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Abstract

We construct and analyze piecewise approximations of functional data on arbitrary 2D bounded
domains using generalized barycentric finite elements, and particularly quadratic serendipity
elements for planar polygons. We compare approximation qualities (precision/convergence) of
these partition-of-unity finite elements through numerical experiments, using Wachspress
coordinates, natural neighbor coordinates, Poisson coordinates, mean value coordinates, and
quadratic serendipity bases over polygonal meshes on the domain. For a convex r-sided polygon,
the quadratic serendipity elements have 2 basis functions, associated in a Lagrange-like fashion
to each vertex and each edge midpoint, rather than the usual 7(n+ 1)/2 basis functions to achieve
quadratic convergence. Two greedy algorithms are proposed to generate Voronoi meshes for
adaptive functional/scattered data approximations. Experimental results show space/accuracy
advantages for these quadratic serendipity finite elements on polygonal domains versus traditional
finite elements over simplicial meshes. Polygonal meshes and parameter coefficients of the
quadratic serendipity finite elements obtained by our greedy algorithms can be further refined
using an Lp-optimization to improve the piecewise functional approximation. We conduct several
experiments to demonstrate the efficacy of our algorithm for modeling features/discontinuities in
functional data/image approximation.
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1. Introduction

The problem of approximating/fitting given data by smooth or piecewise-smooth bivariate
functions has been extensively studied in fields such as computer aided geometric design,
computer graphics and computer vision [34]. There are a great variety of bivariate functions
used in data approximation, such as power functions [12], various splines [19, 6, 23], and
radial basis functions [7]. The appropriate choice of bivariate function spaces for the purpose
of data approximation depends on the characteristics of the given input data. For example,
input data acquired from smooth surfaces are expected to be approximated by globally
smooth functions or piecewise splines with in-built smoothness control, such as B-splines
[30] and DMS-splines [9]. Piecewise continuous surfaces that have sharp curvilinear features
are expected to be approximated by a set of piecewise smooth functions which can be
defined on disjoint regions independently. The focus of our paper is in constructing such
functional data approximations, using smooth polygonal finite elements, with adaptation to
data features.

A fundamental problem in piecewise smooth approximation is to appropriately decompose
the parametric domain into a modest number of sub-regions, such that the local and global
approximation reaches a pre-specified error threshold. Besides tensor product splines, which
are limited to work on rectangular domains, there are a large number of existing methods
utilizing piecewise polynomials on triangulations of the domain which interpolate or
approximate input data [23, 22]. Furthermore, significant effort has been devoted to
constructing approximations on triangulations, with continuity of higher order across
triangle boundaries [35, 29] and (or) with higher approximation orders [50, 49, 18]. In
certain applications, the lack or presence of appropriate approximation precision is most
important. For example, linear functions on triangulations are commonly used in image data
approximation. Since the optimal solution of image data approximation by piecewise smooth
functions is generally unavailable, a large number of previous papers focus on finding sub-
optimal solutions and in a heuristic manner. Basically, these methods may proceed in either
of the following two ways: start with a sparse triangulation and adaptively refine the
triangulation to lower the approximation error [38, 25, 1, 2]; start from a dense triangulation
and gradually decrease the number of vertices to satisfy a pre-specified error threshold [21].
However, most mentioned methods suffer from too many decomposed patches, and low
approximation precision within each patch.

Of course, the decomposed sub-regions or the support of the patches do not need to be
triangles or rectangles, and can have a patch function basis yielding high approximation
orders. In this context, the approximation problem becomes more complicated and achieving
optimal approximations is still actively being pursued [3, 12, 10, 11]. Voronoi tessellations
are perhaps the most popular polygonal tessellations used for piecewise approximation, due
to their elegant geometric properties and duality with Delaunay triangulations. There are
several papers in the numerical computation and PDE communities which use Voronoi
tessellations to discretize the simulation domain, and use generalized barycentric coordinates
(GBCs) [13] or their higher order generalizations [36]. These papers utilize relatively
uniform Voronoi tessellations to achieve numerical robustness of finite element
computations. For example, the maximal Poisson-sampling method [42], the centroidal
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\oronoi diagram method [46], and the short-edge removing method [44] were used for
generating Voronoi meshes that are uniform in size. Instead of using uniform Voronoi
diagrams, the focus of recent attempts has been on generating non-uniform Voronoi or
optimized diagrams to achieve adaptive piecewise approximations. In particular,
optimization methods were proposed in [33] and [8] to generate non-uniform Voronoi
tessellations adapting to the features of the target functions or images, where the features or
discontinuities were well preserved by aligning the Voronoi cells along them. However,
these methods find it difficult to achieve geometric continuities across cell boundaries as
they use full power order polynomials on each Voronoi cell. In this paper, while we also
focus on piecewise approximation on arbitrary Voronoi diagrams, in contrast to previous
methods, we resort to generalized barycentric coordinates based quadratic serendipity
element (QSE) bases [36]. One is able to achieve continuous approximations over non-
uniform Voronoi meshes, while obtaining superior trade-offs between approximation
precision and the number of Voronoi cells. The proposed method can additionally be applied
to a function that has discontinuities.

On a convex r-sided polygon, QSEs have 2 basis functions, associated in a Lagrange-like
fashion to each vertex and each edge midpoint [36]. QSEs have many attractive theoretical
properties, such as interpolation, smoothness, and quadratic polynomial reproducibility,
therefore they are ideal for the purpose of piecewise continuous approximation. For
example, benefiting from the interpolation property of QSEs, the approximation with a
quadratic convergence rate on each sub-region and the €? continuity between adjacent
patches can be directly obtained without solving any linear system with respect to the
coefficients associated with the bases. In this paper, we verify the theoretical properties of
quadratic serendipity bases by numerical experiments and propose two polygonal mesh
generation methods for them to better approximate functional and scattered data (including
triangular meshes and images). Our paper’s specific contributions include:

1. We construct and analyze various trade-offs in piecewise approximations of
functional data, discrete triangular mesh surfaces and images, using generalized
barycentric finite elements and particularly quadratic serendipity elements for
planar polygons. Moreover, we compare the approximation qualities (precision/
convergence) of these partition-of-unity, generalized barycentric finite elements,
through several numerical experiments, and using various barycentric
coordinates. These are Wachspress coordinates [47], mean value coordinates
(MVCs) [20], natural neighbor coordinates (also called as Sibson’s coordinates)
[40], and Poisson coordinates [26].

2. Two greedy algorithms to generate Voronoi meshes for adaptive functional/
scattered data approximation. The results show space/accuracy advantages for
the quadratic finite elements on these Voronoi polygonal domains versus
traditional finite elements over simplicial meshes.

3. The Voronoi polygonal meshes and parameter coefficients of generalized
barycentric coordinates based quadratic serendipity finite elements are further
refined using an Ly-optimization method to improve the piecewise
approximation. Our results thereby achieve a better trade-off between the
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approximation error and the number of Voronoi cells that cover the data domain.
Additionally, our experimental results show the efficacy of our algorithms for
modeling features/discontinuities in functional data/image approximation.

The rest of the paper is organized as follows. In Section 2, we review the definition of
quadratic serendipity elements for convex planar polygons. In Section 3, we compare
approximation qualities (precision/convergence) of barycentric coordinates on Delaunay
triangulations/Voronoi diagrams and quadratic serendipity elements on Voronoi diagrams.
Two greedy algorithms are proposed to generate Voronoi diagrams which adapt to the
distributions of the given data. In Section 4, we further improve the Voronoi diagrams by
optimizing a tailored objective function such that approximation results better recover the
features in the given data. In Section 5, a mesh optimization method is applied to image
approximation, and we show various examples by fitting quadratic serendipity elements to
different images. Finally, we present our conclusions and directions for further work in
Section 6.

2. Quadratic serendipity elements for convex planar polygons

Generalized barycentric coordinates on general polygons are a convenient tool to linearly
interpolate data that is given on a polygonal domain. Their widespread usage ranges from
computer graphics through to computational mathematics. In particular, generalized
barycentric coordinates span the space of linear polynomials on general polygons. Hence,
they are considered as the shape functions for polygonal finite elements and utilized in
various applications [15, 16, 31, 32, 37, 17, 43, 44, 45, 48]. Despite their varieties, only a
first order of approximation can be achieved in these cases. To improve the approximation
quality or convergence rate, one can use bases with higher orders. Naturally, the pairwise
products of the bases from the linear elements span the space of quadratic polynomials. In
this approach, the number of bases blows up quadratically with respect to the number of
polygon vertices. Moreover, a number of pairwise products vanish along the polygonal
boundaries, and thus do not contribute to inter-element continuity. Rand et al. provided a
way of reducing the space of functions by piecing them together [36]. The reduced space
still forms a continuous polygonal spline space with quadratic reproducibility and retains
inter-element continuity. The corresponding quadratic finite elements are called generalized
barycentric coordinates based quadratic serendipity elements (QSEs), which are a
generalization of serendipity elements for quadrilateral cases [51, 5, 4]. Then, Sukumar
presented the development of quadratic maximum-entropy serendipity shape functions on
arbitrary planar polygons by maximizing an objective functional subject to the constraints
for quadratic completeness [36]. This method involves inexact and low efficient evaluations
as it requires solving certain optimization problems numerically. Recently, Floater and Lai
provided a method of constructing polygonal splines of order two or higher over a polygonal
domain by using not only GBCs but also the local barycentric coordinates defined by triples
of consecutive vertices of a polygon [15]. Their construction for the quadratic case is simpler
while slightly more time-consuming than the quadratic serendipity finite elements that
appeared in [36] (see statistics of running times in Section 5). In this paper, we develop
algorithms for applications of partition-of-unity finite elements in functional/scattered data
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approximation, and while we use QSEs [36] as examples, our methods are applicable to
other compactly supported finite elements on polygonal domains.

Consider a planar polygon Q with n7vertices {v1, vy, **, vV} ordered counter-clockwise.
Assume the polygon is not self-intersecting and has no than three consecutive collinear
vertices. Then each vertex v;can be associated with a GBC A;. Starting from a set of GBCs

{Ai}l’f: . defined by an r+sided polygon Q, the pairwise products generate a quadratic

function set {j,;:= AjAji, j=1,-, ni}. Notice that yj; ;= ;= A4 hence each vertex can
be associated with a quadratic function y;, ;. And each edge or interior diagonal of the
polygon can be associated with a function 2 ;with /< /. These quadratic bases naturally
reproduce bivariate constant, linear and quadratic functions. To further reduce the basis
number and guarantee the Lagrange property, these bases are transformed, using the linear
combination method of [36].

First, the coefficient 2 of each basis 2//; is written as the sum of six numbers as

TN S
where:
—-2-2d. -2-2d. Lv.
i1 _ +1
FATSUNN i/ | IS SR 7 ES IV PSR A |
S VRS I N I UV

I {resp. 1)) is the intersection of segments vy ;and vV (resp. Vi1Vj1) (see Figure 1
(right)),

ILv.
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and v;;is the middle point of the edge with end points v;and v, Then, each basis 2 for |/
-/l > 1 can be written as the sum of six terms, which only differ in their coefficients, as
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The six terms on the right hand side of the above equation are reallocated to six different
bases i 245 -1, 285 ir15 Hjij 285 -1, 244 j+1 accordingly, which are associated with vertices
vj, v;and their adjacent edges (see Figure 1 (left)). More precisely, we obtain 2/7bases on the
polygonal domain Q: €, ;and &, 41 for 7= 1,---, n, associated with vertex v;and the middle
point of edge v v 1, respectively, where
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Finally, to guarantee the Lagrange property, we define

Vii=C i1 i,y MY 1=

It has been proved in [36] that the function set {y;|/= jor j= 7+ 1} defined by the above
method has the properties of constant, linear and quadratic precision and Lagrange like
property. The polygonal domain with the function set {y; 1/= jor j= 7+ 1} forms a
construction of quadratic serendipity elements on convex polygons derived from generalized
barycentric coordinates. Examples of MV Cs, Wachspress coordinates, Poisson coordinates,
and natural neighbor coordinates based QSE bases on a six-sided polygonal domain are
shown in Figure 2, where basis functions corresponding to the vertex with a large interior
angle are plotted to better distinguish the difference between each other. In the later sections,
we will use the QSEs to fit discrete data and approximate analytic functions.

3. QSEs for functional data approximation

Quadratic serendipity elements are suitable for approximating given functions to any desired
accuracy as long as the corresponding domains are appropriately discretized into polygonal
elements. Moreover, the boundary values can be interpolated. QSEs are also adoptable for
fitting discrete data when a data parameterization (i.e., a one-to-one mapping from the
discrete data to a suitable domain [14]) is given. Owing to their quadratic polynomial
reproduction property, QSEs can approximate functions with a quadratic convergence rate.
In this section, we verify the quadratic convergence property of QSE bases in approximating
an analytic function on a square domain. In addition, two greedy algorithms are proposed for
adaptive QSEs approximation.

3.1. Notation
Assume that the input is a set of M vertices sampled from a given function 7(x, )) defined
over domain Q = [0, 1] x [0, 1]. We denote the sampling points on Q as (a;, B;), where /=
1,---, M. Assume that the domain Q is divided into A/ polygonal cells with a tessellation z =
{Q4C Q| k=1, N} and each polygonal cell Q4 has L vertices ordered counter-clockwise
and denoted by {v,| /=1,---, Lx}. Then the fitting on each cell Q4 is constructed as

Ly

Q) = L iy + Wi (D)

i=1
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where v;,j, Viq1, wijand ;4 are defined as described in the previous section. Then the
approximate surface is a group of €%-connected patches Q(x, y) = ZQ’ _ 1 Q). The fitting

error at the parameter point (a; B) is defined as e;= |Q (a; B) — f(a;, B)|- Then the
maximum error (M.E.) is max {e}/=1,---, M} and the root-mean-square error (R.M.S.E.) is

1/26,‘2/1‘4-

3.2. Verification of the quadratic approximation property

Function 1—

f(x,y) = 0.1(1 + cosRrx) sin(2zy)), (x,y) € Q =[0,1]x[0,1].

In this section, we verify the quadratic approximation property of QSEs through
experiments. The approximated analytic function we use here is defined as Function 1. The
input is a grid mesh with M =513 x 513 vertices uniformly sampled from the function. The
domain is progressively divided into V=16, 64, 256, 1024, 4096 cells by a special \oronoi
diagram generation method, called centroidal Voronoi tessellation (CVT) method [27], such
that cells approximately have a uniform size (i.e., diameter) in the same mesh and are about
half the size of the cells in successive meshes. Table 1 summarizes the number of bases,
M.E., and R.M.S.E. in each level of meshes and the ratios of M.E. and R.M.S.E. between
successive levels of meshes. As a comparison, we also report the fitting errors by using

MV Cs on the same Voronoi diagram (VD) and barycentric coordinates (BCs) on the
Delaunay triangulation (DT) with the same number of faces. It can be seen that the expected
quadratic convergence rate can be achieved using QSEs. Approximations using MVCs on
VD and BCs on DT only show a linear rate of convergence. It is also worth noting that the
number of bases of QSEs on VD only increases roughly linearly with the number of cells.
And the number of QSE bases is less than three times of the number of MVC bases on VD
and less than ten times of the number of BC bases on DT. The resultant surfaces constructed
on 64 cells are shown in Figure 3.

3.3. Voronoi diagram based QSE fitting/approximation algorithms

Note that, if we adopt uniformly partitioned domains for surface fitting, such as uniformly
refined polygonal meshes in [24], a large number of uniform cells may be needed to reach a
pre-specified fitting error threshold, especially when the approximated function oscillates
unevenly. To reduce the cell number and minimize the fitting error in the approximation, an
adaptive cell generation method is need. In this section, we propose two algorithms for
approximating analytic functions or discrete data (with a given parametrization) using MVC
based QSEs. Both algorithms take a rectangular gridded height field as input, and
approximate it with a group of €%-connected QSEs constructed on a Voronoi mesh, i.e., a
network of Voronoi cells tessellating the function domain. We begin with a coarse Voronoi
mesh that is restricted to the function domain. For example, the initial mesh used here is the
restricted Voronoi diagram generated by the four corners of the domain. Then on each
iteration, the Voronoi mesh is refined by using a greedy point insertion strategy, which seeks
to insert one or several points in the domain to locally lower the approximation error while
keeping the previously inserted points fixed. By refining the Voronoi cells, the
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approximation quality of the associated QSEs is improved progressively. The process of
refinement continues until the approximation algorithm reaches a desired error threshold or
exhausts a pre-defined budget on the number of elements.

Algorithm 1

Voronoi mesh refinement algorithm by inserting the circumcenter of the Delaunay triangle
with the highest error.

Input : a Voronoi tessellation 7~ of the function domain Q and fitting errors {e;|i = 1,--- , M}
Output: a refined Voronoi tessellation 7 of the function domain Q
let T be the dual Delaunay triangulation of the Voronoi tessellation 7°;
find the parametric point p; with the highest fitting error;
collect all the triangles in 7" that contain p;, and denote the triangle setby F = {f;|j=1,--- . K}
choose a triangle in F with the highest R.M.S.E., and denote it by fj; -
compute the circumenter of f;, and denote it by c;;
if ¢; € Q) then
| insert ¢; into the Voronoi tessellation 7" ;
else
| insert the middle point of the longest edge of f;
end
return the new Voronoi tessellation 7';

R - - Y I N

=z

In each iteration, let p; be the parametric point of the point v; € R3 with the highest error in
the input data and 7 be the dual Delaunay triangulation of the current Voronoi mesh. Then,
two different Voronoi mesh refinement methods are given as follows:

The first method is based on eliminating the Delaunay triangle 7;of 7where pjis located. A
point is inserted to the circumcenter of £;if it is inside the domain, otherwise, the middle
point of the longest edge of 7;is inserted. Pseudo-code is given in Algorithm 1. Our
refinement method is similar to the Delaunay refinement approach [39]. Although our
algorithm inevitably introduces cells with short edges or large angles, as can be observed in
Figure 67, which may violate the criteria for a “well-shaped polygonal element” [17, 41],
experiments show that it usually generates polygonal meshes that are good enough for the
functional data approximation applications.
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Algorithm 2

\oronoi mesh refinement algorithm by refining the facet with the highest data
approximation error.

Input :a Voronoi tessellation 7~ of the function domain Q and fitting errors {e;|i = 1,--+ , M}
Qutput: a refined Voronoi tessellation 7 of the function domain Q
find the parametric point p; with the highest fitting error;
find the nearest site of the Voronoi tessellation 7, and denote it by 1;;
construct a circle C that is centered at p; and has a radius of [t; — pil;
randomly sample two points on the circle C, denoted by ] and 13, and add them to the Voronoi tessellation 7",
repeat
move 1] and 75 to the centroids of their corresponding Voronoi regions; /* Lloyd’s iteration */
project #] and #5 onto the circle C;
update the Voronoi tessellation:
until iteration number > 5
return the new Voronoi tessellation 7;

E-T- - A S P

=

The second method is based on progressively eliminating the highest approximation error. It
constructs Voronoi cells with a vertex coincident with pj, such that the associated QSEs can

interpolate the point v;with the currently highest error. Pseudo-code is given in Algorithm 2.
Specifically, a circle Ccentered at pjcontinues to grow until it touches a vertex Z; of the dual

Delaunay triangulation 7. Then two points r’f and z§ are sampled on this circle. Furthermore,

positions of ff and t; restricted on the circle Care optimized by the Lloyd’s method [28],

such that the existing points and newly added points distribute evenly (see Figure 4).
Voronoi cells associated with Z; r’f and z§ have pjas a vertex, therefore, the associated QSEs

interpolate the data point v;associated with parametric point p;.

As the two approximation algorithms differ only in the Voronoi mesh refinement
approaches, we also refer to the two greedy algorithms Algorithm 1 and Algorithm 2 as the
same as their refinement approaches, when there is no ambiguity. In our experiments, we
find that while both algorithms generate similar results in the sense that they reach a similar
error threshold by using almost the same number of cells, an advantage of the second
algorithm is that it inserts two points in each iteration, so reaches the error threshold by
using fewer iterations. For brevity, we only report the results generated by Algorithm 1 here.
We also present an comparison of approximation abilities of MVC based QSEs/MVCs on
VD and BCs on DT through experiments, where all the cells are generated by Algorithm 1.
Here, we only use MV C based QSEs to illustrate the feasibility of the proposed greedy
algorithms. Comparisons between different coordinates based QSEs will be reported in the
following section.

Function 2—

2 2
s T 0=
fx,y) =10 “exp , (x,y)e2=1[0,1]x[0,1].
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Two models are used as test data sets. The first data set is uniformly sampled from the
analytic Function 2. The plots of R.M.S.E. against the cell number in Figure 5 clearly show
that the increasing cell numbers decrease the approximation error. In particular, the
algorithm with MVC based QSEs on VD uses far fewer cells (equally, iteration steps) to
reach the same error threshold than with other two kinds of finite elements. The
approximation results with R.M.S.E. just falling below the threshold of 0.01 are shown in
Figure 6, where the first, second and third rows are the approximation results by MVC based
QSEs on VD (19 cells), MVCs on VD (116 cells), and BCs on DT (156 triangular faces).
The first and second columns show the result surfaces with interpolated points and curved
cell boundaries, while the third column shows the color-coded approximation errors and the
last column shows the tessellations generated by Algorithm 1.

The algorithm can be naturally applied to image data or scattered data points, as long as
there is an appropriate parametrization. Figure 7 shows approximation results with a
R.M.S.E threshold of 0.001 on the second test model, i.e., a triangular mesh with its 2D
parametrization. Similar to the case of analytic function above, MVC based QSEs use far
fewer finite elements (equally, iterations) than the other two types of finite element bases to
reach the same error threshold. Furthermore, MV C based QSEs generate a visually smoother
surface.

4. Optimized Voronoi mesh generation

As can be observed from Figure 6 and Figure 7 that input data with more sharp features may
need more cells for the approximation. However, there is no guarantee that Algorithm 1 can
recover all these features, as for example, in the mouth region in Figure 7, see also the
approximation around various features in Figure 9 and Figure 10. One possible reason is that
the feature lines on the parametric domain may cross Voronoi cells, hence the features are
blurred. Intuitively, cells aligning along the feature lines on the domain can be helpful for
recovering the sharp features, as the QSE surface is only €9 on cell boundaries while it is
smooth in the interior of a Voronoi cell. In this section, we take Voronoi meshes generated
by Algorithm 1 as input and further optimize the Voronoi meshes by using an L,
optimization method toward feature-conforming Voronoi meshes, such that the
approximation results of input image data with sharp features can be further improved.

4.1. Objective function

Assume that £(x) is a function defined over a compact 2D domain Q, and the domain is
discretized by a Voronoi tessellation 7 = {@, c [k =1,....N} of asite set X = {Xk}kN_ N

where Q4 is a Voronoi cell of site x4 € X. We can define the approximation error in L, sense
as follows:

N 2
E({Qk}fkv:l,X):kZ1 [2 [F0 - Q| dx. (2)
= k
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Ly

where 0, = 'Zl JO W i+ FO DV i is the approximate function on Qy as defined in
1=

Equation (1). Note that the above L, approximation error only depends on the site positions
X, as the bases y,;or v i1 as well as their coefficients are defined by the positions of
vertices of the cells (equally, the sites). An efficient method for minimizing Equation (2)
usually requires the computation of gradient. However, the bases are rational functions with
respect to the positions of vertices of cells, and the expressions of vertex positions with
respect to site positions also involve multiple square root terms. Hence, the direct
computation of gradient is complicated and time-consuming. To simplify the computation,
we minimize a slightly modified objective function as follows:

N 2
E({Q,t}kN:l,X)=k2l [2 lf®) - g dx.  (3)
= k

L
k

k

*_ k ; ; PR k k

where 0 = .Zl X W Wi 1S the optimal approximation on Q, % ; and a;
1=

Li+1
are the coefficients associated with bases y;and ;41 0n Qy, respectively. Intuitively, the
modified objective function allows the coefficients a;,;(or a; 1) associated with the same
vertex (or midpoint of an edge) to be different on the adjacent cells, hence, relaxes the C°
continuity between adjacent patches. This modification is reasonable since if the
approximation surface is close enough to the given continuous function, then the different
coefficients associated with the same vertex will be close to each other. A further stitching
operation can be performed to achieve C? continuity. This patch-stitching procedure leads to
an increase in approximation errors. To avoid the deterioration in approximation quality, an
intuitive way of finding the best stitched patches is to solve for the coefficients in a linear
least square sense. Specifically, based on the tessellation of the minimizer of Equation (3),
we solve a linear least squares problem in the entire domain by restricting all the coefficients
associated with the same vertex/midpoint of an edge to be equal. A simpler, yet more
efficient method adopted in this paper for ensuring the €° continuous between patches is to
replacing the coefficients associated with the same vertex with the same value, e.g. the
average of all the associated coefficients. It is because that Voronoi meshes with a large
number of cells (relative to image resolution) generate unstitched patches with very small
gaps between them. In other words, the coefficients of the bases corresponding to the same
vertices/midpoints, though not equal, are very close to each other. Moreover, averaging these
coefficients have no significant influence, either on the approximation error or on the visual
effect. Whereas, if the given function is discontinuous (such as image data), coefficients
associated with the same vertex may be required to be different, especially on discontinuous
regions. We will show this in Section 5. In this case, the stitching step is unnecessary.

4.2. Optimization method

To simplify the computation, we optimize alternately between the optimal approximations

{QZ}kN: , and site set X. For a fixed X (equally, partition ), the optimal approximation
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k

Q;.k(x) on each cell Qg i.e. the coefficients af janda; .,

can be obtained by solving a least-
squares problem on each cell individually. On the other hand, with the fixed functions

{Q;}kN_ v the gradient of the objective function in Equation (3) can be derived as follows :

agg) = X fQ (- o - - Q;f(x)f)i
JET T |

X .—X.
J 1

ds,

where J;is the set of indices of the sites whose Voronoi cells are adjacent to Q;. Then we
adopt a modified gradient descent method proposed in [8] for an efficient solution to the L,
optimization. For the sake of completeness, we give a brief description of the L,
optimization method here. Beginning with an initialization, we optimize all the positions of
the sites by:

x§j+ D _ 55])@/‘@‘ i=1,...,N,

i 0X. ox. |
1 1

where jis the index of the current iteration, and 55-” is the step length for x;. The step length

34/ is controlled by the formula

J
. 1 ;
551)=5EO)(%) max—j _q1 .. N.

where /ax is a specified maximum number of iterations and 550) is the initial step length for

site x;, which is set as the square root of the area of Q.

5. Experimental results

This section presents some examples to demonstrate the optimized approximation capability

of our algorithms. First, we approximate an analytic function f(x,y) = \/x2 +y7, where %))
€ [-1, 1] x [-1, 1], by using four different barycentric coordinates (including mean value
coordinates, Wachspress coordinates, Poissson coordinates and natural neighbor
coordinates) based QSEs. Totally 1000 sites are generated in the initial step and then the
\oronoi diagrams are optimized by the method proposed in Section 4. The plots of the
cumulated errors of the approximate surfaces against the iteration number are shown in the
right-hand-most figure in Figure 8, from which we can see that the optimization converges
after about 30 iterations and the Poisson coordinates based QSEs perform slightly better than
other coordinates in the sense of reaching a lower cumulated approximation error. The initial
\oronoi diagram and the Voronoi diagram after 50 iterations of the optimization procedure,
and the color-coded approximation errors of the corresponding approximation results by
using Poisson coordinates based QSEs are also shown in Figure 8, where the patches on the
Voronoi cells are stitched to become € continuous by simply replacing the coefficients
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associated with the same vertex with the same value, i.e., the average of all associated
coefficients. It can be observed that, the Voronoi cells tend to be radially arranged and
concentrated in the center of the domain after optimization. We also apply our algorithm to
image approximation and two examples are shown in Figure 9 and Figure 10, respectively.
Rows from top to bottom are Voronoi diagrams with 1000 cells, approximation images on
the Voronoi diagram, and color-coded approximation errors. Again, Poisson coordinates
based QSEs are adopted since they perform slightly better than the others. The stitched and
unstitched approximation results on initial Voronoi diagrams instead of the final Voronoi
diagrams are shown in the first and second columns, respectively, to better display the
artifacts introduced by the stitching, as the visual difference between the stitched and
unstitched results are less obvious on the final Voronoi diagrams. It can be seen that the
approximation results without stitching are visually more pleasant than the stitched ones.
The approximation images after 30 iterations of the optimization procedure without stitching
are shown in the last columns in both Figure 9 and Figure 10. We can observe that cells tend
to align along the feature lines of the images, and the errors are lowered and features are
better preserved after optimization. Our algorithm can also be adapted to other quadratic
serendipity finite elements, such as the elements proposed in [15]. Through experiments we
find that our algorithm generates results with similar approximation errors using quadratic
serendipity finite elements proposed in [36] and [15]. Approximation results of using
Wachspress based QSEs constructed by [15] and [36] are shown in Figure 11, where the
former method (804s) took up slightly more time than the later method (717s). We believe
that our algorithm can also be easily adapted to polygonal elements with higher orders (e.g.,

[15]).

6. Conclusion

In this paper, we construct piecewise approximations of functional data on arbitrary 2D
bounded domains, using generalized barycentric, quadratic serendipity elements (QSEs) on
Voronoi cells, and compare them to barycentric finite elements on triangulations. We
compare approximation qualities of linear and quadratic finite elements through several
numerical experiments, using different kinds of barycentric and generalized barycentric
finite elements. Two adaptive mesh refinement methods and an optimization method are
presented for data approximation by using QSEs. Experimental results show space/accuracy
advantages for these finite elements on polygonal domains against traditional finite elements
over simplicial meshes.

Two non-uniform Voronoi mesh generation algorithms are also presented and specifically
designed for the purpose of surface fitting. They help achieve good tradeoffs between
approximation accuracy with respect to the the number of Voronoi cells. We shall explore
such tradeoffs in future work on isogeometric analysis, using quadratic serendipity finite
elements based on generalized barycentric coordinates over polygonal domains.
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Highlights
. We fit data using quadratic serendipity finite elements on polygonal meshes.
. Two greedy algorithms are proposed to generate Voronoi meshes for adaptive
fitting.
. An L2-optimization is tailored to further improve the fitting result.
. Our method is efficient in modeling features/discontinuities in data

approximation.
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Figure 1.
Quadratic serendipity on a six-sided polygonal domain. The vertices and middle points of

the edges of the polygonal domain are marked as filled and unfilled circles, respectively.
(left) A basis 2y jassociating with an interior diagonal of the polygonal domain contributes
to six different bases; (right) geometric meaning of the coefficients.
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Figure 2.
Quadratic serendipity element bases on a six-sided polygonal domain. First column:

polygonal domain, where the vertices and middle points of the edges of the polygonal
domain are marked as black and pink points, respectively; the first and second rows are
QSEs at a vertex and a middle point of an edge of the polygonal domain, respectively, where
the corresponding vertex and the middle point are marked with circles in the first column.
Second column to the last column: MV C based QSE bases, Wachspress coordinates based
QSE bases, Poisson coordinates based QSE bases and natural neighbor coordinates based
QSE bases. Values of the bases are color-coded, where colors at the top and bottom of the
color bar represent the maximum and minimum values, respectively.
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Figure 3.
Approximation results of Function 1 by using 64 elements. Rows from top to bottom are

approximation results of MVC based QSEs on VD, MVCs on VD, and BCs on DT.
Columns from left to right are tessellations with 64 elements, interpolated points (red dot
points), result surfaces, surfaces with curved cell boundaries and color-coded fitting errors
by the same color bar (dark red indicates the largest error of the three cases and blue
indicates the value of 0).
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Figure 4.
The second Voronoi mesh refinement approach. (left) Six points (black dots) and their

corresponding Voronoi cells (black polygons). Warm colors represent high errors. (right) A
circle (white) is centered at the parametric point p; with the highest error and touches a
previously inserted point #. Two points (pink) on the circle are added to the point set, and p;
becomes a vertex of the updated Voronoi mesh (gray polygons).
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Figure 5.
Plots of R.M.S.E. (log-scale) against the cell number for the approximation of Function 2 by

using Algorithm 1, where three elements including MVC based QSEs/MVCs on VD and
BCs on DT are used. The cell number is slightly greater than the iteration number for the
three kind of finite elements. For example, cell number is equal to iteration number plus one
for the case of BC on DT. To illustrate the efficacy of the adaptive schemes, we also include
by way of reference, the approximation result by using MVC based QSEs on uniform
Voronoi cells generated by the farthest point sampling method .
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Figure 6.
Approximation results of Function 2 by using MVC based QSEs on VD with 19 cells (first

row), MVCs on VD with 116 cells (second row), and BCs on DT with 156 faces (third row).
Columns from left to right are the result surfaces with interpolated points, result surfaces
with curved cell boundaries, color-coded approximation errors, and the tessellations
generated by Algorithm 1. The R.M.S.E threshold is 0.01.
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Figure 7.
Approximation results of face model (with 8k vertices) by using MVC based QSEs on VD

with 156 cells (first row), MVCs on VD with 541 cells (second row), and BCs on DT 1054
cells (third row). Columns from left to right are the result surfaces, result surfaces with
interpolated points, color-coded approximation errors, and the tessellations generated by
Algorithm 1. The R.M.S.E threshold is 0.001.
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Figure 8.

Approximation results of function f(x,y) = \/x2 +2 (x, ) € [-1, 1] x [-1, 1] by using QSEs
on optimized Voronoi diagram with 1000 cells. (a) Initial Voronoi diagram (where the
domain is color-coded by the value of the given function); (b) color-coded approximation
error on the initial mesh (M.E.: 6.9386 £ - 05, R.M.S.E: 9.9629 £ - 07); (c) Voronoi diagram
optimized after 50 iterations; (d) color-coded approximation error on the optimized mesh
(M.E.: 3.4799E - 05, R.M.S.E: 4.4063£ - 07); (e) cumulated approximation errors of the
results (by using four different generalized barycentric coordinates based QSESs) v.s. fitting
iteration numbers.
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Figure 9.
Approximation on Elephant by using Poisson coordinates based QSEs on an optimized

Voronoi diagram. Rows from top to bottom are: Voronoi diagrams with 1000 cells,
approximation images and color-coded approximation errors. The first (M.£: 2.2387,
R.M.S.E. : 0.2887) and second columns (M.E: 1.1684, R.M.S.E. : 0.0872) are the
approximation results on the initial Voronoi diagram with and without stitching, respectively.
The last column (M.£:0.9985, R.M.S.E. : 0.0813) is the approximation results after 30
iterations of the L, optimization procedure without patches stitched for €° continuity. The
same color code is used in the error visualization in all columns, where colors at the top and
bottom of the color bar correspond to values of 1.17 and 0O, respectively.
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Figure 10.
Approximation on Lady by using Poisson coordinates based QSEs on an optimized Voronoi

diagram. Rows from top to bottom are: Voronoi diagrams with 1000 cells, approximation
images and color-coded approximation errors. The first (M.E: 1.6866, R.M.S.E. : 0.1553)
and second columns (M.E: 0.8977, R.M.S.E. : 0.0438) are the approximation results on the
initial Voronoi diagram with and without stitching, respectively. The last column (M.E:
0.8984, R.M.S.E. : 0.0306) shows the approximation results after 30 iterations of the L,
optimization procedure without stitching. The same color code is used in the error
visualization in all columns, where colors at the top and bottom of the color bar correspond
to values of 0.85 and 0, respectively.
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Figure 11.
Comparison of approximations using Wachspress coordinates based QSESs constructed by

two different methods [15, 36]. Input image resolution: 512 x 512. Rows on the top and at
the bottom are the approximation results by QSEs constructed by [15] and [36], respectively.
The first and third columns are the initial and final (after 100 optimization steps) Voronoi
diagrams with 1000 cells. And the second and fourth columns are the color coded
approximation errors for the initial approximation results (M.£: 0.7479, R.M.S.E. : 0.0768
for [15], and M.E:0.7964, R.M.S.E. : 0.0785 for [36]) and the final results (M.£: 0.6866,
R.M.S.E. : 0.0588 for [15], and M.E: 0.6902, R.M.S.E. : 0.0584 for [36]). The same color
code is used in the error visualization in all columns, where colors at the top and bottom of
the color bar correspond to values of 0.70 and 0, respectively. Running times for our
approximation algorithm using QSE constructions from [15] and [36] are 805s and 717s,
respectively.
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