, . . . ,M − 1. In the following we indicate as G` the tensor-product grid associated to V `

and as Γ`
d the set of multi–indices with r components such that

B`
d :=

{
B`

J , J ∈ Γ`
d

}
.

We also consider a nested sequence of closed domains

Ω0 ⊇ Ω1 ⊇ . . . ⊇ ΩM ,

where any Ω` ⊂ Ω is defined as a collection of cells belonging to G`, for ` = 0, . . . ,M − 1, and
ΩM = ∅. We define the hierarchical mesh GH as the set of all the active (namely, no further
refined) cells belonging to Ω`, for each level ` = 0, . . . ,M − 1.

The hierarchical B-spline basis is defined by iteratively selecting basis function at different
levels, according to the following construction [16, 29].

Definition 1 The hierarchical B-spline basis Hd(GH) of degree d with respect to the mesh
GH is defined as

Hd(GH) :=
{
B`

J ∈ B`
d : J ∈ A`

d, ` = 0, ...,M − 1
}
,

where
A`

d := {J ∈ Γ`
d : suppB`

J ⊆ Ω` ∧ suppB`
J 6⊆ Ω`+1}

is the active set of multi-indices A`
d ⊆ Γ`

d and suppB`
J denotes the intersection of the support

of B`
J with Ω0.

Hierarchical B-splines form a basis for the multilevel space SH := spanHd(GH) associated
to the hierarchical mesh GH.

Let s ∈ V ` be represented in terms of B–splines of the refined space V `+1 as

s =
∑

J∈Γ`+1
d

σ`+1
J B`+1

J .

The truncation operator trunc`+1 : V ` → V `+1 with respect to level `+ 1 acts on s as follows,

trunc`+1(s) :=
∑

J∈Γ`+1
d : suppB`+1

J 6⊆Ω`+1

σ`+1
J B`+1

J , ` = 0, . . . ,M − 2.

The cumulative truncation operator Trunc`+1 : V ` → SH ⊆ V M−1 with respect to all finer
levels in the hierarchy is then defined as

Trunc`+1(s) := truncM−1(truncM−2(· · · (trunc`+1(s)) · · · )) , ` = 0, . . . ,M − 2.

Truncated hierarchical B-splines (THB-splines) are defined by exploiting the truncation mech-
anism [11].
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Definition 2 The truncated hierarchical B-spline basis Td(GH) of degree d with respect to the
mesh GH is defined as

Td(GH) :=
{
T `
J : J ∈ A`

d, ` = 0, ...,M − 1
}
, with T `

J := Trunc`+1(B`
J) ,

and B`
J is called the mother B-spline of T `

J .

THB-splines define a strongly stable basis for the hierarchical spline space SH with respect
to the supremum norm [12]. This means that there exist two constants not dependent on the
number of hierarchical levels that can be multiplied to the norm of the coefficients associated
to the THB-spline representation of a function f to bound from below and above the norm
of f itself. This is not the case for the classical hierarchical basis of Definition 1 which is
only weakly stable (the associated stability constants have at most a polynomial growth in
the number of hierarchical levels) [17].

In addition, THB-splines form a convex partition of unity and preserve the coefficients of
their mother functions (they preserve the coefficients of functions represented with respect to
one of the bases B`

d) [12]. This last property is indicated as preservation of coefficients and
enables the construction of quasi-interpolation operators in hierarchical spline spaces that
do not require additional computations [27]. Let us clarify this important property. We
denote by V a tensor–product spline space of degree d defined on Ω0 and generated by a
B-spline basis Bd := {BJ , J ∈ Γd} defined over a certain grid G. Let Q : S(Ω0) → V be a
quasi–interpolation operator of the form

Q(f) :=
∑
J∈Γd

λJ(f)BJ , (1)

for a suitable space S. Each functional λJ : S(Ω0) → IR is locally defined and can be of
discrete or continuous type. Thus, if Q`(f) denotes the instance of Q when V = V ` and λ`J
the related functionals for ` = 0, . . . ,M − 1, in virtue of the preservation of coefficients, the
hierarchical quasi-interpolant QH : S(Ω0)→ SH is simply defined as

QH(f) :=
M−1∑
`=0

∑
J∈A`

d

λ`J(f)T `
J . (2)

Note that QH has the capability of reproducing polynomials of degree d, whenever Q has
this property. Under mild restrictions on the domain hierarchy, it is also possible to con-
struct operators QH which are projectors onto the hierarchical spline space [27]. Adaptive
approximations by different discrete THB-splines quasi-interpolation schemes were recently
introduced in the literature [2, 26, 27], by starting from information on f (and its derivatives
in the case of Hermite spline operators) available on a set of gridded points.

The suitable treatment of a scattered data set,

F = {(Xi, fi), i = 1, ..., n, Xi ∈ Ω,with Xi 6= Xj if i 6= j}, (3)

requires the design of adaptive schemes able to locally tailor the nature of the fitting method
according to the available number of local scattered data points. In order to deal with data
of non-trivial complexity, flexible adaptive tools that generate compact representations need
to be developed. This requires a versatile definition of local (data dependent) approximations
and a low cost construction of the global approximation. We address these issues by: 1)
computing local polynomial approximations for defining the operator Q in (1); 2) extending
them to adaptive spline spaces via hierarchical quasi-interpolation. The next two sections
detail points 1) and 2).
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4 Data-dependent local polynomial least squares ap-

proximation

In this section we introduce the algorithm for the definition of the quasi-interpolant Q in (1)
by computing the value of any functional λJ(f), J ∈ Γd, associated to the B-spline BJ for a
certain scattered data set F of the form (3).

We look for a suitable local approximation in the space ΠJ of local r-variate polynomial
of total degree dJ ≤ d, with

d := min
h=1,...,r

dh.

For the representation of this local polynomial, we consider the standard (local) power basis
suitably translated and scaled in order to map the support of BJ into the hyper-rectangle
[0, 1]r. Obviously, this approximation needs to be successively converted in the local spline
space VJ of degree d associated with the grid G ∩ supp(BJ) in order to set λJ(f) equal to its
J–th coefficient in the local B–spline basis. By following [7], the polynomial is obtained by
least squares approximation of a suitable local subset of data

FJ ⊂ F,

initially defined as the set of data (Xi, fi) ∈ F with Xi belonging to the ball of radius ρJ equal
to the halved diameter of the support of BJ and with the same center. If FJ is empty, we
enlarge this local subset of data by iteratively replacing ρJ with kρJ , k ∈ IN, with 1 < k ≤ KJ ,
where KJ denotes a positive integer upper bound given in input.1 Once FJ is fixed, we
initialize dJ = d and check if the minimal singular value of the collocation matrix associated
with the considered local least squares problem is greater or equal than a prescribed threshold
σ, with 0 < σ ≤ 1. If this is not the case, dj is decreased by one. Note that, at least when dJ
becomes zero, the minimal singular value is surely greater or equal to σ, since σ ≤ 1 and the
coefficient matrix reduces to a column vector with all unit entries. The use of the threshold
σ not only guarantees that the local least squares approximation has a unique solution, but
it also ensures that the quality of the polynomial of degree dJ is comparable with the one of
the local best approximation in the same degree polynomial space [3].

For facilitating the comprehension of Algorithm 1, which details the procedure described
above, we report in the two following lists the considered notation.

Input parameters

• F : full set of n scattered data points, defined as in (3);

• G: tensor-product mesh associated with the considered global spline space V ;

• σ (≤ 1): positive threshold prescribing a lower bound for the minimal singular value
(MSV) of the local least squares matrix;

• KJ (≥ 1): integer upper bound which controls the maximum size of the local data
sample used to construct the local least squares polynomial approximation.

1The upper bound KJ for k could cause a failure of the algorithm for some J if the data have a very
highly varying density and the mesh G is not suitably chosen. In this case, a better choice of G is suggested.
However, this upper bound is reasonable, since we look for a local approximation.
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Further notation used in Algorithm 1

• FJ : local set of scattered data points;

• IJ : local set of indices between 1 and n such that FJ = {(Xi, fi) ∈ F : i ∈ IJ};

• |FJ |: cardinality of FJ ;

• dJ : total polynomial degree;

• ΠJ : local r–variate polynomial space of total degree dJ ;

• |ΠJ |: dimension of ΠJ ;

• PJ : local power basis of ΠJ ;

• AJ : local least squares matrix collocating PJ at the vertices of FJ ;

• MSV(AJ): minimal singular value of AJ ;

• VJ : local spline space spanned by the B-splines BI , I ∈ Γd, whose support intersects
supp(BJ).

Finally, the short notation λJ replaces λJ(f) to denote the J–th functional in the remaining
part of the paper.

Algorithm 1

Input:

• F ,G ,d = (d1, . . . , dr) , J ∈ Γd, σ ≤ 1, KJ ≥ 1;

1. set d := min
h=1,...,r

dh;

2. initialize dJ = d and correspondingly ΠJ and PJ ;

3. set ρJ := (diam(suppBJ))/2;

4. set CJ equal to the center of suppBJ ;

5. initialize IJ =
{

1 ≤ i ≤ n : ‖Xi − CJ‖ ≤ ρJ

}
and consequently FJ ;

6. initialize k = 2;

7. while |FJ | = 0 and k ≤ KJ

(a) update IJ =
{
i : ‖Xi − CJ‖ ≤ k ρJ

}
and consequently FJ ;

(b) increase k by one;

8. if |FJ | = 0 and k > KJ FAILURE

9. compute the matrix AJ = [p(Xi)]p∈PJ ,i∈IJ ;
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10. if |FJ | < |ΠJ | or MSV(AJ) < σ then

(a) decrease dJ by 1 and update ΠJ and PJ ;

(b) update the matrix AJ = [p(Xi)]p∈PJ ,i∈IJ ;

11. compute the least squares approximation pJ ∈ ΠJ of the data in FJ ;

12. represent pJ as a function of the local spline space VJ , pJ =
∑

BI∈VJ

αIBI ;

13. set λJ = αJ .

Output:

• the coefficient λJ .

We should mention that the possibility of using directly VJ for determining a local spline
approximation instead of a polynomial one has been discarded since not feasible in general.
The motivation is that VJ is a suitable choice only if the projection into Ω of FJ is not
larger than the support of BJ . In this case, step 7 of the algorithm should be removed and
a FAILURE of the algorithm is more likely. As confirmed by the numerical experiments,
for data sets with highly varying density, this can compromise the benefit of the hierarchical
formulation in (2) of Q, since very few levels and relatively coarse meshes can be used. On
the other hand, the choice of a polynomial space ΠJ with an adaptively selected total degree
dJ ≤ d, together with step 7 when a suitable KJ is considered, guarantees the success of the
hierarchical implementation described in the next section (under the mild requirement of a
suitable choice of G0 — see also Remarks 1 and 2 below). Note that the numerical tests have
also confirmed that for some real world data sets, replacing in the algorithm tensor-product
polynomial spaces to total degree ones can produce artifacts. Since it would also be more
expensive, we consider only polynomial spaces of total degree.

5 Adaptive scattered data quasi-interpolation

If the subdomain hierarchy is given, the quasi–interpolation operator Q introduced in the
previous section and based on Algorithm 1 can be easily extended to a hierarchical spline
space using the definition in (2). However, in order to get an effective and fully automatic
approximation scheme able to control the maximum approximation error at the data points,
while reducing the number of degrees of freedom, a strategy for adaptively defining M and
GH is necessary. This is the goal of Algorithm 2 below which successively modifies the number
of levels and the hierarchical mesh by comparing the current values of the errors with a given
suitable positive tolerance ε. Whenever GH is updated, the quasi–interpolant QH(f) needs
to be updated. Algorithm 1 is then called for the computation of each new functional λ`J
with ` varying between 1 and the current number of levels. If G0 is suitably chosen and the
maximum number of levels Mmax is sufficiently high, the algorithm fails only if a too small
tolerance ε is given in input. Before presenting the algorithm, we need to introduce some
further notation,
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• ρ`J := diam(suppB`
J)/2, for J ∈ Γ`

d, ` = 0, ...,M − 1;

• δ` := maxJ∈Γ`
d
ρ`J , for ` = 0, ...,M − 1.

In order to simplify the notation, we extend the two previous definitions also to ` = −1,
by simply considering a B-spline set B−1

d := {B−1
J , J ∈ Γ−1

d } defined on an auxiliary tensor-
product mesh whose size is two times the size of G0 and having at least (d1 + 1) · · · (dr + 1)
elements.

In order to define the refined hierarchical mesh in the algorithm, we use a refinement by
functions: for each data point where the tolerance is not satisfied, we select all the B-splines
B`

J such that T `
J ∈ Td(GH) and whose support contains the data point. Then, we subdivide

all the active cells (that belong to GH) of the supports of the selected functions (see Figure 1).
Note that refining the supports, by Definitions 1 and 2, implies that we are always replacing
some functions in the THB-splines basis Td(GH) with more functions on a finer level. In
other words, this approach guarantees to add degrees of freedom in the areas where we need
a further error reduction.

(a) (b) (c)

Figure 1: Example of refinement with d = (2, 2): for each data point that does not satisfy
the given tolerance (e.g. the red point in (a)), we mark the union of the B-spline supports
which contain it (highlighted in (b)), and then subdivide the related cells (c).

Algorithm 2

Input:

• F ,G0 ,d = (d1, . . . , dr) ;

• maximum number of levels Mmax ≥ 2 and tolerance ε > 0 for adaptive refinement;

• positive threshold σ ≤ 1 governing the degree selection for each local polynomial
approximation.

1. set GH = G0, SH = V 0 and M = 1;

2. for each J ∈ Γ0
d, compute λ0

J with Algorithm 1 using as input F, G = G0, d , J ∈ Γ0
d, σ

and

KJ :=

(⌈
2 δ−1

ρ0
J

⌉
+ 1

)
;
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3. if for some λ0
J Algorithm 1 ends with a FAILURE, end with a FAILURE;

4. compute the errors
ei := |QH(f)(Xi)− fi|, i = 1, ..., n;

5. while maxi=1,...,n ei > ε and M ≤Mmax

(a) for i = 1, ..., n, if ei > ε, mark the functions B`
J , J ∈ A`

d , ` = 0, . . . ,M − 1 such
that Xi ∈ suppB`

J ;

(b) define the new mesh GH and the corresponding space SH by performing dyadic
refinement of the cells belonging to the support of the marked functions;

(c) if GH includes cells belonging to GM+1, increase M by one;

(d) if M > Mmax, FAILURE;

(e) for ` = 0, ...,M − 1 and for each new J ∈ A`
d, compute λ`J with Algorithm 1 using

as input F, G = G`, d , J ∈ A`
d, σ and

KJ :=

(⌈
2δ`−1

ρ`J

⌉
+ 1

)
;

(f) update the errors

ei := |QH(f)(Xi)− fi|, i = 1, ..., n.

Output:

• M ≤Mmax and the hierarchical mesh GH;

• all the coefficients λ`J , J ∈ A`
d, ` = 0, . . . ,M−1 of the hierarchical quasi-interpolant

QH(f).

The second possible FAILURE of the algorithm in step 5(d) could sometimes be removed
by simply increasing Mmax. However it could also persist if ε is too small (but clearly this
tolerance can not be arbitrarily small). The following two remarks discuss two important
aspects of the algorithm. Remark 1 focuses on the first possible FAILURE of the algorithm
and on how it is possible to avoid it. Remark 2 explains why, if step 2 is overcome, then in
the “while” cycle the required new functionals can always be computed.

Remark 1 Because of the initialization of KJ in step 2, we cannot guarantee, in general,
that it is possible to compute all the coefficients λ0

J in this step. This motivates step 3 of the
algorithm. This initial FAILURE could be avoided by initializing KJ with a sufficiently high
integer value. However, this is not the right solution, since this would require to consider data
(Xi, fi) with Xi quite far from the supports of the THB-splines. Our experiments confirm that
this can significantly worsen (and sometimes also ruin) the accuracy of the quasi-interpolant.
In order to avoid this problem, we suggest a more careful choice of G0, which takes into account
the chosen degree as well as the data distribution.
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Remark 2 The choice of KJ addresses several issues. First, it was designed to keep it strictly
related to the size of the mesh of the level ` of the considered T `

J . In fact, as mentioned in the
previous remark, our tests suggests that considering data points too far from the supports of
the THB-splines often worsen the accuracy of the quasi-interpolant. Moreover, our setting in
step 5(e) guarantees that, at each “while” cycle we have locally enough data points to compute
the coefficients associated with the new active T `

J . First, consider that the new active THB-
splines are of levels ` > 0. Note then that for the computation of the new λ`J , ` > 0, we look for
data points at most in a ball which includes the supports of the marked functions intersecting
the support of B`

J . Since by Step 4(a) the support of the previously marked functions contains
at least one data point, this guarantees that we have locally at least one data point to compute
λ`J (see Figure 2).

(a) (b)

(c) (d)

Figure 2: For d = (2, 2), the support of a B-spline B`
J to be refined is highlighted in (a) while

the circle and the points used to determine λ`J are shown (red) in (b). The support of a new
B–spline B`+1

I intersecting the support of B`
J is highlighted in (c) and, according to step 5(e)

of Algorithm 2 and to step 7 of Algorithm 1, the related circle and points used to determine
λ`+1
I are shown in (d).

6 Numerical results

In this section we present the results obtained by applying the hierarchical approximation
algorithm to different types of data, including comparisons with other spline approximation
methods, when available.

For the tests presented in Examples 1-4, we always use d = (2, 2). If not stated otherwise,
we always choose Mmax sufficiently large to be able to meet the given tolerance ε, which is
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specified in the corresponding tables (Tables 1,3,5,6).
In the following tests, we report the number of degrees of freedom (NDOF) and the two

errors

emax := max
1≤i≤n

ei, eRMS :=

√√√√ 1

n

n∑
i=1

e2
i .

In all the cases, the results show that the algorithm succeeds at providing accurate approxi-
mations of the data satisfying the given tolerance on the maximum error. In Examples 1-2, we
also showed that the method favourably compares with respect to previous two-stage meth-
ods that consider spline spaces over uniform triangulations. In particular, with our adaptive
scheme we get essentially the same maximum error with significantly less degrees of freedom.
We note that the eRMS is instead slightly higher, which is probably natural since the refine-
ment in Algorithm 2 is completely driven by a control based only on the maximum error
emax.

Example 1 In the first example we approximate the black forest elevation data set (15885
points) already used for testing scattered data approximation methods in [7] and [5], where
two-stage methods with splines over uniform triangulations were considered. This is a case of
scattered data with highly varying density, as evident from Figure 3(a). Figure 3(b) clearly
shows the adaptive nature of our method, which produces a very refined mesh in the areas of
the domain where the data density is high and it is harder to get the required accuracy (they
correspond to mountain regions, as it can be seen in Figures 4(a)-(c)). In Table 1, we report
the step-by-step results obtained with our method.

In Table 2 we compare the performance with two approximants on scattered data defined
in spline spaces over triangulations: the first, denoted by P , is obtained in [7] by extending
local polynomial approximation, while the second, denoted by HMQ is constructed in [5] by
using local hybrid polynomial/radial basis approximations.

M elements of GM−1 NDOF emax eRMS

1 32× 32 1156 2.680e+02 6.839e+01
2 64× 64 4058 1.803e+02 3.630e+01
3 128× 128 12705 7.165e+01 1.240e+01
4 256× 256 20564 5.349e+01 8.855e+00
5 512× 512 22759 3.438e+01 8.637e+00
6 1024× 1024 23092 2.979e+01 8.620e+00

Table 1: Numerical results for Example 1 (black forest data set) with tolerance ε = 30.0 and
σ = 5 · 10−2.

method NDOF emax eRMS

QH 23092 2.979e+01 8.620e+00
P 91526 3.060e+01 3.270e+00

HMQ 91526 3.200e+01 2.170e+00

Table 2: Comparison of the performances of QH with the scattered data approximants P and
HMQ, constructed in [7] and [5], respectively, for Example 1.
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(a) (b)

Figure 3: The data points of Example 1 (a) and the hierarchical mesh generated by our
approximation algorithm (b).

Example 2 We consider the glacier data set (8345 points) used for testing scattered data
approximation methods in [7] and [5]. We here deal with a quite different type of scattered
data, namely contour track data, where the data comes from the sampling along curves of
equal elevation, see Figure 6(b). Since in this case the approximation algorithm produces
a surface which, while well approximating the data, shows some unwanted oscillations, we
consider a slightly different version of the scheme. In particular, we decrease the degree of
the local approximations also if their evaluation at the vertices of a suitable local grid returns
values too far from the range of the scattered data locally considered. Moreover, this is a
case where the data points do not cover a rectangular domain: as evident from Figure 6(b),
there are two areas (bottom left and top right corners) without any data points. We then
consider a domain obtained by removing two small areas from the corners of the smallest
rectangle containing all the data points, see Figure 5. The approximation algorithm is then
applied by simply considering as V `, ` = 0, ...,M −1 the spline spaces defined on the rectangle
containing the domain, and then discarding the B-spline functions whose support does not
intersect the domain. Consequently, the hierarchical mesh in Figure 5 shows the mesh limited
to the domain. In Table 3 and Table 4, we report the step-by-step results of the test and the
comparison with the two approximants on scattered data defined in spline spaces over uniform
triangulations, P and HMQ, provided in [7] and [5], respectively.

M elements of GM−1 NDOF emax eRMS

1 16× 16 309 5.784e+01 1.313e+01
2 32× 32 1002 3.436e+01 6.381e+00
3 64× 64 2113 2.217e+01 4.174e+00
4 128× 128 2626 1.647e+01 3.949e+00
5 256× 256 2736 1.583e+01 3.934e+00

Table 3: Numerical results for Example 2 (glacier data set), with tolerance ε = 16.0 and
σ = 2 · 10−1.
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(a)

(b) (c)

Figure 4: The resulting surface approximating the data set of Example 1 (a); (c) is a zoom
of the surface in (a), with the original data represented as black dots, corresponding to the
area highlighted in (b).

method NDOF emax eRMS

QH 2736 1.583e+01 3.934e+00
P 7254 1.870e+01 2.780e+00

HMQ 7254 1.560e+01 2.260e+00

Table 4: Comparison of the performances of QH with the scattered data approximants P and
HMQ, constructed in [7] and [5], respectively, for Example 2.

Example 3 We consider a subset of the Rotterdam harbour data set used in [7] and [5]. More
precisely, we select the data whose location is inside an L-shaped domain, to give a further
example of application of the algorithm to non-rectangular domains. In this case the data
are affected by noise and by the presence of several outliers. In order to clean the data, we
performed a preliminary step, as suggested in [7]. First, we ran our approximation method
on the data set using Mmax = 6 and tolerance ε = 6 · 10−2. Then, we removed from the data
set all the points where the error of the approximation exceeds eRMS. The resulting data set
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Figure 5: The hierarchical mesh generated by our approximation algorithm for Example 2.

(12250 points) is shown in Figure 7(a). Table 5 presents the results obtained at the different
refinement steps and Figure 8 shows the hierarchical spline surface that approximates the given
data.

M elements of GM−1 NDOF emax eRMS

1 8× 8 91 7.742e-01 1.631e-01
2 16× 16 278 5.054e-01 1.031e-01
3 32× 32 941 5.258e-01 6.677e-02
4 64× 64 3451 3.992e-01 4.326e-02
5 128× 128 11247 3.607e-01 2.867e-02
6 256× 256 17018 1.614e-01 2.498e-02
7 512× 512 18095 9.574e-02 2.469e-02
8 1024× 1024 18218 6.994e-02 2.465e-02

Table 5: Numerical results of Example 3 (Rotterdam harbour data set), with tolerance ε =
7 · 10−2 and σ = 5 · 10−2.

Example 4 We present this test to assess the behaviour of our method also on gridded data.
We consider a set of 129 × 129 elevation data of a mountain region of the Hawaii Islands
(available at [28]). In Table 6 we report the step-by-step results of the test, while Figure 9
shows the hierarchical mesh obtained with the adaptive scheme. The original data surface is
illustrated in Figure 10 together with the hierarchical spline approximation and the correspond-
ing contour plots. Note that for exact gridded data sets other quasi-interpolation operators
may be more effective.
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(a)

(b) (c)

Figure 6: The resulting surface approximating the data set of Example 2 (a); (b) and (c) are
the original contour track data and the contour plot of the approximating surface, respectively.

M elements of GM−1 NDOF emax eRMS

1 64× 64 4356 1.415e+02 1.051e+01
2 128× 128 16065 7.869e+01 6.109e+00
3 256× 256 36933 5.262e+01 4.400e+00
4 512× 512 59706 1.000e+01 2.875e+00

Table 6: Numerical results for Example 4 (Hawaii data set), with tolerance ε = 10.0 and
σ = 10−4.

The adaptive nature of Algorithm 1 is outlined in Table 7 where the information concerning
the degrees of local polynomials for Examples 1–4 based on biquadratic splines is reported.
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(a) (b)

Figure 7: The data points of Example 3 (a) and the hierarchical mesh generated by our
approximation algorithm (b).

Figure 8: The resulting surface approximating the data set of Example 3.

NDOF degree 0 degree 1 degree 2

example 1 23092 12.186% 24.043% 63.771%
example 2 2736 18.469% 22.348% 59.183%
example 3 18218 23.234% 29.793% 46.973%
example 4 59706 47.459% 35.413% 17.127%

Table 7: Percentage of polynomials of degrees 0, 1, 2 computed with Algorithm 1 for Examples
1-4.

In these experiments, biquadratic splines proved to be the best compromise between the
need to keep the approximation local and the possibility of considering polynomials of a
suitable (high) degree.
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Figure 9: Hierarchical mesh generated by our approximation algorithm in Example 4.

Example 5 In the last example, the set F defined in (3) is obtained by sampling the peak
function f(x, y) = 2/ (3 exp((10x− 3)2 + (10 y + 3)2)) for (x, y) ∈ [−1, 1]2 on the set of 16000
scattered data locations shown in Figure 11 (left). When considering σ = 10−6, ε = 2 · 10−3,
Mmax = 7, and an initial uniform mesh with 15 × 15 elements, with d = (2, 2) the scheme
does not meet the given tolerance ε. This problem is resolved by considering d = (4, 4) which
allows us to obtain the final approximation with 2390 degrees of freedom distributed on four
levels. Polynomials of degree 4 are always selected in this case. The corresponding hierarchical
mesh is shown in Figure 11 (right). Clearly, the situation can remarkably vary according to
the initialization of the input parameters.

Remark 3 Both the theoretical framework of (truncated) hierarchical B-splines and the cor-
responding algorithms here presented are not restricted to uniform knot configurations but also
cover the case of arbitrary knot distributions. Since the adaptive nature of the mesh is already
realized with the hierarchical construction, the common practice working with (T)HB-splines
relies on starting with a uniform tensor-product grid, for then successively identifying the dif-
ferent levels of resolution via dyadic refinement. Nevertheless, it is possible to start with a
non-uniform initial grid and refine every marked cell by performing an arbitrary splitting into
subcells. Obviously, the resulting implementation can become unnecessarily complicated, also
due to the arbitrary choice of the splitting. As a compromise, we consider a test where we
start with a non-uniform mesh for then performing dyadic refinement. Figure 12 (b) shows
the mesh obtained with d = (2, 2) for the data set considered in Example 5 starting with the
non-uniform mesh with 15 × 15 elements reported on Figure 12 (a). In this case, by cons-
dering σ = 10−6 and ε = 5 · 10−2, the tolerance ε is met in two levels with 370 degrees of
freedom. Repeating the same experiment starting with a uniform mesh with the same number
of elements, we need three levels and 553 degrees of freedom.

7 Conclusion

An adaptive scattered data fitting scheme based on hierarchical spline spaces has been intro-
duced by defining a quasi-interpolant whose coefficients are obtained from local polynomial

18



(a) (b)

(c) (d)

Figure 10: The original data surface of Example 4 (a) and the hierarchical spline approxi-
mation (b). The contour plots of the original data (c) and of our approximation (d) are also
shown.

approximations of the data. To this aim, local least squares polynomial approximations of
variable degree are suitably combined with hierarchical quasi-interpolation. By exploiting
the characterization of THB-spline constructions, the coefficients obtained as solution of the
local problems can be used to define the global spline approximation without the need of
additional computations. The resulting scheme has been validated on several scattered data
sets of different nature including structured data, data with highly varying density, data with
holes, and also configurations along contour lines. The results confirm that high quality ap-
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(a) (b)

Figure 11: The data point (a) and the hierarchical mesh (b) generated by our approximation
algorithm in Example 5 for d = (4, 4).

(a) (b)

Figure 12: Initial non-uniform mesh (a) and hierarchical mesh on two levels (b) in Remark 3.

proximations can be directly computed via compact hierarchical representations which need
a reduced number of degrees of freedom compared to previous two-stage methods.
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maker, editors, Surface Fitting and Multiresolution Methods, pages 163–172. Vanderbilt
University Press, Nashville, TN, 1997.

[14] Ø. Hjelle and M. Dæhlen. Multilevel least squares approximation of scattered data over
binary triangulations. Computing and Visualization in Science, 8(2):83–91, 2005.
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