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Abstract

The identification of the relative position of two real coplanar ellipses can be
reduced to the identification of the nature of the singular conics in the pencil they
define and, in general, their location with respect to these singular conics in the
pencil. This latter problem reduces to find the relative location of the roots of
univariate polynomials. Since it is usually desired that all generated expression
are algebraic to simplify further analysis, including the case in which the ellipses
undergone temporal variations, all recent methods available in the literature rely
mathematical tools such as Sturm-Habicht sequences or subresultant sequences.
This paper presents an alternative based on more elementary tools which results
in a binary decision tree to classify the relative location of two ellipses in 12
different classes. The decision at each node is taken based on the sign of a set
of algebraic/rational expressions on the ellipses coefficients, the most complex
of them being third and second order polynomial discriminants.

Keywords: Ellipses, pencils of conics, interference detection, positional
relationships.

1. Introduction

The problem of identifying the relative position of two ellipses arises in
widely disparate fields that include, for example, robotics, computer vision,
CAD/CAM, and computer animation. For example, ellipses are used in these
fields to model (or enclose) the shape of planar objects [2] or planar uncertainty
regions [3], or even to characterize the singularities of some robots [4].
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The positional relationship considered in this paper is the following: two
pairs of realellipses have the same relative position if, and only if, they have
the same type of intersection set in the complex projective plane, and the same
nested-inside or disjoint-inside relationship, if any of the two applies. This
gives the different positional relationships appearing in Fig. 1. Thus, the first
step towards the classification of the relative position of two non-coincident real
ellipses in the real affine plane is based on the analysis of their intersections
in the complex projective plane, either real or imaginary (complex non-real).
Relying on Levy’s projective classification [5, Ch. IV, Sec. 11] of pencils of
planar conics, we have the following nine possible intersection sets:

I : four simple intersection points:

a : all imaginary;

b : two real and two imaginary;

c : all real;

II : one double intersection point and two simple intersection points:

a : the two simple points are imaginary;

b : the two simple points are real;

III : two double intersection points:

a : all imaginary;

b : all real;

IV : one triple and one simple intersection point, which are all real;

V : one quadruple intersection point, which is real.

Hence, the positional classification addressed here is a refinement of the
real projective classification of pencils of conics, since the nested or disjoint
inside relationship is also taken into account (this is clear from Table 1). The
classification above, together with a procedure to detect when one ellipse is
completely inside the other, is enough to unequivocally identify the positional
relationships appearing in Fig.1, if we exclude the case in which both ellipses are
coincident (type 0). Thus, the problem can essentially be reduced to compute
the roots of the system formed by the two ellipse equations, which can be reduced
in turn to compute the roots of a quartic [6]. Although Ferrari’s formulas
permit computing these roots, as it is done in [7], they are so complicated
so as to motivate the search for alternative approaches that avoid the explicit
computation of the intersection points. It is important to observe that, even if
the intersection points are needed, a preprocessing step to identify the positional
relationship is important to simplify their computation [7].

In most applications, it is not necessary to identify the twelve types in Fig. 1
but a subset of them. Some of these types can readily identified by using some
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classical tests. Well-known tests exist to decide, for example, if two ellipses
are in contact, have a double tangency, or have an osculating contact. They
can already be found in the eighteenth chapter of Salmon’s Treatise on Conic

Sections, whose first edition dates back to 1848 [8], or in a more accessible
language in the fifteenth chapter of Casey’s treatise on analytic geometry [9].
They are algebraic conditions on the ellipses’ coefficients. It is clear that some of
the types in Fig. 1 can readily be identified using these tests, but others cannot
be discerned.

Two ellipses with solution set IIIa (with repeated imaginary points) are pro-
jectively equal to concentric circles. Identifying this situation has important
applications in computer vision [10, 11]. The standard approach in the iden-
tification of this situation consists in finding if both ellipses have a common
self-polar triangle. The use of self-polar triangles to identify the relative posi-
tion of two ellipses is a standard technique [12, pp.96-100], but unfortunately it
reduces to compute the roots of cubics, something that we want to avoid.

A recurring idea to solve the problem in all its generality, without having
to explicitly compute the intersection points, consists in transforming the two
ellipses, using an affine map, to a circle centered at the origin and an axis-aligned
ellipse. Since the spatial relationship between two ellipses remains invariant to
affine transformations, the problem is thus greatly simplified. It actually can be
reduced, as explained in [13], to compute the extreme points on the axis-aligned
ellipse that are closest and farthest from the origin, and the outward normals
at these points.

A more insightful approach consists in analyzing the pencil of conics gener-
ated by the two ellipses. A survey on the obtained results using this approach
can be found in [14]. The origin of this approach can be traced back to the
development of the aforementioned classic tests [8]. The system of conics which
passes through a fixed set of four points (no three collinear) is called a pencil of

conics (remember that an ellipse is completely determined by five points). The
four common points — i.e., the intersection points between both ellipses, either
real or imaginary— are called the base points of the pencil. An important result
is that the pencil generated by two conics contains three degenerate conics con-
sisting of real or imaginary pairs of lines and, what is even more important in
our case, that it is possible to decide the nature of these degenerate conics for
the nine types of solution sets enumerated above [5, p. 257]. The result is sum-
marized in Table 1. In the first column we have the eleven possible positional
relationships; the second contains the number and multiplicity of the real base
points; the third, the kind of intersection set for both ellipses; and the fourth,
the kind of degenerate conics in the corresponding pencil. Observe that the set
of degenerate conics unequivocally identifies the kind of intersection set.

It is possible to combine the above two approaches. That is, it is possible to
apply first an affine transformation to reduce the problem to that of computing
the spatial relationship between a circle and an axis-aligned ellipse, and then
analyze the pencil of conics they define. This is the approach followed in [17, 18].

A further refinement in the approach based on the analysis of the pencil con-
sists in using Sturm-Habicht sequences, as explained in [19], where ten positional
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relationships which do not exactly match those in Fig. 1 are considered (for ex-
ample, the osculating and hyperosculating contact are considered as a single
case). One important feature of this approach is that it permits the manipula-
tion of the derived formulae for the cases where the considered ellipses depend
on one parameter. More recently, a complete systematization of the problem is
finally provided in [15], where it is also generalized to find the relative position
of two arbitrary real conics, not necessary ellipses. The approach is based on
the characterization of the orbits of pencils of conics using classical invariant
theory, and the characterization of the rigid isotropy class for each orbit. This
requires the use of Descartes’ law of signs and subresultant sequences. Building
upon these results, the invariant theory of pencils of conics is further explored
in [16] to show that some of the conditions obtained in [15] have unnecessary
high degrees.

In this paper, we continue exploring the properties of the pencil of conics
defined by two ellipses to come up with new algebraic conditions to decide the
nature of the three degenerate conics it contains. In particular, we show how
this problem reduces to study the nature of the roots of a cubic polynomial
and how they are distributed with respect to the roots of two quadratics. The
important point is to perform these operations without explicitly computing the
roots of the cubic, otherwise the complexity of the approach would be equivalent
to that of computing the intersection points of both ellipses. As a by product,
we give an updated view of the classical tests providing, at the same time,
some improvements in their formulation based on a recent reformulation of the
discriminant of a cubic [20].

This paper is organized as follows. Section 2 summarizes the basic concepts
and notations concerning conics and pencils of conics. Section 3 shows how to
identify the root pattern of the characteristic polynomial of the pencil defined
by two ellipses. Section 4 shows how to classify the elements of the pencil, and
Section 5 discusses some properties of the pencils containing nested or disjoint
ellipses. Then, in Section 6, it is shown that some relative locations between
two ellipses can unambiguously be identified solely based on the studied root
pattern. Nevertheless, a deeper analysis is required to complete the classifica-
tion. To this end, the identification of double lines is discussed in Section 7;
the identification of coincident ellipses, in Section 8; and the identification of
real singular conics, in Section 9. As a result, the simple binary decision tree
to identify the relative position between two ellipses is presented (see Fig. 4).
Section 10 evaluates the computational cost of the presented approach and gives
details on the supplementary downloadable software and the included examples.
Finally, Section 11 summarizes the main results and gives prospects for further
extensions.
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2. Conics and pencils of conics

2.1. Conics

A real projective planar conic C is defined by a homogeneous polynomial
F (x, y, w) of degree 2 with real coefficients of the form:

F (x, y, w) = ax2 + by2 + 2cxy + 2dxw + 2eyw + fw2 = 0, (1)

which can be expressed in matrix form as

pTMCp = 0, (2)

where p = (x y w)T and

MC =





a c d
c b e
d e f



 . (3)

Given C, MC is unique up to a constant non-zero scalar. The inside of C is
the set of points of the projective plane satisfying

det(MC)F (x, y, w) > 0, (4)

which is conserved under projective equivalence and is topologically isomorphic
to an open disk.

The affine type of a real conic can be determined by reducing its equation to a
canonical form, which essentially boils down to diagonalizingMC and computing
the signs of its eigenvalues and of its upper left 2×2 sub-matrix eigenvalues [22,
§7.7]. Nevertheless, for the purpose of this paper, we do not need the full affine
classification of real conics, and we use a characterization (halfway between the
real projective and the real affine classification) based on a minimum set of
semi-algebraic conditions defining the nine types appearing in Fig. 2. To this
end, we define the matrices

NC =

(

a c
c b

)

, OC =

(

a d
d f

)

, and SC =

(

b e
e f

)

. (5)

Then, it can be proved that the considered nine types of conics can be dis-
cerned from the signs of det(MC), det(NC), det(OC)+det(SC), and a, according
to the decision tree depicted in Fig. 2. The deduction of this classification can
be carried out in many different ways, but probably the simplest one, based
on elementary arguments, can be found following the ideas of [23, pp. 80-81]
(being aware that the classification provided in this reference concerning the
degenerate conics is wrong).

2.2. Pencils of conics

Two conics, say C1:p
TMC1

p = 0 and C2:p
TMC2

p = 0, define the pencil of
conics

pT (MC2
+ λMC1

)p = 0, λ ∈ R ∪∞. (6)
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Any two conics in this pencil intersect in the same four points (real or com-
plex) counted with multiplicity.

The values of λ for which a conic of this pencil is singular correspond to
those in which

P (λ) = det(MC2
+ λMC1

) = l3λ
3 + 3l2λ

2 + 3l1λ+ l0 = 0 (7)

where the coefficients li, i = 0, 1, 2, 3, can be expressed as [24, p. 274] [25, p. 191]:

l3 =

∣

∣

∣

∣

∣

∣

a1 c1 d1
c1 b1 e1
d1 e1 f1

∣

∣

∣

∣

∣

∣

= det(MC1
), (8)

3l2 =

∣

∣

∣

∣

∣

∣

a2 c1 d1
c2 b1 e1
d2 e1 f1

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

a1 c2 d1
c1 b2 e1
d1 e2 f1

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

a1 c1 d2
c1 b1 e2
d1 e1 f2

∣

∣

∣

∣

∣

∣

, (9)

3l1 =

∣

∣

∣

∣

∣

∣

a1 c2 d2
c1 b2 e2
d1 e2 f2

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

a2 c1 d2
c2 b1 e2
d2 e1 f2

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

a2 c2 d1
c2 b2 e1
d2 e2 f1

∣

∣

∣

∣

∣

∣

, (10)

l0 =

∣

∣

∣

∣

∣

∣

a2 c2 d2
c2 b2 e2
d2 e2 f2

∣

∣

∣

∣

∣

∣

= det(MC2
). (11)

The above polynomial, P (λ), is known as the characteristic polynomial of
the pencil, and λ, the pencil parameter.

3. The seven possible root patterns for P (λ)

Without loss of generality, we may assume that det(MCi
) ≤ 0, otherwise

MCi
can simply be substituted by −MCi

without modifying Ci, i = 1, 2. Now,
observe that if C1 and C2 are not degenerate conics then l3 < 0 and l0 < 0. As
a consequence,

P (−∞) > 0, P (0) < 0, and P (∞) < 0. (12)

Therefore, P (λ) = 0 will have at least one negative real root.
If λi, 1 ≤ i ≤ 3 denote the three roots of P (λ) = 0, then Vieta’s formulas

read as follows:

λ1λ2λ3 = −
l0
l3

< 0, (13)

λ1 + λ2 + λ3 = −3
l2
l3
, (14)

λ1λ2 + λ1λ3 + λ2λ3 = 3
l1
l3
. (15)

Now, let us assume that the three roots are real and λ1 ≤ λ2 ≤ λ3. Since λ1

is necessarily negative, according to (13) λ2λ3 > 0. As a consequence, λ2 and
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λ3 are both positive or negative. If λ2 and λ3 are negative then, according to
(14), l2 < 0, and according to (15), l1 < 0. A sharper result than the converse
is also true: if λ2 and λ3 are positive then, l2 < 0 or l1 < 0. Indeed, let us
suppose that λ2 > 0, λ3 > 0, and l2 < 0, then, using (14), λ1 ≤ −(λ2+λ3), and
substituting in (15) gives 3 l1

l3
= λ1(λ2 + λ3) + λ2λ3 ≤ −(λ2 + λ3)

2 + λ2λ3 < 0,
that is, l1 > 0. Hence, it is possible to conclude that λ2 and λ3 are positive if,
and only if, l1 > 0 or l2 > 0. Otherwise, l1 < 0 and l2 < 0.

Important information on the roots of P (λ) can also be derived from the
sign of its discriminant, ∆P . This discriminant can be expressed as [20]:

∆P =

∣

∣

∣

∣

2δ1 δ2
δ2 2δ3

∣

∣

∣

∣

(16)

where

δ1 =

∣

∣

∣

∣

l3 l2
l2 l1

∣

∣

∣

∣

, δ2 =

∣

∣

∣

∣

l3 l1
l2 l0

∣

∣

∣

∣

, and δ3 =

∣

∣

∣

∣

l2 l1
l1 l0

∣

∣

∣

∣

. (17)

In [20], it is also proved that P (λ) = 0 has a triple root if, and only if,

δ1 = δ2 = δ3 = 0. (18)

It can be checked that l0δ1 = l1δ2 − l2δ3. Then, since l0 6= 0, the three
conditions in (18) can be reduced to δ2 = δ3 = 0.

The above analysis permits to classify the possible root patterns of P (λ) =
0 as shown in Fig. 3. These root patterns not only give information on the
multiplicity of the singular conics in the pencil, but also valuable information
on the relative position of C1 and C2 as explained next.

Finally, it is important observing that the triple root in root pattern 2 can
be expressed as

λt = −
l2
l3
, (19)

which equals the root of P ′′(λ) = 0, and the double and single roots in roots
patterns 3a, 3b, and 4, as:

λd = −
δ2
2δ1

, (20)

λs = −
l0δ2
l3δ3

, (21)

respectively.

4. Classifying the elements of the pencil

Now, to classify the elements of the pencil, we have to study the sign of:

det(NC2
+ λNC1

). (22)
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To this end, we can define the characteristic polynomial of the pencil of one-
dimensional conics NC2

+ λNC1
:

Q(λ) = det(NC2
+ λNC1

) = m2λ
2 + 2m1λ+m0, (23)

where, as above,

m2 =

∣

∣

∣

∣

a1 c1
c1 b1

∣

∣

∣

∣

= det(NC1
), (24)

2m1 =

∣

∣

∣

∣

a2 c1
c2 b1

∣

∣

∣

∣

+

∣

∣

∣

∣

a1 c2
c1 b2

∣

∣

∣

∣

, (25)

m0 =

∣

∣

∣

∣

a2 c2
c2 b2

∣

∣

∣

∣

= det(NC2
). (26)

Observe that, if C1 and C2 are ellipses then, according to Fig. 2, m2 > 0 and
m0 > 0. As a consequence,

Q(−∞) > 0, Q(0) > 0, and Q(∞) > 0. (27)

Then, (λ,Q(λ)) represents a parabola opening upward.
The discriminant of (23) is given by

∆Q = 4

∣

∣

∣

∣

m1 m0

m2 m1

∣

∣

∣

∣

. (28)

Now observe that ∆Q ≥ 0, otherwise there will be no conic in the pencil inter-
secting the line at infinity and this is impossible because, for each point of the
line at infinity, there is a conic in the pencil passing through it. Therefore, the
roots of Q(λ) = 0, say λq1 and λq2 with λq1 ≤ λq2 , are always real (because
∆Q ≥ 0) with the same sign (because Q(0) > 0).

The limit case ∆Q = 0 occurs if, and only if, the two ellipses intersect the
line at infinity, w = 0, at the same two points (as, for instance, the case of two
circles, no matter what their relative position is), and this condition is equivalent
to having a singular conic in the pencil containing the line at infinity.

Notice that, according to Fig. 2 and the nature of (λ,Q(λ)), a singular conic
of the pencil which is a pair of real (different or coincident) lines must have its
pencil parameter in the closed interval [λq1 , λq2 ], whereas the parameter of a
pair of imaginary lines belongs to (−∞, λq1 ]∪ [λq2 ,+∞). Hence, due to the fact
that λ1 < 0, types 1, 2, 6, 9 and 10, where all singular conics are real, must
fulfill λq1 ≤ λ1 ≤ λ2 ≤ λ3 ≤ λq2 < 0, and the roots of P (λ) = 0 cannot be
arranged as in root pattern 4 nor 6.

5. Characterizing ellipses with nested or disjoint inside

The pencils of conics can be classified up to projective transformations as
in [5, Ch. 4, §11] so that each class of pencils can have a distinguished pencil
as representative. Simple expressions for these representatives can be obtained
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by taking a particular reference frame according to the degenerate conics in
the pencil. This simplifies the study of those pencil characteristics that remain
invariant under projective transformations because they only have to be proved
for the representative of each class. This is the case of the existence of empty real
conics (also named as imaginary ellipses), and the nested or disjoint relationship
between insides. The study of these two characteristics is next carried out for
a representative of the classes of pencils associated with the intersection sets of
type Ia, IIa and IIIa. It is worth to be noticed that the pencils associated with
the intersection sets of type Ia and IIIa are the only ones containing imaginary
ellipses. The representative for each class will be denoted by Cλ = C2 + λC1,
where C1 and C2 have to be properly chosen for each class.

Ia: In this case, the characteristic polynomial can be expressed as:

P (λ) = det(MC2
+ λMC1

) =

(

1 +
λ

2

)(

1−
λ

2

)

. (29)

Hence, the singular conics are a pair of real lines (for λ1 = ∞), and two
pairs of imaginary lines (for λ2 = 2 and for λ3 = −2). All the conics in the
pencil with values for the pencil parameter in the open interval (λ2, λ3)
are imaginary ellipses.

Now, if we take

C1 : F1(x, y, w) = x2 + y2 + w2 + µ1xw = 0

C2 : F2(x, y, w) = x2 + y2 + w2 + µ2xw = 0

as the two ellipses defining the representative of the class, we have that

• {det(MC1
)F1(x, y, w) > 0} ⊆ {det(MC2

)F2(x, y, w) > 0} if, and only
if, either µ1 > µ2 > 2 or µ1 < µ2 < −2.

• {det(MC1
)F1(x, y, w) > 0} ∩ {det(MC2

)F2(x, y, w) > 0} = ∅ if, and
only if, either µ1 > 2 and µ2 < −2, or µ2 > 2 and µ1 < −2.

Summing up, if C1 and C2 are inside one another, then the values µ1

and µ2 for the pencil parameter lie on the same connected component of
{R∪∞}\{λ1, λ2, λ3}. On the contrary, if their interiors are disjoint, these
values for the pencil parameter lie on different connected components.

IIa: In this case, the characteristic polynomial can be expressed as:

P (λ) = −
λ2

4
. (30)

Therefore, the singular conics of the pencil are a pair of real lines (for
λ1 = ∞), and two coincident pairs of imaginary lines (for λ2 = λ3 = 0).
Now, if we take

C1 : F1(x, y, w) = x2 + y2 + µ1xw = 0

C2 : F2(x, y, w) = x2 + y2 + µ2xw = 0

as the two ellipses defining the representative of the class, we have that
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• {det(MC1
)F1(x, y, w) > 0} ⊆ {det(MC2

)F2(x, y, w) > 0} if, and only
if, either µ2 > µ1 > 0 or µ2 < µ1 < 0.

• {det(MC1
)F1(x, y, w) > 0} ∩ {det(MC2

)F2(x, y, w) > 0} = ∅ if, and
only if, either µ1 > 0 and µ2 < 0, or µ1 > 0 and µ2 < 0.

Summing up, as in the preceding case, if C1 and C2 are inside one an-
other, then the values µ1 and µ2 for the pencil parameter lie on the same
connected component of {R ∪∞}\{λ1, λ2, λ3}. On the contrary, if their
interiors are disjoint, they lie on different connected components.

IIIa: In this case, the characteristic polynomial can be expressed as:

P (λ) = λ. (31)

As a consequence, the singular conics are two coincident of double lines
(for λ1 = λ2 = ∞), and a pair of imaginary lines (for λ3 = 0). All the
conics in the pencil with values of the pencil parameter in the interval
(0,+∞) are imaginary ellipses.

Now, if we take

C1 : F1(x, y, w) = x2 + y2 + µ1w
2 = 0

C2 : F2(x, y, w) = x2 + y2 + µ2w
2 = 0

as the two ellipses defining the representative of the class, we have that

• {det(MC1
)F1(x, y, w) > 0} ⊆ {det(MC2

)F2(x, y, w) > 0} if, and only
if, 0 > µ1 > µ2. Hence, if C1 and C2 are inside one another, then the
values µ1 and µ2 for the pencil parameter lie on the same connected
component of {R ∪∞}\{λ1, λ2, λ3}.

6. Discrimination attained from the root pattern of P (λ)

Observe that the values of the pencil parameter for C1, λ = ∞, and for C2,
λ = 0, lie on different connected components of {R ∪ ∞}\{λ1, λ2, λ3} if, and
only if, the roots of P (λ) = 0 are arranged as in root pattern 4 or 6.

Attending to the number and the nature of the singular conics for each type
of positional relationship, it can be concluded that, if C1 and C2

1. are transversal at four points (type 1), then the roots of P (λ) = 0 are
arranged as in root pattern 5 (since all 3 singular conics are real lines, the
3 different roots λ1, λ2, λ3 are negative, which univocally matches with
root pattern 5);

2. are transversal at two points (type 2), then the roots of P (λ) = 0 are
arranged as in root pattern 1 (a single singular conic of multiplicity one
univocally matches with root pattern 1);
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3. are transversal at two points and tangent at another (type 6), or are
internally tangent a two points (type 9), then the roots of P (λ) = 0 are
arranged either as in pattern 3a or as in pattern 3b (the singular conic
appearing twice has parameter λd and both λd and λs are negative since
the two singular conics are real lines, which univocally matches with root
pattern 3a or 3b);

4. have an osculating (type 10) or hyperosculating (type 11) contact, then
the roots of P (λ) = 0 are arranged as in root pattern 2 (the singular conic
appearing 3 times has parameter λt, which univocally matches with root
pattern 2).

It has been proved in Section 5 that, if C1 and C2 are inside one another,
the values of the pencil parameter λ = ∞ and λ = 0 lie on the same connected
component of {R ∪∞}\{λ1, λ2, λ3}. Then, in this case, only pattern 2, 3a, 3b
or 5, is possible. If, the interiors of C1 and C2 are disjoint, these values for the
pencil parameter lie on different connected components, which means that only
pattern 4, or 6, is possible. Therefore, we conclude that, if C1 and C2

• are separated (type 3), then the roots of P (λ) = 0 are arranged as in root
pattern 6 [1];

• are externally tangent (type 7), then the roots of P (λ) = 0 are arranged
as in root pattern 4;

• are internally tangent at one point (type 8), then the roots of P (λ) = 0
are arranged either as in pattern 3a or as in pattern 3b;

• one contained in the other, then the roots of P (λ) = 0 are arranged either
as in pattern 5 (in case of type 4) or as in patterns 3a or 3b (in case of
type 5).

The above results are summarized in the rightmost column of Table 1. Thus,
it is possible to perform a certain classification of the relative location of two
ellipses attending solely to the root pattern of the characteristic polynomial of
the pencil they define. Unfortunately, this root pattern does not give enough
information to complete the classification, it is also necessary to go deeper into
the nature of the singular and imaginary (if any) conics in the pencil.

7. Conditions for the pencil to contain a double line

According to Fig. 2, if the system of equations

P (λ) = det(MC2
+ λMC1

) = 0
Q(λ) = det(NC2

+ λNC1
) = 0

R(λ) = det(OC2
+ λOC1

) + det(SC2
+ λSC1

) = 0







has a real root for λ, the pencil contains a double line. This necessary and
sufficient condition readily permits to discern between contacts of type 10 and
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type 11, despite they have the same root pattern for P (λ) = 0, because the latter
type contains a double line (repeated three times) in its pencil. Since the triple
root in root pattern 2, according to (19), is λt = −l2/l3, the contact between
the two ellipses is of type 11 if Q(λt) = R(λt) = 0, and type 10, otherwise.

This reasoning also permits to discern between the contacts with root pat-
terns 3a and 3b into the group formed by contacts of type 8 and type 6, and
the group formed by type 9 and type 5, because the contacts in the latter group
contain a double line (appearing twice) in their pencils. In this case, since the
double root in root pattern 3a and 3b is, according to (20), λd = −δ2/2δ1, the
contact between the two ellipses is of type 9 or type 5 if Q(λd) = R(λd) = 0,
and of type 8 or type 6, otherwise.

8. Conditions for coincident ellipses

Despite the case of coincident ellipses could be readily identified at the very
beginning by checking if their matrices are proportional

MC2
= λ0MC1

, λ0 > 0, (32)

we will characterize this circumstance in a different way by adding a single
algebraic condition in our binary decision tree.

For coincident ellipses, according to (32), we have that

P (λ) = det(MC1
)(λ+ λ0)

3 ,
Q(λ) = det(NC1

)(λ+ λ0)
2 ,

R(λ) = (det(OC1
) + det(SC1

)) (λ+ λ0)
2 .

Hence P (λ) has a triple root λt = −λ0, which is also the double root of Q(λ)
and R(λ).

Assuming that the roots of P (λ) follow root pattern 2 and that Q(λt) =
R(λt), then ∆Q = 0 characterizes the case of coincident ellipses. Indeed, if
∆Q = 0, but the ellipses are not coincident, then their relative position must
be of type 11. Then imposing ∆Q = 0 implies, as argued in Section 4, that a
singular conic in the pencil contains the line at infinity, which makes no sense
since the only singular conic in type 11 is a double line tangent to both ellipses
in their hyperosculating contact point.

9. Conditions for the singular conics in the pencil to be real

As pointed out at the end of Section 4, verifying if a singular conic in the
pencil is real reduces to verify that the corresponding root of P (λ) is within the
range defined by the roots of Q(λ). However, special attention must be paid to
the case in which a root of P (λ) is also a root of Q(λ) because, according to Fig.
2, this can happen for both real or imaginary lines, as long as they are parallel.

Throughout this section we will assume that the roots of P (λ) follow root
pattern 5, 3a or 3b, since the types with the other root patterns have already
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been fully characterized. According to Table 1, we have to disambiguate between
type 5 and type 9, between type 6 and type 8, and between type 1 and type 4.
This disambiguation is possible by realizing that the pencils for type 4, type 5
and type 8 contain at least one pair of non-parallel imaginary lines. In other
words, in these cases at least one of the roots of P (λ) makes Q(λ) positive.
Moreover, it is important to realize the following facts about these three types:

F1: In type 8, the pair of imaginary lines is the element of the pencil for
λd, and the imaginary lines intersect in the common tangency point of
the two ellipses, which prevents the imaginary lines from being parallel.
Hence Q(λd) > 0.

F2: In type 5, the pair of imaginary lines is the element of the pencil for λs.
Moreover, the conics for λ ∈ (λs, λd) in case of root pattern 3a, or for
λ ∈ (λd, λs) in case of root pattern 3b, consists exclusively of imaginary
ellipses. Now, since Q(λd) = 0 and Q(0) = 0, it follows that Q(λs) > 0 in
both cases.

F3: In type 4, the two pairs of imaginary lines are the elements of the pencil
either

• for λ1 and λ2 (in this case, the conics for λ ∈ (λ1, λ2) consists ex-
clusively of imaginary ellipses and, as a consequence, Q(λ1) > 0);
or

• for λ2 and λ3 (in this case, the conics for λ ∈ (λ2, λ3) consists exclu-
sively of imaginary ellipses and, as a consequence, Q(λ3) > 0).

From F1 and F2, the disambiguation between type 5 and type 9, and between
type 6 and type 8, becomes trivial because in these cases the roots of P (λ) follow
root pattern 3a or 3b and, according to (20) and (21), we have explicit simple
algebraic expressions for λs and λd.

Disambiguating between type 1 and type 4 can also be performed by verifying
if all singular conics in the pencil are real. Nevertheless, in this case the analysis
is trickier that above. Since these two types follow root pattern 5, all singular
conics in the pencil are real if, and only if, the roots of P (λ), λ1, λ2, and λ3, are
within the range defined by the roots of Q(λ), [λq1 , λq2 ], as depicted in Fig. 5.
Indeed, deserving solely attention the case in which λ1 = λq1 and λ3 = λq2 , the
result follows from F3.

At this point it is important to observe that λ2 ∈ (λq1 , λq2) if, and only if,
[λ1, λ3] ⊂ [λq1 , λq2 ], again due to F3. Thus, we have to simply concentrate our
efforts in verifying if the singular conic in the pencil for λ2 is real.

Now, observe that λ2 is necessarily within the range of the roots of P ′(λ),
(λp1

, λp2
), which is a subrange of (λ1, λ3) (see again Fig. 5). Then, we conclude

that λ2 ∈ (λq1 , λq2) if, and only if, (λp1
, λp2

) ⊂ (λq1 , λq2). To verify this latter
condition, let us consider the intersections of an element of the pencil defined
by P ′(λ) + αQ(λ) = 0 and the abscissa. The two intersections, say x and x∗
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(which coincide with λp1
and λp2

for α = 0, and with λq1 and λq2 for α = ∞),
are the roots of

P ′(λ) + αQ(λ) = (l3 + αm2)λ
2 + 2(l2 + αm1)λ+ (l1 + αm0) = 0. (33)

Vieta’s formulas lead, in this case, to

x+ x∗ = −2
l2 + αm1

l3 + αm2
, (34)

xx∗ =
l1 + αm0

l3 + αm2
. (35)

Eliminating α from the above two equations yields

s2xx
∗ +

1

2
s1(x+ x∗) + s0 = 0, (36)

where

s2 =

∣

∣

∣

∣

l2 l3
m1 m2

∣

∣

∣

∣

, s1 =

∣

∣

∣

∣

l1 l3
m0 m2

∣

∣

∣

∣

, s0 =

∣

∣

∣

∣

l1 l2
m0 m1

∣

∣

∣

∣

. (37)

Observe that equation (36) defines an involution on a line [26, §15], provided
the line skips the base points of the pencil of conics. This is consequence of the
Desargues’ involution theorem that states that a line intersects the elements of
a pencil of conics in reciprocal pairs of an involution on the line.

Involutions are distinguished by their fixed points, that is, by points recip-
rocal to themselves, that is, points satisfying x∗ = x. Then, the fixed points of
the involution (36) are given by the roots of

W (x) = s2 x
2 + s1 x+ s0 = 0. (38)

Then, according as

∆W =

∣

∣

∣

∣

s1 2s2
2s0 s1

∣

∣

∣

∣

>
=
<
0, (39)

the fixed points are real, real and coincident or imaginary. The equality ∆W = 0
means that the abscissa goes through a base point of the pencil, and this cannot
occur in an involution. In the former and latter cases, the involution is then
called hyperbolic or elliptic, respectively. Alternatively, an involution can be
classified as hyperbolic or elliptic by simply checking if the cross ratio of two
different pairs of reciprocal points is positive [22, 5.6.12]. As a consequence,
the generated involution is hyperbolic if, and only if, (λp1

, λp2
) ⊂ (λq1 , λq2),

(λp1
, λp2

) ⊃ (λq1 , λq2) or (λp1
, λp2

) ∩ (λq1 , λq2) = ∅. The second case can never
occur, neither for type 1 nor type 4, because it would imply that the conics in the
pencil for λ1 and λ2 would be two pairs of imaginary lines, in contradiction with
F3. To discard the third case, we can check if Q(λt) < 0, which, if satisfied,
gives λt ∈ (λp1

, λp2
) ∩ (λq1 , λq2). Thus, all the degenerate conics in a pencil

with root pattern 5 are real if, and only if, Q(λt) < 0 and ∆W > 0. This
result finally permits to complete the binary decision tree for the positional
relationship between two ellipses depicted in Fig. 4.
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Notice that a pencil with root pattern 5 is of type 4 if, and only if, Q(λt) > 0
or ∆W < 0, which are open conditions. At first glance, according to the binary
decision tree, type 4 is characterized by the condition Q(λt) ≥ 0 or ∆W ≤ 0.
Nevertheless, in type 4, first the equality ∆W = 0 cannot occur, and second
the equality Q(λt) = 0 implies the strict inequality ∆W < 0. Indeed, ∆W = 0
implies the existence of a base point of the pencil of conics P ′(λ) + αQ(λ) =
0 on the abscissa, but the restrictions imposed by F3 to type 4 imply that
(λp1

, λp2
) ⊃ (λq1 , λq2), which is absurd, as noticed above. Now, if Q(λt) = 0,

then λt ∈ (λq1 , λq2) and, together with λt ∈ (λp1
, λp2

), in accordance with
the above reasoning, implies that the cross ratio of the two different pairs of
reciprocal points (λq1 , λq2 , λp1

, λp2
) is negative, that is, ∆W < 0.

10. Computational cost and implementation

In the presented decision tree, the most costly operation is performed at the
root of the tree (i.e., the computation of the sign of ∆P ). This entails computing
li, i = 0, . . . , 3, which are cubic expressions in the ellipses’ coefficients, then
computing δi, i = 1, . . . , 3, which are quadratic in li, and finally computing
∆P which is also quadratic in δi. In other words, if these dependencies are
expanded, ∆P can be directly expressed as a polynomial of order 12 in terms of
the ellipses’ coefficients.

Contrary to what happens with previous approaches in which all operations
essentially reduce to the evaluation of polynomials [16, 19], the one described
here also involves rational algebraic expressions: those relative to λt (19), λd

(20), and λs (21). Actually, their introduction is precisely the point that makes
the presented algorithm comparatively so compact. Thus, comparing the pre-
sented approach with the mentioned ones in terms of polynomial degrees does
not seem appropriate. As an alternative, the number of additions, multiplica-
tions, and divisions, required for the computation of the different operations is
compiled in Table 2. The figures given in this table correspond to the brute-
force evaluation of the corresponding formulas without accounting for repeated
operations. Moreover, the coefficients of R(λ) are denoted by ti, with i = 0, 1, 2.

The simplicity of the proposed algorithm becomes apparent when reading
its implementation. The supplementary downloadable material contains the
MATLABr function RelativePosition.m that implements the decision tree
in Fig. 4. This function takes as input the matrices defining the two ellipses
and returns their spatial relationship. The script Main.m contains one example
of each possible spatial relationship.

At this point, it is important to observe that only the positional relationships
of type 1, 2, 3 and 4, are stable with respect to small variations in the coefficients
defining the ellipses. Indeed, according to what has been argued in Section 3
and 9, these four types are characterized by the following open conditions:

• Type 1: {∆P > 0, l1 < 0, l2 < 0, Q(λt) < 0, ∆W > 0};

• Type 2: {∆P < 0};
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• Type 3: {∆P < 0, l1 > 0} or {∆P < 0, l2 > 0};

• Type 4: {∆P > 0, l1 < 0, l2 < 0, Q(λt) > 0} or
{∆P > 0, l1 < 0, l2 < 0, ∆W < 0}.

The remaining types include in their characterization the equality ∆P = 0.
This means that, if we want to correctly identify unstable positional relation-
ships in general, it would be necessary to implement the algorithm in exact
rational arithmetics. In the current implementation, all calculations are done
in floating-point arithmetics with certain margins in all comparisons to avoid
missing some spatial relationships, but this is something that has to be adapted
to each particular need.

In those cases in which the considered ellipses depend on some parameters,
the problem usually consists in obtaining the value of these parameters for which
some particular relationships are attained. In these cases, the presented decision
tree can be used to obtain the set of algebraic equations that have to be solved
simultaneously.

Finally, notice that the conditions describing type 5 are limit conditions
for those describing type 4. Indeed, according to the binary decision tree in
Fig. 4, and the results of Section 5 and 9, the conditions describing type 5
imply {∆P = 0, l1 < 0, l2 < 0, Q(λt) > 0, ∆W = 0}, and hence they are
adjacent to those of type 4. This has to be taken into account when dealing
with time-varying ellipses.

11. Conclusion

We have presented a binary decision tree to classify the spatial relationship
between two ellipses. The number of required operations is reduced compared
to previous approaches, thanks to the introduction of explicit rational expres-
sions for some polynomial roots, so that it can be adapted to any practical
situation in which some particular positional relationships have to be discerned
in a computationally efficient way.

The involved mathematical expressions at each level of the decision tree are
simple enough algebraic or semi-algebraic conditions as to allow the possibility
of analyzing the spatial relationship between continuously time-varying ellipses
without relying on sampling. This is certainly a point that deserves further
attention.
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Type 0 Type 1

Coincident Transversal at four points

Type 2 Type 3

Transversal at two points Separated

Type 4 Type 5

One contained in the other Projectively equivalent to

in general position two concentric circles

Type 6 Type 7

Transversal at two points Externally tangent

and tangent at another

Type 8 Type 9

Internally tangent at Internally tangent at

one point two points

Type 10 Type 11

Osculating Hyperosculating

Figure 1: The considered twelve types of positional relationships between two ellipses.
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det(MC)

det(NC) det(NC)

A hyperbola

A parabola

a det(MC)

A real

ellipse An imaginary

ellipse

Two

non-parallel

real lines

det(OC) + det(SC) Two

non-parallel

imaginary lines

Two parallel

real lines*

Two coincident

real lines*

(a double line)

Two parallel

imaginary lines

6= 0 (non-degenerate) = 0 (degenerate)

< 0
= 0

> 0

< 0 > 0

< 0

= 0 > 0

< 0 = 0 > 0

Figure 2: Classification of a real conic section. The cases with an asterisk (*) may include the line at infinity.
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δ2 = δ3 = 0?

l1 > 0 or l2 > 0?

P (λ)

λ

λt

Pattern 2

l1 > 0 or l2 > 0?

l0
l3

δ2
δ3

> δ2
2δ1

?

P (λ)

λ

λs λd

Pattern 3a

P (λ)

λ

λd λs

Pattern 3b

P (λ)

λ

λs λd

Pattern 4

P (λ)

λ

λ1 λ2λ3

Pattern 5

P (λ)

λ

λ1 λ2 λ3

Pattern 6

< 0

= 0

> 0

yes no

no yes

no
yes

yes no

Figure 3: The seven possible root patterns for P (λ) = 0.
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∆P < 0?

Type 2 l1 > 0 or l2 > 0?

∆P > 0?
∆P > 0?

Type 3 Type 7

Q(λt) < 0
and

∆W > 0?

δ2 = δ3 = 0?

Type 1 Type 4

Q(λt) = R(λt) = 0?
Q(λd) = R(λd) = 0?

∆Q = 0?

Type 0 Type 11

Type 10

Q(λs) ≤ 0? Q(λd) ≤ 0?

Type 9 Type 5 Type 6 Type 8

yes no

yes
no

yes no

yes no

yes no

yes
no

yes

yes no

no

yes no

yes no yes no

Figure 4: Binary decision tree to classify the relative position of two ellipses in one of the
twelve types appearing in Fig. 1.
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P (λ)

P ′(λ)

Q(λ)

λ1 λ2λq1 λq2λp1
λp2

λ3

Figure 5: Arrangement of plots of P (λ), P ′(λ), and Q(λ) in the case that all singular conics
in the pencil are real.
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Table 1: Some characteristics of the considered positional relationships

Type
Real

base points
Intersection

set
Singular conics in the pencil

Root pattern
of P (λ) = 0

1 4 simple Ic 3 pairs of real lines 5

2 2 simple Ib 1 pair of real lines 1

3 None Ia
1 pair of real lines
2 pairs of imaginary lines

6

4 None Ia
1 pair of real lines
2 pairs of imaginary lines

5

5 None IIIa
1 double real line (twice)
1 pair of imaginary lines

3a, 3b

6 2 simple
1 double

IIb
2 pairs of real lines
(1 of them twice)

3a, 3b

7 1 double IIa

1 pair of real lines
1 pair of imaginary lines
(twice)

4

8 1 double IIa

1 pair of real lines
1 pair of imaginary lines
(twice)

3a, 3b

9 2 double IIIb
1 pair of real lines
1 double real line (twice)

3a, 3b

10
1 simple
1 triple

IV
1 pair of real lines
(3 times)

2

11 1 quadruple V
1 double real line
(3 times)

2

24



Table 2: Computational cost in terms of arithmetic operations

Variable Equation Additions Multiplications Divisions

l3 (8) 5 9 0

l2 (9) 17 27 1

l1 (10) 17 27 1

l0 (11) 5 9 0

m2 (24) 1 2 0

m1 (25) 3 4 1

m0 (26) 1 2 0

t2 3 4 0

t1 7 8 2

t0 3 4 0

δ3 (17) 1 2 0

δ2 (17) 1 2 0

δ1 (17) 1 2 0

∆P (16) 1 4 0

∆Q (28) 1 2 0

λt (19) 0 0 1

λd (20) 0 1 1

λs (21) 0 2 1

Q(·) (23) 2 5 0

R(·) 2 5 0
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