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Abstract

We construct and analyze piecewise approximations of functional data on arbitrary 2D bounded 

domains using generalized barycentric finite elements, and particularly quadratic serendipity 

elements for planar polygons. We compare approximation qualities (precision/convergence) of 

these partition-of-unity finite elements through numerical experiments, using Wachspress 

coordinates, natural neighbor coordinates, Poisson coordinates, mean value coordinates, and 

quadratic serendipity bases over polygonal meshes on the domain. For a convex n-sided polygon, 

the quadratic serendipity elements have 2n basis functions, associated in a Lagrange-like fashion 

to each vertex and each edge midpoint, rather than the usual n(n + 1)/2 basis functions to achieve 

quadratic convergence. Two greedy algorithms are proposed to generate Voronoi meshes for 

adaptive functional/scattered data approximations. Experimental results show space/accuracy 

advantages for these quadratic serendipity finite elements on polygonal domains versus traditional 

finite elements over simplicial meshes. Polygonal meshes and parameter coefficients of the 

quadratic serendipity finite elements obtained by our greedy algorithms can be further refined 

using an L2-optimization to improve the piecewise functional approximation. We conduct several 

experiments to demonstrate the efficacy of our algorithm for modeling features/discontinuities in 

functional data/image approximation.
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1. Introduction

The problem of approximating/fitting given data by smooth or piecewise-smooth bivariate 

functions has been extensively studied in fields such as computer aided geometric design, 

computer graphics and computer vision [34]. There are a great variety of bivariate functions 

used in data approximation, such as power functions [12], various splines [19, 6, 23], and 

radial basis functions [7]. The appropriate choice of bivariate function spaces for the purpose 

of data approximation depends on the characteristics of the given input data. For example, 

input data acquired from smooth surfaces are expected to be approximated by globally 

smooth functions or piecewise splines with in-built smoothness control, such as B-splines 

[30] and DMS-splines [9]. Piecewise continuous surfaces that have sharp curvilinear features 

are expected to be approximated by a set of piecewise smooth functions which can be 

defined on disjoint regions independently. The focus of our paper is in constructing such 

functional data approximations, using smooth polygonal finite elements, with adaptation to 

data features.

A fundamental problem in piecewise smooth approximation is to appropriately decompose 

the parametric domain into a modest number of sub-regions, such that the local and global 

approximation reaches a pre-specified error threshold. Besides tensor product splines, which 

are limited to work on rectangular domains, there are a large number of existing methods 

utilizing piecewise polynomials on triangulations of the domain which interpolate or 

approximate input data [23, 22]. Furthermore, significant effort has been devoted to 

constructing approximations on triangulations, with continuity of higher order across 

triangle boundaries [35, 29] and (or) with higher approximation orders [50, 49, 18]. In 

certain applications, the lack or presence of appropriate approximation precision is most 

important. For example, linear functions on triangulations are commonly used in image data 

approximation. Since the optimal solution of image data approximation by piecewise smooth 

functions is generally unavailable, a large number of previous papers focus on finding sub-

optimal solutions and in a heuristic manner. Basically, these methods may proceed in either 

of the following two ways: start with a sparse triangulation and adaptively refine the 

triangulation to lower the approximation error [38, 25, 1, 2]; start from a dense triangulation 

and gradually decrease the number of vertices to satisfy a pre-specified error threshold [21]. 

However, most mentioned methods suffer from too many decomposed patches, and low 

approximation precision within each patch.

Of course, the decomposed sub-regions or the support of the patches do not need to be 

triangles or rectangles, and can have a patch function basis yielding high approximation 

orders. In this context, the approximation problem becomes more complicated and achieving 

optimal approximations is still actively being pursued [3, 12, 10, 11]. Voronoi tessellations 

are perhaps the most popular polygonal tessellations used for piecewise approximation, due 

to their elegant geometric properties and duality with Delaunay triangulations. There are 

several papers in the numerical computation and PDE communities which use Voronoi 

tessellations to discretize the simulation domain, and use generalized barycentric coordinates 

(GBCs) [13] or their higher order generalizations [36]. These papers utilize relatively 

uniform Voronoi tessellations to achieve numerical robustness of finite element 

computations. For example, the maximal Poisson-sampling method [42], the centroidal 
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Voronoi diagram method [46], and the short-edge removing method [44] were used for 

generating Voronoi meshes that are uniform in size. Instead of using uniform Voronoi 

diagrams, the focus of recent attempts has been on generating non-uniform Voronoi or 

optimized diagrams to achieve adaptive piecewise approximations. In particular, 

optimization methods were proposed in [33] and [8] to generate non-uniform Voronoi 

tessellations adapting to the features of the target functions or images, where the features or 

discontinuities were well preserved by aligning the Voronoi cells along them. However, 

these methods find it difficult to achieve geometric continuities across cell boundaries as 

they use full power order polynomials on each Voronoi cell. In this paper, while we also 

focus on piecewise approximation on arbitrary Voronoi diagrams, in contrast to previous 

methods, we resort to generalized barycentric coordinates based quadratic serendipity 

element (QSE) bases [36]. One is able to achieve continuous approximations over non-

uniform Voronoi meshes, while obtaining superior trade-offs between approximation 

precision and the number of Voronoi cells. The proposed method can additionally be applied 

to a function that has discontinuities.

On a convex n-sided polygon, QSEs have 2n basis functions, associated in a Lagrange-like 

fashion to each vertex and each edge midpoint [36]. QSEs have many attractive theoretical 

properties, such as interpolation, smoothness, and quadratic polynomial reproducibility, 

therefore they are ideal for the purpose of piecewise continuous approximation. For 

example, benefiting from the interpolation property of QSEs, the approximation with a 

quadratic convergence rate on each sub-region and the C0 continuity between adjacent 

patches can be directly obtained without solving any linear system with respect to the 

coefficients associated with the bases. In this paper, we verify the theoretical properties of 

quadratic serendipity bases by numerical experiments and propose two polygonal mesh 

generation methods for them to better approximate functional and scattered data (including 

triangular meshes and images). Our paper’s specific contributions include:

1. We construct and analyze various trade-offs in piecewise approximations of 

functional data, discrete triangular mesh surfaces and images, using generalized 

barycentric finite elements and particularly quadratic serendipity elements for 

planar polygons. Moreover, we compare the approximation qualities (precision/

convergence) of these partition-of-unity, generalized barycentric finite elements, 

through several numerical experiments, and using various barycentric 

coordinates. These are Wachspress coordinates [47], mean value coordinates 

(MVCs) [20], natural neighbor coordinates (also called as Sibson’s coordinates) 

[40], and Poisson coordinates [26].

2. Two greedy algorithms to generate Voronoi meshes for adaptive functional/

scattered data approximation. The results show space/accuracy advantages for 

the quadratic finite elements on these Voronoi polygonal domains versus 

traditional finite elements over simplicial meshes.

3. The Voronoi polygonal meshes and parameter coefficients of generalized 

barycentric coordinates based quadratic serendipity finite elements are further 

refined using an L2-optimization method to improve the piecewise 

approximation. Our results thereby achieve a better trade-off between the 
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approximation error and the number of Voronoi cells that cover the data domain. 

Additionally, our experimental results show the efficacy of our algorithms for 

modeling features/discontinuities in functional data/image approximation.

The rest of the paper is organized as follows. In Section 2, we review the definition of 

quadratic serendipity elements for convex planar polygons. In Section 3, we compare 

approximation qualities (precision/convergence) of barycentric coordinates on Delaunay 

triangulations/Voronoi diagrams and quadratic serendipity elements on Voronoi diagrams. 

Two greedy algorithms are proposed to generate Voronoi diagrams which adapt to the 

distributions of the given data. In Section 4, we further improve the Voronoi diagrams by 

optimizing a tailored objective function such that approximation results better recover the 

features in the given data. In Section 5, a mesh optimization method is applied to image 

approximation, and we show various examples by fitting quadratic serendipity elements to 

different images. Finally, we present our conclusions and directions for further work in 

Section 6.

2. Quadratic serendipity elements for convex planar polygons

Generalized barycentric coordinates on general polygons are a convenient tool to linearly 

interpolate data that is given on a polygonal domain. Their widespread usage ranges from 

computer graphics through to computational mathematics. In particular, generalized 

barycentric coordinates span the space of linear polynomials on general polygons. Hence, 

they are considered as the shape functions for polygonal finite elements and utilized in 

various applications [15, 16, 31, 32, 37, 17, 43, 44, 45, 48]. Despite their varieties, only a 

first order of approximation can be achieved in these cases. To improve the approximation 

quality or convergence rate, one can use bases with higher orders. Naturally, the pairwise 

products of the bases from the linear elements span the space of quadratic polynomials. In 

this approach, the number of bases blows up quadratically with respect to the number of 

polygon vertices. Moreover, a number of pairwise products vanish along the polygonal 

boundaries, and thus do not contribute to inter-element continuity. Rand et al. provided a 

way of reducing the space of functions by piecing them together [36]. The reduced space 

still forms a continuous polygonal spline space with quadratic reproducibility and retains 

inter-element continuity. The corresponding quadratic finite elements are called generalized 
barycentric coordinates based quadratic serendipity elements (QSEs), which are a 

generalization of serendipity elements for quadrilateral cases [51, 5, 4]. Then, Sukumar 

presented the development of quadratic maximum-entropy serendipity shape functions on 

arbitrary planar polygons by maximizing an objective functional subject to the constraints 

for quadratic completeness [36]. This method involves inexact and low efficient evaluations 

as it requires solving certain optimization problems numerically. Recently, Floater and Lai 

provided a method of constructing polygonal splines of order two or higher over a polygonal 

domain by using not only GBCs but also the local barycentric coordinates defined by triples 

of consecutive vertices of a polygon [15]. Their construction for the quadratic case is simpler 

while slightly more time-consuming than the quadratic serendipity finite elements that 

appeared in [36] (see statistics of running times in Section 5). In this paper, we develop 

algorithms for applications of partition-of-unity finite elements in functional/scattered data 
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approximation, and while we use QSEs [36] as examples, our methods are applicable to 

other compactly supported finite elements on polygonal domains.

Consider a planar polygon Ω with n vertices {v1, v2,⋯, vn} ordered counter-clockwise. 

Assume the polygon is not self-intersecting and has no than three consecutive collinear 

vertices. Then each vertex vi can be associated with a GBC λi. Starting from a set of GBCs 

λi i = 1
n  defined by an n-sided polygon Ω, the pairwise products generate a quadratic 

function set {μi,j := λiλj|i, j = 1,⋯, n}. Notice that μi,j = μj,i := λiλj, hence each vertex can 

be associated with a quadratic function μi,i. And each edge or interior diagonal of the 

polygon can be associated with a function 2μi,j with i < j. These quadratic bases naturally 

reproduce bivariate constant, linear and quadratic functions. To further reduce the basis 

number and guarantee the Lagrange property, these bases are transformed, using the linear 

combination method of [36].

First, the coefficient 2 of each basis 2μi,j is written as the sum of six numbers as

2 = ci, j
i, i + ci, j

j, j + ci, j
i, i − 1 + ci, j

i, i + 1 + ci, j
j, j − 1 + ci, j

j, j + 1, i − j > 1,

where:

ci, j
i, i =

−2 − 2di
2 − di − d j

, ci, j
j, j =

−2 − 2d j
2 − di − d j

, ci, j
i, i − 1 = s

Iivi + 1
vi − 1vi + 1

,

ci, j
i, i + 1 = s

Iivi − 1
vi − 1vi + 1

, ci, j
j, j − 1 = s

I jv j + 1
v j − 1v j + 1

, ci, j
j, j + 1 = s

I jv j − 1
v j − 1v j + 1

,

Ii(resp. Ij) is the intersection of segments vivj and vi−1vi+1 (resp. vj−1vj+1) (see Figure 1 

(right)),

di = 2
Iivi, j
viv j

, d j = 2
I jvi, j
viv j

, s = 2
2 − di − d j

,

and vi,j is the middle point of the edge with end points vi and vj. Then, each basis 2μi,j for |i
−j| > 1 can be written as the sum of six terms, which only differ in their coefficients, as

2μi, j = ci, j
i, i μi, j + ci, j

j, jμi, j + ci, j
i, i − 1μi, j + ci, j

i, i + 1μi, j + ci, j
j, j − 1μi, j + ci, j

j, j + 1μi, j, i − j > 1,

The six terms on the right hand side of the above equation are reallocated to six different 

bases μi,i, 2μi,i−1, 2μi,i+1, μj,j, 2μj,j−1, 2μj,j+1 accordingly, which are associated with vertices 

vi, vj and their adjacent edges (see Figure 1 (left)). More precisely, we obtain 2n bases on the 

polygonal domain Ω: ξi,i and ξi,i+1 for i = 1,⋯, n, associated with vertex vi and the middle 

point of edge vivi+1, respectively, where
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ξi, i = μi, i + ∑
j, i − j > 1

ci, j
i, i μi, j and ξi, i + 1 = 2μi, i + 1 + ∑

j, i − j > 1
2ci, j

i, i + 1μi, j

+ ∑
j, i − j > 1

2ci + 1, j
i + 1, jμi + 1, j .

Finally, to guarantee the Lagrange property, we define

ψi, i = ξi, i − ξi, i + 1 − ξi − 1, i, and ψi, i + 1 = 4ξi, i + 1 .

It has been proved in [36] that the function set {ψi,j|i = j or j = i + 1} defined by the above 

method has the properties of constant, linear and quadratic precision and Lagrange like 

property. The polygonal domain with the function set {ψi,j|i = j or j = i + 1} forms a 

construction of quadratic serendipity elements on convex polygons derived from generalized 

barycentric coordinates. Examples of MVCs, Wachspress coordinates, Poisson coordinates, 

and natural neighbor coordinates based QSE bases on a six-sided polygonal domain are 

shown in Figure 2, where basis functions corresponding to the vertex with a large interior 

angle are plotted to better distinguish the difference between each other. In the later sections, 

we will use the QSEs to fit discrete data and approximate analytic functions.

3. QSEs for functional data approximation

Quadratic serendipity elements are suitable for approximating given functions to any desired 

accuracy as long as the corresponding domains are appropriately discretized into polygonal 

elements. Moreover, the boundary values can be interpolated. QSEs are also adoptable for 

fitting discrete data when a data parameterization (i.e., a one-to-one mapping from the 

discrete data to a suitable domain [14]) is given. Owing to their quadratic polynomial 

reproduction property, QSEs can approximate functions with a quadratic convergence rate. 

In this section, we verify the quadratic convergence property of QSE bases in approximating 

an analytic function on a square domain. In addition, two greedy algorithms are proposed for 

adaptive QSEs approximation.

3.1. Notation

Assume that the input is a set of M vertices sampled from a given function f (x, y) defined 

over domain Ω = [0, 1] × [0, 1]. We denote the sampling points on Ω as (αi, βi), where i = 

1,⋯, M. Assume that the domain Ω is divided into N polygonal cells with a tessellation τ = 

{Ωk ⊂ Ω | k = 1,⋯,N} and each polygonal cell Ωk has Lk vertices ordered counter-clockwise 

and denoted by {vl | l = 1,⋯, Lk}. Then the fitting on each cell Ωk is constructed as

Qk(x, y) = ∑
i = 1

Lk
f (vi, i)ψ i, i + f (vi, i + 1)ψ i, i + 1, (1)
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where vi,i, vi,i+1, ψi,i and ψi,i+1 are defined as described in the previous section. Then the 

approximate surface is a group of C0-connected patches Q(x, y) = ∑k = 1
N Qk(x, y). The fitting 

error at the parameter point (αi, βi) is defined as ei = |Q (αi, βi) − f (αi, βi)|. Then the 

maximum error (M.E.) is max {ei|i = 1,⋯, M} and the root-mean-square error (R.M.S.E.) is 

∑ei
2/M.

3.2. Verification of the quadratic approximation property

Function 1—

f (x, y) = 0.1(1 + cos(2πx) sin(2πy)), (x, y) ∈ Ω  = [0, 1] × [0, 1] .

In this section, we verify the quadratic approximation property of QSEs through 

experiments. The approximated analytic function we use here is defined as Function 1. The 

input is a grid mesh with M = 513 × 513 vertices uniformly sampled from the function. The 

domain is progressively divided into N = 16, 64, 256, 1024, 4096 cells by a special Voronoi 

diagram generation method, called centroidal Voronoi tessellation (CVT) method [27], such 

that cells approximately have a uniform size (i.e., diameter) in the same mesh and are about 

half the size of the cells in successive meshes. Table 1 summarizes the number of bases, 

M.E., and R.M.S.E. in each level of meshes and the ratios of M.E. and R.M.S.E. between 

successive levels of meshes. As a comparison, we also report the fitting errors by using 

MVCs on the same Voronoi diagram (VD) and barycentric coordinates (BCs) on the 

Delaunay triangulation (DT) with the same number of faces. It can be seen that the expected 

quadratic convergence rate can be achieved using QSEs. Approximations using MVCs on 

VD and BCs on DT only show a linear rate of convergence. It is also worth noting that the 

number of bases of QSEs on VD only increases roughly linearly with the number of cells. 

And the number of QSE bases is less than three times of the number of MVC bases on VD 

and less than ten times of the number of BC bases on DT. The resultant surfaces constructed 

on 64 cells are shown in Figure 3.

3.3. Voronoi diagram based QSE fitting/approximation algorithms

Note that, if we adopt uniformly partitioned domains for surface fitting, such as uniformly 

refined polygonal meshes in [24], a large number of uniform cells may be needed to reach a 

pre-specified fitting error threshold, especially when the approximated function oscillates 

unevenly. To reduce the cell number and minimize the fitting error in the approximation, an 

adaptive cell generation method is need. In this section, we propose two algorithms for 

approximating analytic functions or discrete data (with a given parametrization) using MVC 

based QSEs. Both algorithms take a rectangular gridded height field as input, and 

approximate it with a group of C0-connected QSEs constructed on a Voronoi mesh, i.e., a 

network of Voronoi cells tessellating the function domain. We begin with a coarse Voronoi 

mesh that is restricted to the function domain. For example, the initial mesh used here is the 

restricted Voronoi diagram generated by the four corners of the domain. Then on each 

iteration, the Voronoi mesh is refined by using a greedy point insertion strategy, which seeks 

to insert one or several points in the domain to locally lower the approximation error while 

keeping the previously inserted points fixed. By refining the Voronoi cells, the 
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approximation quality of the associated QSEs is improved progressively. The process of 

refinement continues until the approximation algorithm reaches a desired error threshold or 

exhausts a pre-defined budget on the number of elements.

Algorithm 1

Voronoi mesh refinement algorithm by inserting the circumcenter of the Delaunay triangle 

with the highest error.

In each iteration, let pi be the parametric point of the point vi ∈ R3 with the highest error in 

the input data and T be the dual Delaunay triangulation of the current Voronoi mesh. Then, 

two different Voronoi mesh refinement methods are given as follows:

The first method is based on eliminating the Delaunay triangle fj of T where pi is located. A 

point is inserted to the circumcenter of fj if it is inside the domain, otherwise, the middle 

point of the longest edge of fj is inserted. Pseudo-code is given in Algorithm 1. Our 

refinement method is similar to the Delaunay refinement approach [39]. Although our 

algorithm inevitably introduces cells with short edges or large angles, as can be observed in 

Figure 6–7, which may violate the criteria for a “well-shaped polygonal element” [17, 41], 

experiments show that it usually generates polygonal meshes that are good enough for the 

functional data approximation applications.
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Algorithm 2

Voronoi mesh refinement algorithm by refining the facet with the highest data 

approximation error.

The second method is based on progressively eliminating the highest approximation error. It 

constructs Voronoi cells with a vertex coincident with pi, such that the associated QSEs can 

interpolate the point vi with the currently highest error. Pseudo-code is given in Algorithm 2. 

Specifically, a circle C centered at pi continues to grow until it touches a vertex tj of the dual 

Delaunay triangulation T. Then two points t1
∗ and t2

∗ are sampled on this circle. Furthermore, 

positions of t1
∗ and t2

∗ restricted on the circle C are optimized by the Lloyd’s method [28], 

such that the existing points and newly added points distribute evenly (see Figure 4). 

Voronoi cells associated with tj, t1
∗ and t2

∗ have pi as a vertex, therefore, the associated QSEs 

interpolate the data point vi associated with parametric point pi.

As the two approximation algorithms differ only in the Voronoi mesh refinement 

approaches, we also refer to the two greedy algorithms Algorithm 1 and Algorithm 2 as the 

same as their refinement approaches, when there is no ambiguity. In our experiments, we 

find that while both algorithms generate similar results in the sense that they reach a similar 

error threshold by using almost the same number of cells, an advantage of the second 

algorithm is that it inserts two points in each iteration, so reaches the error threshold by 

using fewer iterations. For brevity, we only report the results generated by Algorithm 1 here. 

We also present an comparison of approximation abilities of MVC based QSEs/MVCs on 

VD and BCs on DT through experiments, where all the cells are generated by Algorithm 1. 

Here, we only use MVC based QSEs to illustrate the feasibility of the proposed greedy 

algorithms. Comparisons between different coordinates based QSEs will be reported in the 

following section.

Function 2—

f (x, y) = 10−5exp
7((x − 1

4)
2

+ (y − 1
3)

2
)
, (x, y) ∈ Ω = [0, 1] × [0, 1] .
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Two models are used as test data sets. The first data set is uniformly sampled from the 

analytic Function 2. The plots of R.M.S.E. against the cell number in Figure 5 clearly show 

that the increasing cell numbers decrease the approximation error. In particular, the 

algorithm with MVC based QSEs on VD uses far fewer cells (equally, iteration steps) to 

reach the same error threshold than with other two kinds of finite elements. The 

approximation results with R.M.S.E. just falling below the threshold of 0.01 are shown in 

Figure 6, where the first, second and third rows are the approximation results by MVC based 

QSEs on VD (19 cells), MVCs on VD (116 cells), and BCs on DT (156 triangular faces). 

The first and second columns show the result surfaces with interpolated points and curved 

cell boundaries, while the third column shows the color-coded approximation errors and the 

last column shows the tessellations generated by Algorithm 1.

The algorithm can be naturally applied to image data or scattered data points, as long as 

there is an appropriate parametrization. Figure 7 shows approximation results with a 

R.M.S.E threshold of 0.001 on the second test model, i.e., a triangular mesh with its 2D 

parametrization. Similar to the case of analytic function above, MVC based QSEs use far 

fewer finite elements (equally, iterations) than the other two types of finite element bases to 

reach the same error threshold. Furthermore, MVC based QSEs generate a visually smoother 

surface.

4. Optimized Voronoi mesh generation

As can be observed from Figure 6 and Figure 7 that input data with more sharp features may 

need more cells for the approximation. However, there is no guarantee that Algorithm 1 can 

recover all these features, as for example, in the mouth region in Figure 7, see also the 

approximation around various features in Figure 9 and Figure 10. One possible reason is that 

the feature lines on the parametric domain may cross Voronoi cells, hence the features are 

blurred. Intuitively, cells aligning along the feature lines on the domain can be helpful for 

recovering the sharp features, as the QSE surface is only C0 on cell boundaries while it is 

smooth in the interior of a Voronoi cell. In this section, we take Voronoi meshes generated 

by Algorithm 1 as input and further optimize the Voronoi meshes by using an L2 

optimization method toward feature-conforming Voronoi meshes, such that the 

approximation results of input image data with sharp features can be further improved.

4.1. Objective function

Assume that f (x) is a function defined over a compact 2D domain Ω, and the domain is 

discretized by a Voronoi tessellation 𝒯 = Ωk ⊂ Ω k = 1, …, N  of a site set X = xk k = 1
N , 

where Ωk is a Voronoi cell of site xk ∊ X. We can define the approximation error in L2 sense 

as follows:

E( Qk k = 1
N , X) = ∑

k = 1

N ∫
Ωk

f (x) − Qk(x)
2
dx, (2)
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where Qk = ∑
i = 1

Lk
f (vi, i)ψ i, i + f (vi, i + 1)ψ i, i + 1 is the approximate function on Ωk as defined in 

Equation (1). Note that the above L2 approximation error only depends on the site positions 

X, as the bases ψi,i or ψi,i+1 as well as their coefficients are defined by the positions of 

vertices of the cells (equally, the sites). An efficient method for minimizing Equation (2) 

usually requires the computation of gradient. However, the bases are rational functions with 

respect to the positions of vertices of cells, and the expressions of vertex positions with 

respect to site positions also involve multiple square root terms. Hence, the direct 

computation of gradient is complicated and time-consuming. To simplify the computation, 

we minimize a slightly modified objective function as follows:

E( Qk
∗

k = 1
N , X) = ∑

k = 1

N ∫
Ωk

f (x) − Qk
∗(x)

2
dx, (3)

where Qk
∗ = ∑

i = 1

Lk
αi, i

k ψ i, i + αi, i + 1
k ψ i, i + 1 is the optimal approximation on Ωk, αi, i

k  and αi, i + 1
k

are the coefficients associated with bases ψi,i and ψi,i+1 on Ωk, respectively. Intuitively, the 

modified objective function allows the coefficients αi,i (or αi,i+1) associated with the same 

vertex (or midpoint of an edge) to be different on the adjacent cells, hence, relaxes the C0 

continuity between adjacent patches. This modification is reasonable since if the 

approximation surface is close enough to the given continuous function, then the different 

coefficients associated with the same vertex will be close to each other. A further stitching 

operation can be performed to achieve C0 continuity. This patch-stitching procedure leads to 

an increase in approximation errors. To avoid the deterioration in approximation quality, an 

intuitive way of finding the best stitched patches is to solve for the coefficients in a linear 

least square sense. Specifically, based on the tessellation of the minimizer of Equation (3), 

we solve a linear least squares problem in the entire domain by restricting all the coefficients 

associated with the same vertex/midpoint of an edge to be equal. A simpler, yet more 

efficient method adopted in this paper for ensuring the C0 continuous between patches is to 

replacing the coefficients associated with the same vertex with the same value, e.g. the 

average of all the associated coefficients. It is because that Voronoi meshes with a large 

number of cells (relative to image resolution) generate unstitched patches with very small 

gaps between them. In other words, the coefficients of the bases corresponding to the same 

vertices/midpoints, though not equal, are very close to each other. Moreover, averaging these 

coefficients have no significant influence, either on the approximation error or on the visual 

effect. Whereas, if the given function is discontinuous (such as image data), coefficients 

associated with the same vertex may be required to be different, especially on discontinuous 

regions. We will show this in Section 5. In this case, the stitching step is unnecessary.

4.2. Optimization method

To simplify the computation, we optimize alternately between the optimal approximations 

Qk
∗

k = 1
N

 and site set X. For a fixed X (equally, partition 𝒯), the optimal approximation 

Cao et al. Page 11

Comput Aided Geom Des. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Qi
∗(x) on each cell Ωk, i.e. the coefficients αi, i

k  and αi, i + 1
k , can be obtained by solving a least-

squares problem on each cell individually. On the other hand, with the fixed functions 

Qk
∗

k = 1
N

, the gradient of the objective function in Equation (3) can be derived as follows :

∂E(X)
∂xi

= ∑
j ∈ Ji

∫Ωi, j
( f (x) − Qi

∗(x) 2 − f (x) − Q j
∗(x) 2)

x − xi
x j − xi

ds,

where Ji is the set of indices of the sites whose Voronoi cells are adjacent to Ωi. Then we 

adopt a modified gradient descent method proposed in [8] for an efficient solution to the L2 

optimization. For the sake of completeness, we give a brief description of the L2 

optimization method here. Beginning with an initialization, we optimize all the positions of 

the sites by:

xi
( j + 1) = xi

( j) − δi
( j)∂E(X)

∂xi
/ ∂E(X)

∂xi
, i = 1, …, N,

where j is the index of the current iteration, and δi
( j) is the step length for xi. The step length 

δi
( j) is controlled by the formula

δi
( j) = δi

(0) 1
2

j
Imax − j , i = 1, …, N .

where Imax is a specified maximum number of iterations and δi
(0) is the initial step length for 

site xi, which is set as the square root of the area of Ωi.

5. Experimental results

This section presents some examples to demonstrate the optimized approximation capability 

of our algorithms. First, we approximate an analytic function f (x, y) = x2 + y2, where (x, y) 

∈ [−1, 1] × [−1, 1], by using four different barycentric coordinates (including mean value 

coordinates, Wachspress coordinates, Poissson coordinates and natural neighbor 

coordinates) based QSEs. Totally 1000 sites are generated in the initial step and then the 

Voronoi diagrams are optimized by the method proposed in Section 4. The plots of the 

cumulated errors of the approximate surfaces against the iteration number are shown in the 

right-hand-most figure in Figure 8, from which we can see that the optimization converges 

after about 30 iterations and the Poisson coordinates based QSEs perform slightly better than 

other coordinates in the sense of reaching a lower cumulated approximation error. The initial 

Voronoi diagram and the Voronoi diagram after 50 iterations of the optimization procedure, 

and the color-coded approximation errors of the corresponding approximation results by 

using Poisson coordinates based QSEs are also shown in Figure 8, where the patches on the 

Voronoi cells are stitched to become C0 continuous by simply replacing the coefficients 
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associated with the same vertex with the same value, i.e., the average of all associated 

coefficients. It can be observed that, the Voronoi cells tend to be radially arranged and 

concentrated in the center of the domain after optimization. We also apply our algorithm to 

image approximation and two examples are shown in Figure 9 and Figure 10, respectively. 

Rows from top to bottom are Voronoi diagrams with 1000 cells, approximation images on 

the Voronoi diagram, and color-coded approximation errors. Again, Poisson coordinates 

based QSEs are adopted since they perform slightly better than the others. The stitched and 

unstitched approximation results on initial Voronoi diagrams instead of the final Voronoi 

diagrams are shown in the first and second columns, respectively, to better display the 

artifacts introduced by the stitching, as the visual difference between the stitched and 

unstitched results are less obvious on the final Voronoi diagrams. It can be seen that the 

approximation results without stitching are visually more pleasant than the stitched ones. 

The approximation images after 30 iterations of the optimization procedure without stitching 

are shown in the last columns in both Figure 9 and Figure 10. We can observe that cells tend 

to align along the feature lines of the images, and the errors are lowered and features are 

better preserved after optimization. Our algorithm can also be adapted to other quadratic 

serendipity finite elements, such as the elements proposed in [15]. Through experiments we 

find that our algorithm generates results with similar approximation errors using quadratic 

serendipity finite elements proposed in [36] and [15]. Approximation results of using 

Wachspress based QSEs constructed by [15] and [36] are shown in Figure 11, where the 

former method (804s) took up slightly more time than the later method (717s). We believe 

that our algorithm can also be easily adapted to polygonal elements with higher orders (e.g., 

[15]).

6. Conclusion

In this paper, we construct piecewise approximations of functional data on arbitrary 2D 

bounded domains, using generalized barycentric, quadratic serendipity elements (QSEs) on 

Voronoi cells, and compare them to barycentric finite elements on triangulations. We 

compare approximation qualities of linear and quadratic finite elements through several 

numerical experiments, using different kinds of barycentric and generalized barycentric 

finite elements. Two adaptive mesh refinement methods and an optimization method are 

presented for data approximation by using QSEs. Experimental results show space/accuracy 

advantages for these finite elements on polygonal domains against traditional finite elements 

over simplicial meshes.

Two non-uniform Voronoi mesh generation algorithms are also presented and specifically 

designed for the purpose of surface fitting. They help achieve good tradeoffs between 

approximation accuracy with respect to the the number of Voronoi cells. We shall explore 

such tradeoffs in future work on isogeometric analysis, using quadratic serendipity finite 

elements based on generalized barycentric coordinates over polygonal domains.
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Highlights

• We fit data using quadratic serendipity finite elements on polygonal meshes.

• Two greedy algorithms are proposed to generate Voronoi meshes for adaptive 

fitting.

• An L2-optimization is tailored to further improve the fitting result.

• Our method is efficient in modeling features/discontinuities in data 

approximation.
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Figure 1. 
Quadratic serendipity on a six-sided polygonal domain. The vertices and middle points of 

the edges of the polygonal domain are marked as filled and unfilled circles, respectively. 

(left) A basis 2μi,j associating with an interior diagonal of the polygonal domain contributes 

to six different bases; (right) geometric meaning of the coefficients.
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Figure 2. 
Quadratic serendipity element bases on a six-sided polygonal domain. First column: 

polygonal domain, where the vertices and middle points of the edges of the polygonal 

domain are marked as black and pink points, respectively; the first and second rows are 

QSEs at a vertex and a middle point of an edge of the polygonal domain, respectively, where 

the corresponding vertex and the middle point are marked with circles in the first column. 

Second column to the last column: MVC based QSE bases, Wachspress coordinates based 

QSE bases, Poisson coordinates based QSE bases and natural neighbor coordinates based 

QSE bases. Values of the bases are color-coded, where colors at the top and bottom of the 

color bar represent the maximum and minimum values, respectively.
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Figure 3. 
Approximation results of Function 1 by using 64 elements. Rows from top to bottom are 

approximation results of MVC based QSEs on VD, MVCs on VD, and BCs on DT. 

Columns from left to right are tessellations with 64 elements, interpolated points (red dot 

points), result surfaces, surfaces with curved cell boundaries and color-coded fitting errors 

by the same color bar (dark red indicates the largest error of the three cases and blue 

indicates the value of 0).
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Figure 4. 
The second Voronoi mesh refinement approach. (left) Six points (black dots) and their 

corresponding Voronoi cells (black polygons). Warm colors represent high errors. (right) A 

circle (white) is centered at the parametric point pi with the highest error and touches a 

previously inserted point ti. Two points (pink) on the circle are added to the point set, and pi 

becomes a vertex of the updated Voronoi mesh (gray polygons).
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Figure 5. 
Plots of R.M.S.E. (log-scale) against the cell number for the approximation of Function 2 by 

using Algorithm 1, where three elements including MVC based QSEs/MVCs on VD and 

BCs on DT are used. The cell number is slightly greater than the iteration number for the 

three kind of finite elements. For example, cell number is equal to iteration number plus one 

for the case of BC on DT. To illustrate the efficacy of the adaptive schemes, we also include 

by way of reference, the approximation result by using MVC based QSEs on uniform 

Voronoi cells generated by the farthest point sampling method .
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Figure 6. 
Approximation results of Function 2 by using MVC based QSEs on VD with 19 cells (first 

row), MVCs on VD with 116 cells (second row), and BCs on DT with 156 faces (third row). 

Columns from left to right are the result surfaces with interpolated points, result surfaces 

with curved cell boundaries, color-coded approximation errors, and the tessellations 

generated by Algorithm 1. The R.M.S.E threshold is 0.01.
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Figure 7. 
Approximation results of face model (with 8k vertices) by using MVC based QSEs on VD 

with 156 cells (first row), MVCs on VD with 541 cells (second row), and BCs on DT 1054 

cells (third row). Columns from left to right are the result surfaces, result surfaces with 

interpolated points, color-coded approximation errors, and the tessellations generated by 

Algorithm 1. The R.M.S.E threshold is 0.001.
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Figure 8. 

Approximation results of function f (x, y) = x2 + y2, (x, y) ∈ [−1, 1] × [−1, 1] by using QSEs 

on optimized Voronoi diagram with 1000 cells. (a) Initial Voronoi diagram (where the 

domain is color-coded by the value of the given function); (b) color-coded approximation 

error on the initial mesh (M.E.: 6.9386E – 05, R.M.S.E: 9.9629E – 07); (c) Voronoi diagram 

optimized after 50 iterations; (d) color-coded approximation error on the optimized mesh 

(M.E.: 3.4799E – 05, R.M.S.E: 4.4063E – 07); (e) cumulated approximation errors of the 

results (by using four different generalized barycentric coordinates based QSEs) v.s. fitting 

iteration numbers.
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Figure 9. 
Approximation on Elephant by using Poisson coordinates based QSEs on an optimized 

Voronoi diagram. Rows from top to bottom are: Voronoi diagrams with 1000 cells, 

approximation images and color-coded approximation errors. The first (M.E : 2.2387, 

R.M.S.E. : 0.2887) and second columns (M.E : 1.1684, R.M.S.E. : 0.0872) are the 

approximation results on the initial Voronoi diagram with and without stitching, respectively. 

The last column (M.E : 0.9985, R.M.S.E. : 0.0813) is the approximation results after 30 

iterations of the L2 optimization procedure without patches stitched for C0 continuity. The 

same color code is used in the error visualization in all columns, where colors at the top and 

bottom of the color bar correspond to values of 1.17 and 0, respectively.
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Figure 10. 
Approximation on Lady by using Poisson coordinates based QSEs on an optimized Voronoi 

diagram. Rows from top to bottom are: Voronoi diagrams with 1000 cells, approximation 

images and color-coded approximation errors. The first (M.E : 1.6866, R.M.S.E. : 0.1553) 

and second columns (M.E : 0.8977, R.M.S.E. : 0.0438) are the approximation results on the 

initial Voronoi diagram with and without stitching, respectively. The last column (M.E : 

0.8984, R.M.S.E. : 0.0306) shows the approximation results after 30 iterations of the L2 

optimization procedure without stitching. The same color code is used in the error 

visualization in all columns, where colors at the top and bottom of the color bar correspond 

to values of 0.85 and 0, respectively.
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Figure 11. 
Comparison of approximations using Wachspress coordinates based QSEs constructed by 

two different methods [15, 36]. Input image resolution: 512 × 512. Rows on the top and at 

the bottom are the approximation results by QSEs constructed by [15] and [36], respectively. 

The first and third columns are the initial and final (after 100 optimization steps) Voronoi 

diagrams with 1000 cells. And the second and fourth columns are the color coded 

approximation errors for the initial approximation results (M.E : 0.7479, R.M.S.E. : 0.0768 

for [15], and M.E : 0.7964, R.M.S.E. : 0.0785 for [36]) and the final results (M.E : 0.6866, 

R.M.S.E. : 0.0588 for [15], and M.E : 0.6902, R.M.S.E. : 0.0584 for [36]). The same color 

code is used in the error visualization in all columns, where colors at the top and bottom of 

the color bar correspond to values of 0.70 and 0, respectively. Running times for our 

approximation algorithm using QSE constructions from [15] and [36] are 805s and 717s, 

respectively.
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