
Abstract

Common approximation tools return low-order approximations in the
vicinities of singularities. Most prior works solve this problem for uni-
variate functions. In this work we introduce a method for approximat-
ing non-smooth multivariate functions of the form f = g + r+ where
g, r ∈ CM+1(Rn) and the function r+ is defined by

r+(y) =

{
r(y), r(y) ≥ 0
0, r(y) < 0

, ∀y ∈ Rn .

Given scattered (or uniform) data points X ⊂ Rn, we investigate approx-
imation by quasi-interpolation. We design a correction term, such that
the corrected approximation achieves full approximation order on the en-
tire domain. We also show that the correction term is the solution to
a Moving Least Squares (MLS) problem, and as such can both be eas-
ily computed and is smooth. Last, we prove that the suggested method
includes a high-order approximation to the locations of the singularities.

1

ar
X

iv
:1

60
4.

02
81

0v
4

 [
m

at
h.

N
A

]
 1

0
O

ct
 2

01
6

High order approximation to non-smooth

multivariate functions

Anat Amir∗ David Levin∗

July 27, 2021

1 Introduction

Approximation of non-smooth functions is a complicated problem. Common
approximation tools, such as splines or approximations based on Fourier trans-
form, return smooth approximations, thus relying on the smoothness of the
original function for the approximation to be correct. However, the need to ap-
proximate non-smooth functions exists in many applications. For a high-order
approximation of non-smooth functions, we need to allow our approximation to
be non-smooth. Otherwise, in the vicinities of the singularities, we will get a
low-order approximation. In this work we will suggest a method that will allow
us to properly approximate non-smooth functions of a given model.

We will concentrate on functions f : Rn → R which may be modelled as
f = g + r+ where g, r ∈ CM+1(Rn) and the function r+ is defined by

r+(y) =

{
r(y), r(y) ≥ 0
0, r(y) < 0

, ∀y ∈ Rn .

Such functions are obviously continuous, but are non-smooth across the hyper-
surface

Γr := {z ∈ Rn : r(z) = 0} .

As an example for such functions, consider shock waves, which are solutions of
non-linear hyperbolic PDEs [12]. Another example would be a signed distance
function [13], where the distance is measured from a disconnected set. Our goal
is to achieve high-order approximations of such functions. To achieve that we
will concentrate on a specific family of approximation tools.

Consider a quasi-interpolation operator Q [16]. Such an operator receives
the values of a function φ : Rn → R on a set of data points X ⊂ Rn. The
quasi-interpolation operator Q returns an approximation defined by

Qφ(y) :=
∑
x∈X

qx(y)φ(x) , ∀y ∈ Rn ,

where {qx} are the quasi-interpolation basis functions, each is smooth and has
compact support.

∗School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801,
Israel

2

Let h be the fill distance of X,

h := min {L : BL(y) ∩X 6= ∅ , ∀y ∈ Rn} ,

where Br(y) is the ball of radius r centred at y. Denote

ΥM := min {L > 0 : ∀y ∈ Rn , BLh(y) ∩X is uni-solvent for ΠM (Rn)} .

Here,
ΠM (Rn) := {p : Rn → R : deg(p) ≤M} ,

and deg(p) is the total degree of the polynomial p. Thus, h is the minimal radius
which is guaranteed to contain a data point, and ΥM · h is the minimal radius
that guarantees enough data points to uniquely determine each polynomial in
ΠM (Rn). We will also assume that there exists N > 0 such that for all y ∈ Rn
we have

(X ∩Bh(y))

hn
≤ N .

That is, the data set X has no accumulation points. Denote

R := min {ρ > 0 : supp(qx) ⊆ Bρh(x) , ∀x ∈ X} (1)

We assume that the operator Q has a bounded Lebesgue constant

L1 := sup

{∑
x∈X
|qx(y)| : y ∈ Rn

}
(2)

and reproduces polynomials in ΠM (Rn). Then, the error in the quasi-interpolation,

Eφ := φ−Qφ

satisfies for all φ ∈ CM+1(Rn) and y ∈ Rn

|Eφ(y)| ≤ C1 · ‖φ‖CM+1 · hM+1

where
C1 = (1 + L1) ·RM+1

and

‖φ‖CM+1 :=
∑

|β|=M+1

‖Dβφ‖∞
β!

with β a multi-index and ‖ · ‖∞ the maximum norm. That is, the operator
Q has full approximation order for smooth functions [16]. On the other hand,
since the approximation Qφ is always smooth, the operator gives low-order
approximations in the vicinities of singularities.

One example of a quasi-interpolation operator is the MLS approximation
[7, 9]. Given a function φ : Rn → R and a point y ∈ Rn the MLS approximation
is defined as Qφ(y) := py(y) where

py := arg min
p∈ΠM (Rn)

∑
x∈X

η

(
‖y − x‖

h

)
· (p(x)− φ(x))

2
(3)

3

Here η is a smooth weight function with compact support. The MLS approxima-
tion essentially returns the value at the point y of the M -th degree polynomial
which gives the best approximation to φ at the data points

X ∩ supp
(
ω

(
‖ · −y‖
h

))
.

This approximation is especially important in this work, since we base much of
our results on our ability to adapt the MLS approximation to our non-smooth
scenario.

Our initial goal for this work was to generalize the work done by Lipman
and Levin [10]. In that work, the authors address the problem of approximation
of univariate functions of the form

f(x) = g(x) +

M∑
j=1

∆j

j!
(x− s)j+ ,

where g ∈ CM+1(R) and (x − s)j+ =

{
(x− s)j , x ≥ s
0, x < s

. Indeed, such func-

tions are continuous but not smooth. In [10], the univarite case is solved by mod-
elling the error terms of the approximation by a quasi-interpolate Q. That is,
one searches for variables s∗, ∆̄∗, such that the errors in the quasi-interpolation
approximation of the term

r̃∆̄∗,s∗(x) :=

M∑
j=1

∆∗j
j!

(x− s∗)j+

give the best Least-squares approximation to the errors of the function f at
the data points. It is shown that by adding the error of the approximation of
the new term r̃∆̄∗,s∗ to the approximation Qf , full approximation order for the
function f is achieved.

Another approach to this problem was proposed by Harten [8]. The author
introduces the essentially non-oscillatory (ENO) and the subcell resolution (SR)
schemes. The ENO scheme bases the approximation at each point on only some
of the data points in its vicinity. Thus, disregarding points from the other side
of the singularity which contaminate the approximation. The SR scheme locates
the singularities by intersecting polynomials from supposedly different sides of
the singularities. For an examination of these methods for univariate functions
with a jump discontinuity in the derivative see [1].

Archibald et al ([2], [3]) suggest using polynomial annihilation to locate the
singularity Γr. Of-course, once the singularity is known we can approximate
each connected component of Rn \ Γr independent of the values in the other
connected components.

Other approaches were suggested by Markakis and Barack [11], where the
authors revise the Lagrange interpolation formula to approximate univariate
discontinuous functions, and by Plaskota et al ([14], [15]), where the authors
suggest using adaptive methods for this approximation. Batenkov et al ([4], [5],
[6]) address a similar problem, the reconstruction of a piecewise smooth function
from its integral measurements. One disadvantage of the methods mentioned
above, is that they do not easily adapt to multivariate singular functions.

4

Thus, the main advantage of the method we suggest in this paper is its
ability to deal with the multivariate case. Indeed, our method enables us to ap-
proximate multivariate functions which have non-continuous derivatives across
smooth hyper-surfaces, Γr. Note that while the dimension n of the domain of
the function f affects the required number of data points in X and the dimen-
sion of ΠM (Rn), the correction procedure is not otherwise affected by the higher
dimension.

2 Main results

As described in the introduction, our goal is to fix the approximation of the
function f = g + r+, where g, r ∈ CM+1(Rn).

Remark 1. The decomposition f = g + r+ is not unique. Indeed,

f = g + r+ = g + r + (−r)+ .

However, we only correct the approximation error, for which we do have unique-
ness.

We will achieve this, following the main idea in [10], by investigating the
error terms

Ef(y) = Eg(y)︸ ︷︷ ︸
O(hM+1)

+Er+(y) = Er+(y) +O(hM+1) .

Definition 1 (λ-neighbourhood of Γr). For λ > 0 define

G(λ) :=
⋃
z∈Γr

Bλ(z) .

Note that if the point y is far enough from the singularity, the restriction of f
to the Rh neighbourhood of y is a smooth function, hence in this case there is no
need to fix the approximation. Thus, we need only correct the approximation for
points in the set G(Rh). In the following we suggest an algorithm for bounding
the set G(Rh). We begin by estimating whether the function r returns a positive
or negative value at each data point x ∈ X. For this we will need the following
definition:

Definition 2 (Partition of the data points with respect to sign). For a set
X ⊂ Rn with fill-distance h and a function r we will say that the set P ⊂ X
partitions the data points in X with respect to the sign of the function r if

1. ∀x ∈ P either r(x) > 0 or r(x) = O(hM+1).

2. ∀x ∈ X \ P , either r(x) < 0 or r(x) = O(hM+1).

In section 4 we will introduce an algorithm that partitions the data points
in X with respect to the sign of the function r. For now, let us assume that
a set P which partitions the data points in X with respect to the sign of the
function r is known.

5

Remark 2. Apparently, once we have a set P which partitions the data points
in X with respect to the sign of the function r, we can approximate a point where
r has a positive value using only the data points in P, and a point where r has
negative value using only the data points in X \P. However, we predict whether
r has a positive or negative value only on the data points X, and not on the
entire domain. Specifically, for a point close to the singularity location, Γr, we
can not tell whether we should approximate based on P or on X \ P. Hence we
can not rely only on the set P to fix the approximation.

Definition 3 (The set G). Denote

B(y) := B(R+2ΥM+2)h(y) ,

and define

G := {y ∈ Rn : B(y) ∩ P and B(y) ∩ (X \ P) are uni-solvent for ΠM (Rn)} .

Of-course,
G(Rh) 6= G ,

however, we can prove that

G(Rh) ⊂ G((R+ 1)h) ⊂ G .

This gives us a bound on the region in which we need to fix the approximations.

Theorem 1 (The domain of the correction). If ∇r(z) 6= 0 for all z ∈ Γr, then

G((R+ 1)h) ⊆ G .

2.1 The corrected approximation

We may now describe the corrected approximation of the function f . Pick a
point y ∈ Rn. As explained above, there is no need to fix the approximation
outside the set G. Hence, if y ∈ Rn \ G define the corrected approximation as

Q̂f(y) = Qf(y) .

Otherwise assume that y ∈ G. To fix the approximation of f we need a polyno-
mial py which approximates the function r locally. In section 5 we will introduce
two methods that will allow us to construct the approximation py.

Definition 4 (Smooth M -th order approximation). We will say that a mapping
Ψ : G → ΠM (Rn) is a smooth M -th order approximation to the function r :
Rn → R if Ψ satisfies the following conditions :

• There exists a constant C2 > 0, independent of h, such that for all y ∈ G,

|(Ψ(y))(u)− r(u)| ≤ C2 · (‖g‖CM+1 + ‖r‖CM+1) · hM+1 , ∀u ∈ BRh(y) .

• Let {pα}α∈I be a polynomial basis of ΠM (Rn) and write

Ψ(y) =
∑
α∈I

λα(y) · pα .

Then, the mappings y 7→ λα(y) are infinitely smooth.

6

If the mappings y 7→ py are a smooth M -th order approximation to r, then
we may define the corrected approximation as

Q̂f(y) = Qf(y) + E ((py)+) (y) .

Hence, the corrected approximation Q̂ is defined as follows :

Definition 5 (Corrected approximation).

Q̂f(y) := Qf(y) +

{
E ((py)+) (y), y ∈ G
0, otherwise

.

Thus we get

Theorem 2 (Corrected approximation errors). Let y 7→ py be a smooth M -th
order approximation to r. Then there exists a constant C3 > 0 such that

|Êf(y)| = |f(y)− Q̂f(y)| ≤ C3 · (‖g‖CM+1 + ‖r‖CM+1) · hM+1 .

Definition 6 (The function r̂). Given a smooth M -th order approximation to
r, y 7→ py, define r̂ : G → R by

r̂(y) = py(y) .

Theorem 3 (Smoothness of the approximation). Assume that

∇r(z) 6= 0 , ∀z ∈ Γr .

For small enough h, the corrected approximation term Q̂f is a smooth function
on

Rn \ {r̂ = 0} .

Theorem 4 (Approximation of the singularity location Γr). Assume that

∇r(z) 6= 0 , ∀z ∈ Γr .

Denote {
C1 := {y ∈ G : r(y) = 0}
C2 := {y ∈ G : r̂(y) = 0} ,

then
dH(C1, C2) = O(hM+1),

where dH is the Hausdorff distance of the two sets.

Remark 3. Although the results in this section were proven for quasi-interpolations
with basis functions of finite support, they may also be proven for quasi-interpolations
with basis functions of exponential decay. In the Numerical results (Section 7),
we have used MLS quasi-interpolation with weight function of exponential decay.

7

3 Proofs

3.1 Proof of Theorem 1

Proof 1. Pick
y ∈ G((R+ 1)h) =

⋃
z∈Γr

B(R+1)h(z) .

Then, there exists z ∈ Γr with ‖y−z‖ < (R+1)h. By our assumption ∇r(z) 6= 0.
Using Taylor’s approximation we can see that for any point

u ∈ BΥMh

(
z + (ΥM + 1)h · ∇r(z)

‖∇r(z)‖

)
we have

r(u) = r(z) + 〈∇r(z), u− z〉+O(h2) ≥ h‖∇r(z)‖+O(h2) .

Hence,

BΥMh

(
z + (ΥM + 1)h · ∇r(z)

‖∇r(z)‖

)
∩X ⊂ P .

Similarly we may show that

BΥMh

(
z − (ΥM + 1)h · ∇r(z)

‖∇r(z)‖

)
∩X ⊂ X \ P .

The intersections of each of the balls BΥMh

(
z ± (ΥM + 1)h · ∇r(z)

‖∇r(z)‖

)
with

X must be uni-solvent for ΠM (Rn), thus both

B(R+2ΥM+2)h(y) ∩ P and B(R+2ΥM+2)h(y) ∩ (X \ P)

are uni-solvent for ΠM (Rn) and y ∈ G.

3.2 Proof of Theorem 2

Proof 2. If y ∈ Rn \ G then

B(R+1)h(y) ∩ Γr = ∅ ,

thus the restriction of f to BRh(y) is smooth and∣∣∣Êf(y)
∣∣∣ = |Ef(y)| ≤ C1 · ‖f‖CM+1 · hM+1 ≤ C1 · (‖g‖CM+1 + ‖r‖CM+1) · hM+1 .

Otherwise, if y ∈ G, then by our assumptions,

|py(u)− r(u)| ≤ C2 · (‖g‖CM+1 + ‖r‖CM+1) · hM+1 , ∀u ∈ BRh(y) .

Consequently, we get,

|E(r+)(y)− E(py)+(y)| ≤ (1 + L1) · C2 · (‖g‖CM+1 + ‖r‖CM+1) · hM+1 .

8

Therefore,

|Êf(y)| = |f(y)− Q̂f(y)|
= | f(y)−Qf(y)︸ ︷︷ ︸

Ef(y)

−E ((py)+) (y)|

= |Ef(y)− E ((py)+) (y)|
≤ |Er+(y)− E ((py)+) (y)|+ |Eg(y)|
≤ (1 + L1) · C2 · (‖g‖CM+1 + ‖r‖CM+1) · hM+1 + C1‖g‖CM+1hM+1 .

3.3 Proof of Theorem 3

Proof 3. For y ∈ int(Rn \ G), there exists δ > 0 such that within the ball

Bδ(y) ⊂ Rn \ G

the correction term is equal to

Q̂f = Qf ,

which is a smooth function.
Similarly, for y ∈ int(G) \ {r̂ = 0}, there exists δ > 0 such that

∀v ∈ Bδ(y) ⊂ G \ {r̂ = 0} ,

the correction term is equal to

Q̂f(v) = Qf(v) + E((pv)+)(v) = Qf(v) + (pv)+(v)−Q((pv)+)(v) .

The function Qf is obviously smooth. Likewise, the smoothness of Q((pv)+)(v)
follows from the smoothness of the mapping v 7→ pv. Last, since

Bδ(y) ∩ {r̂ = 0} = ∅ ,

then (pv)+(v) is also smooth.
We still have to show that the corrected term is smooth for y ∈ ∂(G). Since

G((R+ 1)h) ⊂ G, we must have

B(R+1)h(y) ∩ Γr = ∅ .

Specifically, for v ∈ B 1
2h

(y) we get

B(R+ 1
2)h(v) ∩ Γr = ∅ .

By our assumptions,
∇r(z) 6= 0 , ∀z ∈ Γr ,

hence, since y 7→ py is a smooth M -th order approximation of r, we get for
small enough h that

BRh(v) ∩ {pv = 0} = ∅ .
That is, pv does not change sign in BRh(v), and E((pv)+)(v) = 0, which gives
us

Q̂f(v) = Qf(v) , ∀v ∈ B 1
2h

(y) .

Thus the correction term is smooth at y.

9

3.4 Proof of Theorem 4

Proof 4. Pick y ∈ C1, then r(y) = 0 and ∇r(y) 6= 0. Using Taylor’s approxi-
mation we have

r(y ± ε∇r(y)) = ±ε‖∇r(y)‖2 +O(ε2 · ‖∇r(y)‖2) . (4)

Hence,
r(y − ε∇r(y)) < 0 < r(y + ε∇r(y)) .

Since y 7→ py is a smooth M -th order approximation to r, the function r̂(y) =
py(y) must be smooth and satisfy

r̂(y)− r(y) = O(hM+1) . (5)

hence
r̂(y − ε∇r(y)) < 0 < r̂(y + ε∇r(y)) .

Then there must exist u = y+λ∇r(y) with |λ| < ε such that r̂(u) = 0. However,
from (4) and (5) we get

O(hM+1) = r(u) = λ‖∇r(y)‖2 +O(λ2‖∇r(y)‖2) .

Hence,
λ‖∇r(y)‖2 = O(hM+1) ,

and consequently
‖y − u‖ = |λ|‖∇r(y)‖ = O(hM+1) .

That is, there must exist u with ‖y − u‖ = O(hM+1) and r̂(u) = 0, hence,

sup
y∈C1

inf
u∈C2

d(y, u) = O(hM+1) .

Similarly we show that

sup
y∈C2

inf
u∈C1

d(y, u) = O(hM+1) ,

and we have
dH(C1, C2) = O(hM+1) .

4 Partitioning the data points in X with respect
to the sign of r

Our method relies upon our ability to correctly identify a set P ⊂ X which
partitions the data points in X with respect to the signs of the function r. That
is,

1. For all x ∈ P either r(x) > 0 or r(x) = O(hM+1).

2. For all x ∈ X \ P either r(x) < 0 or r(x) = O(hM+1).

We propose an algorithm for building the set P according to the following steps:

10

Step (1) Find a set S ⊂ X satisfying Γr ⊂
⋃
x∈S

B3h(x) .

Step (2) Denote by A1, . . . , Ak the connected components of

Rn \

(⋃
x∈S

B3h(x)

)
⊂ Rn \ Γr .

Note that for all 1 ≤ i ≤ k and x1, x2 ∈ Ai we have r(x1) · r(x2) > 0.

Step (3) Define a function a : X → {1, . . . , k} satisfying

∀x ∈ X : a(x) = i =⇒ either r(x) = O(hM+1)
or r(x) · r(u) > 0 , ∀u ∈ Ai ∩X

.

For 1 ≤ i ≤ k set Āi := {x ∈ X : a(x) = i} .

Step (4) Define a function σ : {1, . . . , k} → {1, 2} satisfying

σ(i1) = σ(i2) =⇒ ∀x1 ∈ Ai1 , ∀x2 ∈ Ai2 : r(x1) · r(x2) > 0 .

Step (5) Set P :=
⋃

σ(i)=1

Āi .

Refine the set P.

Step 1 Build the set S satisfying Γr ⊂
⋃
x∈S

B3h(x)

1: Define Ψ : Rn → ΠM (Rn) by

Ψ(y) := arg min
p∈ΠM (Rn)

∑
x∈X

ω

(
‖x− y‖

h

)
· (p(x)− f(x))

2
.

Here ω is a smooth weight function with compact support

supp(ω) = [0, ρ] ⊃ [0,ΥM] .

2: For u ∈ X define εu := max {|(Ψ(u))(x)− f(x)| : x ∈ Bρh(u) ∩X}.
3: Set

S :=

{
x ∈ X

∣∣∣∣∣∃u ∈ B(ρ+5)h(x) ∩X : |(Ψ(u))(x)− f(x)| > εu ·
(
ρ+ 5

ρ

)M+1
}
.

11

Step 2 Find the connected components of Rn \
(⋃
x∈S

B3h(x)

)
1: Build a graph G = (V,E) with vertices

V := X \

(⋃
x∈S

B3h(x)

)
,

and edges
E := {(u, v) ∈ V |d(u, v) < 2h} .

2: Set A1, A2, . . . , Ak to be the connected components of the graph G.

Step 3 Compute the function a : X → {1, . . . , k} satisfying :
a(x) = i ⇒ either r(x) = O(hM+1) or r(x) · r(u) > 0 , ∀u ∈ Ai ∩X .

1: Let ω be a smooth weight function with compact support.
2: For 1 ≤ i ≤ k denote

Ωi =

{
y ∈ Rn : supp

(
ω

(
‖ · −y‖
h

))
∩Ai ∩X is uni-solvent for ΠM (Rn)

}
,

and define Θi : Ωi → ΠM (Rn) by

Θi(y) := arg min
p∈ΠM (Rn)

∑
x∈Ai∩X

ω

(
‖x− y‖

h

)
· (p(x)− f(x))

2
.

3: For x ∈ X define

a(x) :=

i , x ∈ Ai

arg min
{1≤i≤k:x∈Ωi}

|(Θi(x))(x)− f(x)| , x ∈ X \
(

k⋃
i=1

Ai

)
.

12

Step 4 Compute the function σ : {1, . . . , k} → {1, 2} satisfying :
σ(i1) = σ(i2) ⇒ ∀x1 ∈ Ai1 , ∀x2 ∈ Ai2 : r(x1) · r(x2) > 0 .

1: Define σ0 : {1, . . . , k} → {1, . . . , k} by σ0(i) = i.
2: For 1 ≤ l ≤ k define X0

l = Āl.
3: for j = 0, . . . , k − 3 do
4: For each 1 ≤ l ≤ k − j denote Xj+1

l :=
⋃

σj(i)=l

Xj
i .

5: For each 1 ≤ l ≤ k − j define Φl : Rn → ΠM (Rn) by

Φl(y) := arg min
p∈ΠM (Rn)

∑
x∈Xj+1

l

ω

(
‖x− y‖

h

)
· (p(x)− f(x))

2
.

Here ω is a smooth weight function with compact support supp(ω) = [0, ρ].
6: for 1 ≤ l1, l2 ≤ k − j do

7: N ←
{
x ∈ Xj+1

l1
: Bρh(x) ∩Xj+1

l2
6= ∅
}

8: if #N == 0 then
9: Dl1,l2 ←∞

10: else
11: Dl1,l2 ← max {|(Φl2(x))(x)− f(x)| : x ∈ N}
12: end if
13: end for
14: Pick 1 ≤ l1 < l2 ≤ k − j for which (D +DT)l1,l2 is minimal.
15: Define σj+1 : {1, . . . , k − j} → {1, . . . , k − j − 1} by

σj+1(i) =

 i, 1 ≤ i ≤ l2 − 1
l1, i = l2
i− 1, l2 < i ≤ k − j

.

16: end for
17: Set σ = σk−2 ◦ σk−3 ◦ . . . ◦ σ0 .

Step 5 Refinement of the set P
1: B ← {x ∈ X : ∃x1 ∈ P , x2 ∈ X \ P s.t. d(x, x1), d(x, x2) < 2h}
2: O1 ← P \B
3: O2 ← X \ (P ∪B)
4: For k = 1, 2 define Ξk : Rn → ΠM (Rn) by

Ξk(y) := arg min
p∈ΠM (Rn)

∑
x∈Ok

ω

(
‖x− y‖

h

)
· (p(x)− f(x))

2
.

Here ω is a smooth weight function with compact support.
5: P ← O1 ∪ {x ∈ B : |(Ξ1(x))(x)− f(x)| < |(Ξ2(x))(x)− f(x)|}.

To show that the algorithm indeed generates the set P, as defined in Defi-
nition 2, we observe the following:

1. In Step 1, Ψ is an MLS polynomial approximation of f , hence if

Bρh(u) ∩ Γr = ∅

13

then the restriction of f to Bρh(u) is either g or g + r. W.l.o.g. we will
assume that

r(y) < 0 , ∀y ∈ Bρh(u) ,

hence the restriction of f to Bρh(u) is the smooth function g and

|(Ψ(u))(y)− g(y)| = O(hM+1) , ∀y ∈ B(ρ+5)h(u) (6)

Specifically, for x ∈ Bρh(u) ∩X we have f(x) = g(x), and

εu = max {|(Ψ(u))(x)− f(x)| : x ∈ Bρh(u) ∩X} = O(hM+1) (7)

However, if
∃z ∈ B(ρ+2)h(u) ∩ Γr with ∇r(z) 6= 0

then there must exist

x ∈ Bh
(
z + 2h · ∇r(z)

‖∇r(z)‖

)
∩X ⊂ B(ρ+5)h(u) ∩X

for which
r(x) > h · ‖∇r(z)‖+O(h2) > 0 .

From (6) we get

|(Ψ(u))(x)− f(x)| = |(Ψ(u))(x)− g(x)− r(x)|
> |r(x)| − |(Ψ(u))(x)− g(x)|
= h · ‖∇r(z)‖+O(h2) +O(hM+1)

For small enough h we get by (7)

|(Ψ(u))(x)− f(x)| > h · ‖∇r(z)‖+O(h2) > εu ·
(
ρ+ 5

ρ

)M+1

.

Thus x ∈ S and z ∈
⋃
x∈S

B3h(x).

2. In Step 3, each Θi is an MLS approximation of f based only upon the
data points in Ai ∩X. Since Ai ∩ Γr = ∅, f is smooth on each Ai and Θi

is either a polynomial approximation of g or of g + r.

Pick x ∈ S and assume that both x and Ai belong to the same connected
component of Rn \ Γr, hence

|(Θi(x))(x)− f(x)| = O(hM+1) .

W.l.o.g. assume that r(x) > 0. If r(u) < 0 for u ∈ Aa(x) then Θa(x)(x) is
a polynomial approximation of g, which gives us

O(hM+1) = |(Θi(x))(x)− f(x)|
≥

∣∣(Θa(x)(x))(x)− f(x)
∣∣

≥ |r(x)| −
∣∣(Θa(x))(x)− g(x)

∣∣ = |r(x)|+O(hM+1)

Thus in this case r(x) = O(hM+1).

14

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(a) S
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(b) X \ S

Figure 1: The sets S and X \ S.

3. In Step 4, the operator Φl returns MLS approximations of either g or
g + r. At each step of the for-loop we merge two subsets Xj+1

l1
and Xj+1

l2
on which the approximations Φl1 and Φl2 are close. At the end we will
have two subsets of X, such the the restriction of f to one subset would
be g and the restriction of f to the other subset would be g + r.

4. In Step 5 we propose to refine the initial set P. We refine this set by re-
moving from P and from X \P data points that are close to the boundary.
Then, we add to P only the boundary data points for which the MLS ap-
proximation based upon P has smaller errors than the MLS approximation
based upon X \ P.

The above observations prove that the set P returned by our proposed algorithm
is a partition of the data points in X with respect for the sign of the function r.

Remark 4. In Step Step (5) of the algorithm we arbitrarily choose the set P,
thus we might choose the set on which r returns negative values. However, this
choice has no effect on the approximation algorithm. Indeed,

Er+ = E(r − r−) = Er︸︷︷︸
O(hM+1)

+E−(r−)︸ ︷︷ ︸
(−r)+

= O(hM+1) + E(−r)+ ,

where E is the approximation error of the quasi-interpolation operator. Hence,
the initial choice is insignificant.

For example, we ran the partitioning algorithm on the function

f(x, y) = ((x+ y) · (x− y))+ .

In Figure 1 one can see the sets S and X \ S (see Step 1). In Figure 2 one can
see the connected components of X \S (Step 2), and the connected components
of X \ Γr (see Step 3). In Figure 3 one can see the initial set P and the final P
after the refinement (see Step 5).

Remark 5. Although the sign determination algorithm, is described for f de-
fined on Rn, the algorithm can also be applied to a compact domain. Moreover,

15

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(a) The connected components of X \ S
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(b) The connected components of X \ Γr

Figure 2: The connected components of X \ S and of X \ Γr.

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(a) Initial P
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(b) Final P

Figure 3: The set P before and after the refinement.

16

since the computation of the corrected approximation Q̂f , is a local procedure,
it might be computationally preferable to break the domain into smaller compact
subsets.

5 Approximation of the signed function r

In Section 2 we have introduced the notion of a smooth M -th order approxima-
tion to the function r. In this section we will introduce two methods we may use
to find a smooth M -th order approximation to r. Recall that a smooth M -th
order approximation is a mapping y 7→ py satisfying :

• There exists C2 > 0 such that for all y ∈ G,

|py(u)− r(u)| ≤ C2 · (‖g‖CM+1 + ‖r‖CM+1) · hM+1 , ∀u ∈ BRh(y) .

• Let {pα}α∈I be a polynomial basis of ΠM (Rn) and write

py =
∑
α∈I

λα(y) · pα .

Then, the mappings y 7→ λα(y) are infinitely smooth.

The methods that we introduce are both based upon MLS, hence the smoothness
is trivial. As for the first condition, while the first method gives slightly better
approximations to r (as can be seen in section 7), it also depends upon a non-
singularity conjecture (which can be verified numerically). The first method,
described in subsection 5.1, is in-fact a generalization of the method suggested
by Lipman and Levin [10] for the univariate case. Here also we analyse the quasi-
interpolation errors, and find a polynomial py1 which gives the best simulation
for these errors. The second method, described in subsection 5.2 utilizes two
MLS approximations and is independent upon a non-singularity condition. One
MLS approximation is based upon the data set P and the other is based upon
its complement X \ P. The difference between the two approximations would
be the polynomial approximation to r.

5.1 Approximation by error analysis

This method derives the polynomial approximation to r from an analysis of the
quasi-interpolation errors.

Definition 7 (The approximant py1). For y ∈ Rn define py1 ∈ ΠM (Rn) by

py1 := arg min
p∈ΠM (Rn)

∑
x∈X

ω

(
‖y − x‖

h

)
· (E(χP · p)(x)− Ef(x))

2
.

Here ω : R+ → R+ is an infinitely smooth positive weight function with compact
support,

supp(ω) ⊃ [0, (R+ 2ΥM + 2)h]

and χP is the indicator function defined by

χP(z) =

{
1, z ∈ P
0, z /∈ P , ∀z ∈ Rn .

17

Remark 6. A more natural choice for the polynomial py1 would have been the
polynomial minimizing the sum∑

x∈X
ω

(
‖y − x‖

h

)
· (E(p+)(x)− Ef(x))

2
.

However, this computation is not linear.

Theorem 5 (py1 is a smooth M -th order approximation to r). If the vectors

{E(χP · pα)(x) : x ∈ Ω(y) ∩X}α∈I

are linearly independent for all y ∈ G, with

Ω(y) =

{
y + z :

‖z‖
h
∈ supp(ω)

}
,

then the mapping y 7→ py1 is a smooth M -th order approximation to r.

Proof 5. Let us define an MLS operator Q̃ for a function φ : Rn → R and
y ∈ Rn by

Q̃φ(y) = pφ,y(y)

where

pφ,y := arg min
p∈ΠM (Rn)

∑
x∈X

ω

(
‖y − x‖

h

)
· (E(χP · p)(x)− E(χP · φ)(x))

2
.

Note the difference between the above definition and the original MLS definition
(3). In the original MLS definition we sum the squares of the difference between
the values of φ and of the approximating polynomial p at the data points, while in
this definition we sum the squares of the differences between the approximation
errors of χP · φ and χP · p at the data points. Write

p =
∑
α∈I

δαpα and pφ,y =
∑
α∈I

(δφ,y)αpα ,

then from the linearity of E we have

δφ,yδφ,yδφ,y = arg min
δδδ

∑
x∈X

ω

(
‖y − x‖

h

)
·

(∑
α

δαE(χP · pα)(x)− E(χP · φ)(x)

)2

.

To solve this problem we follow [9], from which we know that if the vectors

{E (χP · pα) (x) : x ∈ Ω(y) ∩X}α∈I

are linearly independent then the solution to this problem is the vector δφ,yδφ,yδφ,y
defined by

δφ,yδφ,yδφ,y = (ADAT)−1ADφφφ (8)

where A is the matrix

A = (E (χP · pα) (x))α,x , ∀α ∈ I , ∀x ∈ X

18

D is the diagonal matrix with values

Dx,x = ω

(
‖y − x‖

h

)
,∀x ∈ X

and φφφ is the vector
φx = E(χP · φ)(x) , ∀x ∈ X .

Moreover, the operator Q̃ clearly reproduces polynomials in ΠM (Rn) and as such
is a quasi-interpolation operator

Q̃φ(y) =
∑
x∈X

q̃x(y)E(χP · φ)(x) (9)

with basis functions

q̃x(y) :=
∑
α∈I

pα (y) ·
(
(ADAT)−1AD

)
α,x

(10)

of compact support

R2 := inf {ρ : supp(q̃x) ⊆ Bρh(x) , ∀x ∈ X} .

Note that
py1(z) =

∑
x∈X

q̃x(z) · Ef(x) . (11)

Let us show that Q̃ has a bounded Lebesgue constant,

L2 := sup

{∑
x∈X
|q̃x(z)| : z ∈ Rn

}
.

Assume that the polynomials {pα} are each of the form

pα(u) = (u− z)α ,

with α a multi-index. Then we may write

A = H · F

where H is the diagonal matrix with values

Hα,α = h|α| , ∀α ∈ I

and F is the matrix

F =

(
E

(
χP ·

(
· − z
h

)α)
(x)

)
α,x

, ∀α ∈ I , ∀x ∈ X .

From (1) and (2) we get

|Fα,x| =
∣∣∣∣E (χP · (· − zh

)α)
(x)

∣∣∣∣ ≤ (1 + L1) ·RM .

19

Then,

|q̃x(z)| :=

∣∣∣∣∣∑
α∈I

pα (z) ·
(
(ADAT)−1AD

)
α,x

∣∣∣∣∣ =∣∣∣∣∣∑
α∈I

pα (z) ·
(
((HF)D(HF)T)−1(HF)D

)
α,x

∣∣∣∣∣ =∣∣∣∣∣∑
α∈I

pα (z) ·
(
H−1(FDFT)−1H−1HFD

)
α,x

∣∣∣∣∣ =∣∣∣∣∣∑
α∈I

pα (z) ·
(
H−1(FDFT)−1FD

)
α,x

∣∣∣∣∣ =∣∣∣∣∣∑
α∈I

(
z − z
h

)α
·
(
(FDFT)−1FD

)
α,x

∣∣∣∣∣ ≤
‖(FDFT)−1‖ · (1 + L1) ·RM · ω

(
|z − x|
h

)
with

‖(FDFT)−1‖ = sup

{
‖(FDFT)−1vvv‖

‖vvv‖
: vvv 6= 000

}
,

Note that while the term ‖(FDFT)−1‖ is independent upon the value of h, it is
dependent upon the distribution of the data points. Thus,

L2 ≤ ‖(FDFT)−1‖ · (1 + L1) ·RM ·K ,

where

K := sup

{∑
x∈X

ω

(
z − x
h

)
: z ∈ Rn

}
.

That is, the operator Q̃ has a bounded Lebesgue constant. Note that this constant
is independent of the choice of the polynomial basis {pα}α∈I .

From (11) we have

py1(z) =
∑
x∈X

q̃x(z) · Ef(x) .

Also, since the operator Q̃ reproduces polynomials we have that

pTaylory (z) =
∑
x∈X

q̃x(z) · E(χP · pTaylory)(x) ,

where pTaylory is the Taylor approximation of the function r at the point y.
Pick z ∈ BRh(y), then

|py1(z)− pTaylory (z)| =∣∣∣∣∣∑
x∈X

q̃x(z) ·
(
Ef(x)− E(χP · pTaylory)(x)

)∣∣∣∣∣ ≤
L2 · max

x∈X∩BR2h
(z)

{
|Ef(x)− E(χP · pTaylory)(x)|

}
20

Compute,

|Ef(x)− E(χP · pTaylory)(x)| =
|Eg(x) + Er+(x)− E(χP · pTaylory)(x)| ≤
|Eg(x)|+ |Er+(x)− E(χP · pTaylory)(x)| =
|Eg(x)|+ |E(χP · r)(x)− E(χP · pTaylory)(x)| =
|Eg(x)|+ |E(χP · (r − pTaylory))(x)| ≤
C1‖g‖CM+1hM+1 + (1 + L1)‖r‖CM+1‖x− y‖M+1

Hence for all z ∈ BRh(y) we have

|py1(z)− r(z)| ≤
|py1(z)− pTaylory (z)|+ |pTaylory (z)− r(z)| ≤

L2

(
C1‖g‖CM+1 + (1 + L1)‖r‖CM+1(R+R2)

M+1
)
hM+1 +

RM+1‖r‖CM+1hM+1

Clearly for

C2 = max
{
L2C1 , L2(1 + L1)(R+R2)M+1 +RM+1

}
we get for all z ∈ BRh(y) that

|py1(z)− r(z)| ≤ C2 · (‖g‖CM+1 + ‖r‖CM+1) · hM+1 .

Moreover, from (11) and from (10) we get the representation

py1 =
∑
α∈I

pα ·
∑
x∈X

(
(ADAT)−1AD

)
α,x

Ef(x)︸ ︷︷ ︸
λα(y)

,

from which it is clear that the mappings of the coefficients y 7→ λα(y) are smooth.

Remark 7. In Theorem 5 we have assumed that the vectors

{E(χP · pα)(x) : x ∈ Ω(y) ∩X}α∈I
are linearly independent. While it seems intuitive that a truncated polynomial
can not be approximated by polynomials, we did not succeed in proving this.
Thus we leave it as a conjecture.

Conjecture 6 (Linear independence). For any point y ∈ G, denote

Ω(y) =

{
y + z :

‖z‖
h
∈ supp(ω)

}
.

Then, the vectors
{E(χP · pα)(x) : x ∈ Ω(y) ∩X}α∈I

are linearly independent.

We also suggest a second method for approximating r which does not depend
upon the above conjecture.

21

5.2 Approximation by partitioned MLS

This method utilizes two MLS approximations, the first is based only upon the
data points in P, while the second is based only upon the data points in X \P.

Definition 8 (The approximant py2). For a point y ∈ G define py2 := T1(f) −
T2(f) where

T1(f) := arg min
p∈ΠM (Rn)

∑
x∈P

ω

(
‖y − x‖

h

)
· (p(x)− f(x))

2
,

and

T2(f) := arg min
p∈ΠM (Rn)

∑
x∈X\P

ω

(
‖y − x‖

h

)
· (p(x)− f(x))

2
.

Here ω is a weight function satisfying supp(ω) ⊃ [0, (R+ 2ΥM + 2)h].

Theorem 7 (py2 is a smooth M -th order approximation to r). The mapping
y 7→ py2 is a smooth M -th order approximation to r.

Proof 6. Pick y ∈ G, by Definition 3, both

B(R+2ΥM+2)h(y) ∩ P and B(R+2ΥM+2)h(y) ∩ (X \ P)

are uni-solvent for ΠM (Rn).
The operator T1 : RX → ΠM (Rn) is an MLS operator, and as such there

exists a constant c1 satisfying

|T1(φ)(u)− φ(u)| ≤ c1 · ‖φ‖CM+1 · hM+1 , ∀u ∈ BRh(y) , φ ∈ CM+1(Rn) .

Note that the restriction of f = g + r+ to P satisfies

f(x)− g(x)− r(x) = O(hM+1) , ∀x ∈ P .

Hence
T1(f)(u)− T1(g + r)(u) = O(hM+1) , ∀u ∈ BRh(y) .

Moreover, since g, r ∈ CM+1(Rn),

T1(f)(u)− g(u)− r(u) = O(hM+1) , ∀u ∈ BRh(y) .

Similarly we may show that

T2(f)(u)− g(u) = O(hM+1) , ∀u ∈ BRh(y) .

Therefore,

|py2(u)− r(u)| = |T1(f)(u)− T2(f)(u)− r(u)|
≤ |T1(f)(u)− g(u)− r(u)|+ |g(u)− T2(f)(u)| = O(hM+1) .

Last note that since py2 is defined as the difference between two MLS solutions,
the mappings from y to the coefficients of the polynomial py2 must be smooth.

22

6 Computational Complexity

The correction of the approximation at a point y ∈ Rn consists of three steps.

1. We partition the data points in X ∩B(R+2ΥM+2)h(y) with respect to the
sign of the function r (see Section 4). This partitioning is based upon
several MLS approximations, hence its complexity is O(N ·(d2 ·N+d3 ·j))
where

N := max
{
k ∈ N : ∀y ∈ Rn , #B(R+2ΥM+2)h(y) ∩X ≤ k

}
,

j is the number of connected components of B(R+2ΥM+2)h(y) \ Γr and

d := dim(ΠM (Rn)) .

2. We find the approximating polynomial to the function r, py. In Section 5
we have proposed two methods for finding such a polynomial. Since both
methods are essentially based upon MLS, they have the same complexity
of O(d2 ·N + d3).

3. Last, we set the corrected approximation to be

Q̂f(y) = Qf(y) + E((py)+)(y) .

This step has a complexity of O(N).

7 Numerical results

For our test we took our data set X to be a random set of 412 data points with
fill distance 0.036 in the region

[−0.4, 0.4]2 ⊂ R2 .

Using the sampled data points, we approximated a function, and compared our
approximation to the actual function values. We performed this comparison on
a uniform mesh of 812 points with fill distance h = 0.01 in the region

[−0.36, 0.36]2 ⊂ R2 .

Note that we avoided testing points close to the edge, wishing to avoid approx-
imation errors resulting from partial neighbourhood near the edges. For the
quasi-interpolation we used the MLS approximation with weight function

ω

(
‖y − x‖

h

)
= e−

‖y−x‖2

40h2 .

We approximated the functions fk = g + (rk)+ for 1 ≤ k ≤ 4 where

g(x, y) = ex+y

and

• r1(x, y) = x2 + y2 − 1
5

2

23

-0.1
0.4

0

0.2 0.4

0.1

0.2

0.2

0

0.3

0
-0.2 -0.2

-0.4 -0.4

(a) r1

-0.01
0.4

0

0.01

0.2 0.4

0.02

0.2

0.03

0

0.04

0
-0.2 -0.2

-0.4 -0.4

(b) r2

-0.02
0.4

0

0.2 0.4

0.02

0.2

0.04

0

0.06

0
-0.2 -0.2

-0.4 -0.4

(c) r3

-0.02
0.4

0

0.02

0.2 0.4

0.04

0.2

0.06

0

0.08

0
-0.2 -0.2

-0.4 -0.4

(d) r4

Figure 4: The functions rk for k = 1 , . . . , 4.

• r2(x, y) = x4 + y4 − 1
5

4

• r3(x, y) =
((
x− 1

10

)2
+ y2 − 1

5

2
)
·
((
x+ 1

10

)2
+ y2 − 1

5

2
)

• r4(x, y) = 4 · x4 + y2−x2

4

See fig. 4 for the graphs of these functions.
Unless otherwise specified, we have set the value of M , the maximal total

degree of the approximating polynomials, to 4.
In figs. 5 to 8, one can see a comparison between the errors of the original

MLS approximation, Ef , and our corrected approximations, Ê1f and Ê2f ,
based upon py1 and py2 respectively.

Note that while the errors of the original approximation were distinctly
higher in the vicinity of the singularities, the errors of the corrected approx-
imation based upon py1 have the same order near the singularity and far from
it. Also, the errors of the corrected approximation based upon py2 are much
reduced near the singularity.

In table 1 and fig. 9, there is a comparison of the maximal errors on the
entire domain for varying M .

Here too we can see that the errors of the original approximation attain a
maximum that is independent of M , while the maximal errors of the corrected
approximations decrease as M increases.

24

-6
0.4

-4

-2

0.2 0.4

×10-3

0

0.2

2

0

4

0
-0.2 -0.2

-0.4 -0.4

(a) Ef1

-6
0.4

-4

-2

0.2 0.4

×10-3

0

0.2

2

0

4

0
-0.2 -0.2

-0.4 -0.4

(b) Ê1f1

-6
0.4

-4

-2

0.2 0.4

×10-3

0

0.2

2

0

4

0
-0.2 -0.2

-0.4 -0.4

(c) Ê2f1

Figure 5: Comparison between the original MLS errors and the errors of our
corrected approximations for f1.

-6
0.4

-4

-2

0.2 0.4

×10-4

0

0.2

2

0

4

0
-0.2 -0.2

-0.4 -0.4

(a) Ef2

-6
0.4

-4

-2

0.2 0.4

×10-4

0

0.2

2

0

4

0
-0.2 -0.2

-0.4 -0.4

(b) Ê1f2

-6
0.4

-4

-2

0.2 0.4

×10-4

0

0.2

2

0

4

0
-0.2 -0.2

-0.4 -0.4

(c) Ê2f2

Figure 6: Comparison between the original MLS errors and the errors of our
corrected approximations for f2.

-6
0.4

-4

-2

0.2 0.4

×10-4

0

0.2

2

0

4

0
-0.2 -0.2

-0.4 -0.4

(a) Ef3

-6
0.4

-4

-2

0.2 0.4

×10-4

0

0.2

2

0

4

0
-0.2 -0.2

-0.4 -0.4

(b) Ê1f3

-6
0.4

-4

-2

0.2 0.4

×10-4

0

0.2

2

0

4

0
-0.2 -0.2

-0.4 -0.4

(c) Ê2f3

Figure 7: Comparison between the original MLS errors and the errors of our
corrected approximations for f3.

-2
0.4

-1

0.2 0.4

0

×10-3

0.2

1

0

2

0
-0.2 -0.2

-0.4 -0.4

(a) Ef4

-2
0.4

-1

0.2 0.4

0

×10-3

0.2

1

0

2

0
-0.2 -0.2

-0.4 -0.4

(b) Ê1f4

-2
0.4

-1

0.2 0.4

0

×10-3

0.2

1

0

2

0
-0.2 -0.2

-0.4 -0.4

(c) Ê2f4

Figure 8: Comparison between the original MLS errors and the errors of our
corrected approximations for f4.

25

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

M

-9

-8

-7

-6

-5

-4

-3

-2

-1

lo
g

E

Ef

Ê1f

Ê2f

(a) f1

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

M

-9

-8

-7

-6

-5

-4

-3

-2

-1

lo
g

E

Ef

Ê1f

Ê2f

(b) f2

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

M

-9

-8

-7

-6

-5

-4

-3

-2

-1

lo
g

E

Ef

Ê1f

Ê2f

(c) f3

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

M

-9

-8

-7

-6

-5

-4

-3

-2

-1

lo
g

E

Ef

Ê1f

Ê2f

(d) f4

Figure 9: The errors of the original MLS approximation and the corrected
approximations for varying M values for f1, f2, f3 and f4.

26

Table 1: Comparison of the maximal errors for varying M .

M E(f1) Ê1(f1) Ê2(f1) E(f2) Ê1(f2) Ê2(f2)

1 h0.99 h0.87 h0.99 h1.32 h1.34 h1.36

2 h1.45 h2.27 h2.19 h2.06 h1.95 h1.91

3 h1.49 h3.02 h2.84 h2.26 h2.58 h2.41

4 h1.53 h4.07 h3.86 h2.50 h4.32 h4.03

5 h1.57 h4.82 h4.61 h2.55 h5.09 h5.01

6 h1.59 h5.91 h5.66 h2.54 h6.26 h5.99

M E(f3) Ê1(f3) Ê2(f3) E(f4) Ê1(f4) Ê2(f4)

1 h1.28 h1.33 h1.35 h1.18 h1.19 h1.20

2 h2.00 h2.00 h2.00 h1.74 h1.62 h1.75

3 h2.12 h2.30 h2.30 h1.83 h1.64 h2.07

4 h2.35 h4.21 h3.81 h2.01 h4.10 h3.92

5 h2.38 h4.94 h4.92 h2.06 h4.86 h4.68

6 h2.42 h6.09 h5.64 h2.06 h6.02 h5.77

In fig. 10, we drew the curves {rk = 0} on which the function fk has singular-
ities. We also drew the curves {py1(y) = 0} and {py2(y) = 0}, for each rk, these
are our approximations of the curve {rk = 0}. We have used the MATLAB
contour command to draw these curves.

In these figures we see that the curves {rk = 0} are indistinguishable from
their approximations based upon py1 and py2.

In fig. 11, we outline the Hausdorff distance between the singularity curve
{r1 = 0} and our approximations of this curve, {py1 = 0} and {py2 = 0} for vary-
ing values of fill-distance h. Note that as we took varying h values we did not
change the number of data points, but only the size of the region in which we
test the procedure.

In fig. 12, we compare the original approximation errors to the corrected
approximations errors for varying h values.

Here also it is clear that the corrected approximation errors are much more
affected by the decreasing h than the original approximation errors.

We also tested our partitioning with respect to the sign of rk algorithm (see
section 4) on our data set for 1 ≤ k ≤ 4. In figs. 13 to 16 we show the steps of
the partitioning algorithm.

Note how well the algorithm succeeds in partitioning the data points without
any knowledge of the function r.

References

[1] F. Arandiga, A. Cohen, R. Donat, and N. Dyn. Interpolation and ap-
proximation of piecewise smooth functions. SIAM Journal on Numerical
Analysis, 43(1):41–57, 2005.

27

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

-0.3

-0.2

-0.1

0

0.1

0.2

0.3 r=0

py
1
=0

py
2
=0

(a) {r1 = 0}
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

-0.3

-0.2

-0.1

0

0.1

0.2

0.3 r=0

py
1
=0

py
2
=0

(b) {r2 = 0}

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

-0.3

-0.2

-0.1

0

0.1

0.2

0.3 r=0

py
1
=0

py
2
=0

(c) {r3 = 0}
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

-0.3

-0.2

-0.1

0

0.1

0.2

0.3 r=0

py
1
=0

py
2
=0

(d) {r4 = 0}

Figure 10: Comparison between the curves {rk = 0} (red) and their approxima-
tions {py1 = 0} (blue dashed) and {py2 = 0} (green dotted) for k = 1 , . . . , 4.

-2.4 -2.2 -2 -1.8 -1.6 -1.4 -1.2 -1 -0.8

log h

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

lo
g

di
st

an
ce

dist({r = 0} , {py1(y) = 0})

dist({r = 0} , {py2(y) = 0})

Figure 11: The Hausdorff distance between the curve {r1 = 0} and our approx-
imations of this curve {py1 = 0} and {py2 = 0} for varying values of h.

28

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

log h

-9

-8

-7

-6

-5

-4

-3

-2

-1

lo
g

E

Ef

Ê1f

Ê2f

(a) f1

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

log h

-9

-8

-7

-6

-5

-4

-3

-2

lo
g

E

Ef

Ê1f

Ê2f

(b) f2

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

log h

-10

-9

-8

-7

-6

-5

-4

-3

-2

lo
g

E

Ef

Ê1f

Ê2f

(c) f3

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

log h

-12

-10

-8

-6

-4

-2

0

2

4

lo
g

E

Ef

Ê1f

Ê2f

(d) f4

Figure 12: The errors of the original MLS approximation and the corrected
approximations for varying h values for f1, f2, f3 and f4.

29

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(a) X \ S
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(b) S

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(c) P
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(d) X \ P

Figure 13: The results of the partitioning with respect to the signs of r1.

30

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(a) X \ S
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(b) S

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(c) P
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(d) X \ P

Figure 14: The results of the partitioning with respect to the signs of r2.

31

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(a) X \ S
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(b) S

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(c) P
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(d) X \ P

Figure 15: The results of the partitioning with respect to the signs of r3.

32

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(a) X \ S
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(b) S

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(c) P
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(d) X \ P

Figure 16: The results of the partitioning with respect to the signs of r4.

33

[2] R. Archibald, A. Gelb, R. Saxena, and D. Xiu. Discontinuity detection
in multivariate space for stochastic simulations. Journal of Computational
Physics, 228(7):2676–2689, 2009.

[3] R. Archibald, A. Gelb, and J. Yoon. Determining the locations and discon-
tinuities in the derivatives of functions. Applied Numerical Mathematics,
58(5):577–592, 2008.

[4] D. Batenkov. Complete algebraic reconstruction of piecewise-smooth func-
tions from fourier data. arXiv preprint arXiv:1211.0680, 2012.

[5] D. Batenkov, N. Sarig, and Y. Yomdin. Algebraic reconstruction of
piecewise-smooth functions from integral measurements. arXiv preprint
arXiv:1103.3969, 2011.

[6] D. Batenkov and Y. Yomdin. Algebraic fourier reconstruction of piecewise
smooth functions. Mathematics of Computation, 81(277):277–318, 2012.

[7] L. Bos and K. Salkauskas. Moving least-squares are backus-gilbert optimal.
Journal of Approximation Theory, 59(3):267–275, 1989.

[8] A. Harten. ENO schemes with subcell resolution. Journal of Computational
Physics, 83(1):148 – 184, 1989.

[9] D. Levin. The approximation power of moving least-squares. Mathematics
of Computation of the American Mathematical Society, 67(224):1517–1531,
1998.

[10] Y. Lipman and D. Levin. Approximating piecewise-smooth functions. IMA
Journal of Numerical Analysis, 30(4):1159–1183, 2010.

[11] C. Markakis and L. Barack. High-order difference and pseudospectral meth-
ods for discontinuous problems. arXiv preprint arXiv:1406.4865, 2014.

[12] P. Morse and K. Ingard. Theoretical Acoustics. International series in pure
and applied physics. Princeton University Press, 1986.

[13] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces.
Applied Mathematical Sciences. Springer, 2003.

[14] L. Plaskota and G. W. Wasilkowski. The power of adaptive algorithms for
functions with singularities. Journal of fixed point theory and applications,
6(2):227–248, 2009.

[15] L. Plaskota, G. W. Wasilkowski, and Y. Zhao. An adaptive algorithm for
weighted approximation of singular functions over r. SIAM Journal on
Numerical Analysis, 51(3):1470–1493, 2013.

[16] H. Wendland. Scattered data approximation, volume 17. Cambridge uni-
versity press, 2004.

34

	1 Introduction
	2 Main results
	2.1 The corrected approximation

	3 Proofs
	3.1 Proof of thm:Gbound
	3.2 Proof of thm:goodcorrection
	3.3 Proof of thm:smooth
	3.4 Proof of thm:curvesdiff

	4 Partitioning the data points in X with respect to the sign of r
	5 Approximation of the signed function r
	5.1 Approximation by error analysis
	5.2 Approximation by partitioned MLS

	6 Computational Complexity
	7 Numerical results

