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Abstract

We state a relation between two families of lines that cover a
quadric surface in the Study quadric and two families of circles that
cover a Darboux cyclide.
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1 Introduction

The Study quadric is a projective compactification of the group of Euclidean
displacements. If we fix a point in 3-space, then projective varieties inside
the Study quadric — considered as sets of displacements — give rise to orbit

varieties in 3-space.

Let us consider the relation between a class of varieties in the Study quadric
and their orbits in 3-space. A classical example is presented by the class of
lines in the Study quadric; the orbit of a line is either a circle, line or point
in 3-space (see Lemma 1). The orbit of a conic in the Study quadric is a
rational quartic curve with full cyclicity [10]. The case of rational curves of
arbitrary degree in the Study quadric is studied in [4]: a general rational
curve of degree d in the Study quadric has an orbit of degree 2d. We also
have a uniqueness result: for any rational curve of degree d and cyclicity 2c,
there is a unique rational curve in the Study quadric of degree d — ¢ in the
Study quadric defining that orbit [7, Theorem 2].
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In this paper we show that the orbit of a doubly ruled quadric surface in
the Study quadric is a Darboux cyclide. Darboux cyclides are surfaces that
contain at least two and at most six circles through each point. These surfaces
have been recently studied in [5, 6, 8, 9]. Theorem 1 is again a uniqueness
result: for two families of circles that cover a Darboux cyclide there exists a

unique doubly ruled quadric surface in the Study quadric.

2 The orbit map

The dual quaternions are defined as the noncommutative associative algebra
DH := R[i,j, k, €] /(i* 4+ 1,j* + 1,k* + 1,ijk + 1, €%, €i — ic, € — je, ek — ke).
We consider the following coordinates for h € DH and h € DH:

h =p+qe = (po+pii+paj+ psk) + (a1 + gsi + g6J + grk)e,
h =7+ e = (po — pri — paj — psk) + (@1 — 51 — 46j — @K )e.
We denote by N : DH — D, h — hh, the dual quaternion norm. By

projectivizing DH as a real 8-dimensional vector space, we obtain P7. The

Study quadric is defined as
S:={heP [hheR}={p+qecP|pogo+pis +Paga+psgs =0 }.

The Study boundary B C S is defined as B := { h € S | hh = 0 }. If we

identify R?* with { v € DH | v = v1i 4 v2] + vsk }, then the Study kinematic

mapping is a group action

pvp +pq —qp
pp

and S\ B = SE(3) via this action [3, Section 2.1]. We choose the following

coordinates for the 3-dimensional Mobius quadric:

0: (S\B)xR* = R? (p+qe,v)—

9

S={2zecP|zowy—2? —a5—22=0}.

2



With this somewhat unusual choice of coordinates the stercographic projec-
tion with center (0:0:0:0:1) € S? is defined as

7:SP P (wo:... i) = (w0 Ty Ts).

For any point u = (ug : ... : uy) € S such that ug # 0, the orbit map is
defined as

orb,: S\F, — §°
p+qe — (pp:wy:ws: ws:4qq — ppv® + 2(qup — puq))
where pvp + pqg — qp = wii + woj + wsk with v = Z—(l)i + Z_(Q)-] + Z—ik the
dehomogenization of 7(u) and

Fyoi={p+qe€S|pp=pvp+pg—qp=49q+2(qup—pvg) =0} C B.

Notice that the orbit map is the composition of the projective closure of
o(-,v) : S — R? with the inverse stereographic projection. We fix notation
for the identity e :=(1:0:...:0) € S and the origino:=(1:0:...:0) €
S3.

Proposition 1. The Zariski closure of the image of orb, is S* and F, C S
1 a quartic 4-fold.

Proof. Suppose that p+ eq € S so that pg+ gp = 0 and w := pvp + pq — qp.
We find that ww = —(pvp + 2pq)* = pp - (4¢7 — ppv* + 2(qup — pvq)). It
follows that the image of orb, is contained in S*, since ww = wi + w3 + w3.
Recall that S\ B is isomorphic to SE(3) via the Study kinematic mapping,

and thus the image of orb, is Zariski dense in S3.

An Euclidean isometry of R? is realized by an automorphism of S that pre-
serves B. Thus there exists e € S\ B such that orb,(e) = u. Since the
automorphisms of S\ B and R? are transitive, we may assume without loss
of generality that e = ¢ and u = 0. The locus where orb, is not defined

equals
Fo={p+qeDH|pj=qp=pp=q3=0}CS.
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We computed with a computer algebra system the Hilbert function of the
ideal of F;, and find that dim F, = deg F, = 4. This concludes the proof of
this proposition. O

A cirele is an irreducible conic in S, Let

L.:={¢CS|lisalinesuch that e € ¢ },
C, :={ C CS*| C is either a circle or a point such that o € C' }.

Lemma 1. If ¢ C S is a line, then orb,(¢) is a circle or a point. Moreover,

the following map is almost everywhere one-to-one

: Lo — Cy, L orby().

Proof. Lines in the Study quadric correspond to either rotations or transla-
tions [3, Section 2.5] and orbits under these 1-parameter subgroups are cir-
cles, lines or points in R? und thus via the stereographic projecion 7 points

or circles in S2.

We can associate to a circle in the 4-dimensional set C,, a unique 1-parameter
subgroup of rotations corresponding to a line in £,. There is a 2-dimensional
set of lines in £, such that the rotational axis of these lines passes through o
and the corresponding Lie circle is the point 0. Thus 1 is one-to-one except

for a lower dimensional subset as was claimed. O

3 Quadric surfaces in the Study quadric

A Darbouz cyclide is defined as a quartic weak del Pezzo surface in S? [2,
Section 8.6.2]. Such surfaces are the intersection of S* with a quadric hyper-
surface [2, Theorem 8.6.2]. Let U, denote the set of quadric surfaces @ C S
such that either there exists V = P3 such that Q CV C S,or Q C F, C S.

Lemma 2. If Q C S is a doubly ruled quadric surface such that Q ¢ U,,
then orb,(Q) C S? is a Darbour cyclide.
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Proof. There exists bilinear homogeneous a + eb € DH]sy, s1, tg, t1] such that
@ is parametrized by

p:Ptx Pt - QC S, (so:siity:ty) > a+eb,
and ab — ba = wii + wyj + wsk with wy, wy, ws € R[sg, 51,0, t1] so that

orthyou: P!xP' -——» DCS?
(5,t) > (a@:w; :wy: wy: 4bb).

Thus the map orb, oy is of bidegree (2,2) into P*. By Proposition 1, the map
orb, is not defined at a quartic 4-fold F, C S. We observe that () is the
intersection of S with a 3-space, since @ ¢ U,. It follows that Q N F, consists
of 4 points (counted with multiplicity). Thus orb, ou has 4 base points. A
basis of all bidegree (2,2) functions on P! x P! defines a map whose image is a
degree 8 weak del Pezzo surface X C P®. A basis of bidegree (2,2) functions
that pass through a basepoint, defines a map whose image is a projection
of X from a point so that the degree and embedding dimension drops by
one. Such a projection realizes the blowup of X in a point and is again a
weak del Pezzo surface [2, Proposition 8.1.23]. Thus M can be obtained as
4 subsequent projections of X, which results in a quartic weak del Pezzo
surface in P*. This concludes the proof of this lemma, since the image of

orb, is S* by Proposition 1. O

A family of curves of a surface X is defined as an irreducible hypersurface
F C X x P! such that the closure of the first projection of F' equals X. A

Figure 1: A smooth Darboux cyclide contains six circles through each point
and admits (g) — 3 pairs of families of circles F' and F' so that F'- F' = 1.



curve Fy C X in the family F for some t € P! is defined as 7 (F N X x {t}).
If F and F’ are families of X, then we denote by F - F’' the number of
intersections of a general curve in F' and a general curve in F’. See also

Figure 1.

Lemma 3. If two different Darboux cyclides in S® intersect in three circles,

then two of these circles are co-spherical.

Proof. Suppose that D, D' C S?* are Darboux cyclides. We can associate to
the weak del Pezzo surface D its Picard group, which is a quadratic lattice
(ag, a, . .., a5)z with intersection pairing o = 1, a? = —1 for 7 > 0 and
a; -a; = 0 for ¢ # j [2, Section 8.2.1]. We associate to a curve C' C D
its divisor class [C] in the Picard group of D. The class of any hyperplane
section of D is equal to the anticanonical class —x = 3ag — a3 — ... — as.
Both D and D’ are intersections of S with a quadric hypersurface so that
(DN D'l = -2k and degD N D’ = 8. Since D N D’ contains 3 circles by
assumption, it follows that D N D’ consists of 4 conics. The class of a conic
in M is either ag — o; or 2009 + ; — iy — ... — a5 for some 1 < ¢ < 5. The

classes of the conics have to add up to —2k, and must be of the following

form

(ap— i)+ ag+a;—ag—...—as)+ (g —ay) + Lo+ aj—ar — ... — ),
for some 1 <i,7 < 5. Since (ag — ;) - (200 + a; — a3 — ... — a5) = 2 there
are two co-spherical circles. O

Lemma 4. If F, ' C D x P! are families of circles on a Darbouz cyclide
D C S? such that F - F' =1 and o € D, then there exists a unique doubly
ruled quadric surface Q) C S such that e € Q, Q ¢ U,, orb,(Q) = D and the

two rulings of QQ correspond via orb, to F' and F'.

Proof. Let C,C" C D be two circles in F' and F’ respectively, such that
CNC" = 0. By Lemma 1 there exist unique lines ¢, ¢ C S containing e such
that orb,(¢) = C and orb,(¢') = C’. We choose some point on h € ¢ and
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let C” be the unique circle in the family F' that passes through p := orb,(h).
We apply Lemma 1 with o replaced by p and obtain a unique line L C S
containing e. It follows from the construction that C” = orb,(¢”), where
¢" := hL and hL means the image of each point in L multiplied with the

dual quaternion h.

Thus we obtain three intersecting lines ¢, ¢/, ¢ C S spanning a 3-space V and
three circles C,C’,C" C D that pairwise intersect in at most one point. We
have that V' ¢ S, otherwise orb,(V) would be either a point or a 2-sphere
by Lemma 1. Thus V NS defines a unique quadric surface ) C S such that
000" C Q and Q ¢ U,. Tt follows from Lemma 2 that D' := orb,(Q) is a
Darboux cyclide such that C,C’,C” ¢ DND’. It follows from Lemma 3 that
D and D’ must be equal. By Lemma 1, lines in S correspond to circles in S
and a quadric () C S is covered by two families of lines. This concludes the

proof of this lemma. n

Remark 1. For the existence statement in Lemma 4, it is also possible
to give an algebraic proof without using Lemma 3. By [11, Theorem 11],
there exists a parametrization for Darboux cyclides of bidegree (2,2) so that
the parameter curves are the circles in F} and F3, respectively. Lifting the
parametrization to S, we obtain 5 biquadratic polynomials X,..., X5 €
R[s,t] such that XX, = X7 + X2+ X2 and (Xp: X;: Xo: X3: Xy) isa
parametrization of the Darboux cyclide D. By [6, Theorem 3|, there exist

bilinear polynomials A, B € H]s, t| with quaternion coefficients such that
N(A) = Xo, N(-B) = Xy, AB = X;i+ Xoj + Xsk.

The bilinear polynomial H := A+ eB € DH(s, t] then defines a parametriza-
tion of a nonsingular ruled quadric in the Study quadric S, and the image of

this quadric via orb, is exactly D. <



Theorem 1. The map orb,: S\ F, — S? defines a one-to-one correspondence
between two families of lines that cover a quadric surface QQ C S such that
e € Q with Q ¢ U, — and — two non-cospherical families of circles that
cover a Darbouz cyclide D C S* such that o € D.

Proof. The left to right direction is a consequence of Lemma 2 and Lemma 1.

The converse direction follows from Lemma 4. OJ

For example, let D C S? be a surface that is covered by exactly 6 families of
circles and suppose that o € D. In this case D is a Darboux cyclide and ad-
mits 15 pairs of families of circles [1, 9]. There are exactly three pairs (F, F")
of families of circles such that F' - F' = 2 (see Figure 1). For the remaining
12 pairs (F, F") of families one has F' - F’ = 1 and thus by Theorem 1 there
are 12 quadric surfaces Q C S such that e € @ and orb,(Q) = D.
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