
Practical Shape Analysis and Segmentation Methods for Point Cloud
Models

Reed M. Williamsa, Horea T. Ilieşa,∗
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Abstract

Current point cloud processing algorithms do not have the capability to automatically extract semantic information from
the observed scenes, except in very specialized cases. Furthermore, existing mesh analysis paradigms cannot be directly
employed to automatically perform typical shape analysis tasks directly on point cloud models.

We present a potent framework for shape analysis, similarity and segmentation of noisy point cloud models for real
objects of engineering interest, models that may be incomplete. The proposed framework relies on spectral methods and
the heat diffusion kernel to construct compact shape signatures, and we show that the framework supports a variety of
clustering techniques that have traditionally been applied only on mesh models. We developed and implemented one
practical and convergent estimate of the Laplace-Beltrami operator for point clouds as well as a number of clustering
techniques adapted to work directly on point clouds to produce geometric features of engineering interest. The key
advantage of this framework is that it supports practical shape analysis capabilities that operate directly on point cloud
models of objects without requiring surface reconstruction or global meshing. We show that the proposed technique is
robust against typical noise present in possibly incomplete point clouds, and segment point clouds scanned by depth
cameras (e.g. Kinect) into semantically-meaningful sub-shapes.

1. Introduction

3D cameras are now being produced commercially in
larger numbers and at lower cost than ever before. Such
sensors provide a low entry barrier to the field of com-
puter vision, and are allowing practically everyone to cap-
ture and integrate digital models of reality directly into
their applications or engineering design processes. A depth
camera generates a point cloud model, a structure which,
though less ‘complete’ than a mesh model, provides a use-
ful representation of real objects of engineering interest
[1].

Traditionally, practical shape analysis for graphics and
engineering applications has largely relied on geometric
representations endowed with some kind of topological struc-
ture, especially polygonal surface meshes [2]. Although
the explicit topological information borne by mesh rep-
resentations lends itself to simple discrete formulations,
creating a mesh from a point cloud is an ill-posed problem
without unique solutions, and the process relies in prac-
tice on costly approximation algorithms [3]. In fact, the
general surface reconstruction problem is hard with many
remaining challenges [4, 5, 6]. At the same time, automat-
ically constructing a valid surface mesh (with guarantees
on the geometric approximation and topological validity)
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of a point cloud is far from being a solved problem, partic-
ularly in the presence of noise, sharp features, sampling
anisotropy, and incomplete point clouds [5, 7]. Conse-
quently, the initial meshes can contain crude approxima-
tions, element degeneracies, overlaps and self-intersections,
surface holes, as well as other ‘mesh flaws.’ A good review
of the typical flaws in the resulting meshes is provided in
[8].

For example, meshing the point cloud camel model of
[9] with the popular RIMLS Marching Cubes [10] imple-
mented in Meshlab conjoins the legs at the knee, as shown
in Figure 1(a), where the points in the cloud correspond-
ing to two different “legs” of the camel model get relatively
close to each other. This, in turn, leads to drastic topo-
logical changes in the meshed model that are not found
in the original physical model. Clearly, such topological
errors propagate through any further geometry process-
ing, geodesic algorithm, or analysis, such as mesh seg-
mentation, subsequently developed on this mesh. At the
same time, the framework proposed in this paper directly
and robustly develops algorithms on and segments the
point cloud model itself without producing such topolog-
ical changes, as illustrated in Figure 1(b). This behav-
ior is not specific to any one meshing algorithm. In fact,
different meshing algorithms may produce meshes of the
same point cloud having different geometric and topologi-
cal properties. Operating on and analyzing the point cloud
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(a) (b)

Figure 1: (a) The incomplete camel model of [9] – shown also in Fig-
ure 14 – meshed by RIMLS Marching Cubes implemented in Meshlab
conjoins the legs at the knee where points get close; (b) The legs of
the original point cloud remain decoupled when employing the tech-
niques presented in this paper.

directly, rather than a mesh, avoids introducing topologi-
cal errors to the analysis pipeline at an early stage where
such errors will cascade into the rest of the analysis.

Because of these difficulties with mesh generation, see
also [11], the initial meshing step is almost always followed
by an application-dependent mesh repair process, which
introduces additional approximations that may or may
not conform to the original physical model [8]. In fact,
arguments supporting direct processing of point clouds
in the field of CAD/CAM have appeared for some time
[12, 13, 14]. Furthermore, many important engineering
applications require geometric information in higher di-
mensional spaces, e.g., in space-time (4D) [15] or config-
uration spaces (6D) [16], but meshing higher dimensional
point clouds gets even harder as the dimension goes up.

It is apparent that understanding the semantics of the
output of a range camera without requiring meshing1 or
global surface reconstruction would avoid a critical bot-
tleneck in a host of key application contexts relying on
the fundamental concept of shape similarity, including en-
gineering design, scene recognition, digital shape recon-
struction, functional co-robots, autonomous navigation,
and part sorting, as well as virtual and augmented re-
ality. At the core of shape analysis for point clouds are
compact shape descriptors tailored to this discrete rep-
resentation, as well as shape similarity, comparison, and
segmentation capabilities, which are omnipresent in ap-
plications as varied as industrial product design, assistive

1It is worth noting here that robust surface reconstruction algo-
rithms do require a priori estimates of differential operators on the
point cloud data [17] in order to construct the geometry and topology
of the meshed model.

technologies, medical diagnosis, and quality control [2].
In this paper, we formulate a potent framework for

performing shape analysis and segmentation directly on
point clouds, including those of engineering significance
obtained from engineering components and systems, that
may be noisy and/or incomplete. To this end, we have
developed [18, 19] and implemented the Symmetric Point
Cloud Laplacian (SPCL), a symmetric version of the PCD
Laplacian (PCDL) [20], which we show retains the con-
vergence guarantees of the PCDL, and allows us to con-
fidently apply physics-based signature methods to point
cloud models. Furthermore, we investigate several seg-
mentation schemes including Heat Walks and a novel point
cloud clustering method based on the Vietoris-Rips filtra-
tion. We apply these methods on signature values over
point cloud models to produce segmentations of shapes
into geometric features of engineering interest.

1.1. Prior Work

1.1.1. Description and Similarity

Recently, high-quality “physics-based” methods aimed
at providing compact shape description (e.g., shape sig-
natures) and similarity have been developed for triangu-
lar surface mesh models. We focus on physics-based be-
cause they are most related to the work presented in this
manuscript. These methods are founded in the mathemat-
ical firmament of geometry-dependent physical processes
(e.g., thermal conduction). Diffusion-type processes, be-
havior corresponding to second-order partial differential
equations in space and time, are intrinsically dependent
upon the local and global geometry and topology of the
continuous shapes over which they act, linking known math-
ematical descriptions of diffusion processes to the geodesic
distances on that shape. The physics-based methods ap-
ply discrete versions of the mathematics of these processes
to mesh models in order to construct shape descriptors
that are used in downstream applications. Observe that
reliance on pseudo-geodesic distances on the meshes re-
sults in robust signatures for noisy or incomplete models
[21].

The physics-based methods showing such promise in
mesh application (such as the Wave Kernel Signature [22],
ShapeDNA [23], and Heat Kernel Signature [24]) rely on
the Laplace-Beltrami operator (LBO), which is a contin-
uous differential operator defined on Riemannian mani-
folds. This past decade has seen much development in the
area of discrete representations of the LBO, which arises
from and with application to the study of diffusion [25].
In mesh-based discretizations, the “cotan method” [26] or
newer, more convergent Mesh Laplacian operator [27] may
be used. On the one hand, shape descriptors that leverage
the locally-descriptive power of the Laplacian via its eigen-
system to compute a comparable description of shape are
known as “spectral” methods, and are currently being ex-
plored on mesh models by a number of groups [24, 28, 22].
At the same time, direct point cloud model-based shape
analysis has not received as much attention.
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Part of the reason for this discrepancy is that surface
reconstruction from point cloud models (especially to mesh
models) is a thriving research field [5]. However, meshing
remains a challenging and ill-posed problem and cannot
even be solved without a number of assumptions (what
Berger et al. call “priors” in their analysis [4]). In fact,
different meshing algorithms will produce different meshes,
if at all, for the same point cloud, which can impact the
output of any similarity or segmentation algorithm that
would process the mesh. By avoiding global meshing, we
effectively side-step this bottleneck.

Some research groups have developed point cloud shape
analysis strategies for specific applications, but the ex-
isting research has not focused on the kinds of shapes
or shape analysis tasks that an engineering analyst or
designer might find useful. For example, Pokrass et al.
[29] developed a “bag of features”-type partial similarity
method for deformable shapes based on diffusion physics,
which was developed for partial similarity-based shape match-
ing without considering semantically meaningful segmen-
tation or internal matching. Similarly, Bronstein et al.
mention in [28] that it may be possible to make use of a
LBO for point clouds in order to perform HKS and some
related analyses on them, but they do not develop the idea
further beyond providing a symmetric Laplacian estimate.

Certain industrial researchers have also begun to de-
velop point cloud-based methods for specific applications,
such as GE’s work [30] to fit linear and arc segments to
the point cloud output of a scanner in order to measure
manufactured parts against tolerances. This work, how-
ever, remains limited in scope and deals only with 2D
cross-sections of 3D point clouds and a small number of
primitives. Other approaches, such as deep learning-based
methods, are also beginning to show promise for classify-
ing and segmenting point clouds, though of course learning
methods have limitations such as the availability of qual-
ity training data [31, 32]. SyncSpecCNN [33] proposes
to combine Laplacian eigenfunctions with a convolutional
neural network, operating on a 3D graph representation of
scenes.

The Point Cloud Data Laplacian (PCDL) [20] provides
one possible estimate of the Laplacian operator on point
clouds with desirable theoretical guarantees. It has been
shown that the PCDL converges to the true LBO of any
given shape under mild conditions on sampling. However,
unlike the continuous Laplacian, the PCDL operator is not
naturally symmetric, as required by spectral methods.

Consequently, despite its theoretical guarantees, the
PCDL estimate cannot be used in any application in which
the innate symmetry of the operator is essential. The spec-
tral shape signature methods require a symmetric LBO
estimate (a real matrix will have real eigenvalues and or-
thogonal eigenvectors if it is Hermitian, i.e., symmetric)
in order to faithfully approximate the eigensystem of the
Laplacian [34].

1.1.2. Clustering and Segmentation

Human observers easily produce, in general, high qual-
ity shape segmentations. Indeed, the current state-of-the-
art for ground truth for a given (mesh) segmentation is
consensus of human observers [35]. In order to develop
good automatic segmentation methods that approach hu-
man accuracy without active human participation, the re-
cent literature has begun exploring concepts from algebraic
topology. A variety of segmentation methods have been
proopsed recently, such as [36, 37], and a recent survey of
mesh-based segmentations can be found in [38]. Here we
review those that are most closely related to our work.

Rustamov, et al. [39] showed one example of using
simple k-means clustering on their Global Point Signature
to produce segmentations of shapes. Skraba, et al. [40]
have proposed using persistence-based clustering of the
heat kernel signature for shape segmentation. Similarly,
Dey, et al. [21] examine persistence of local maxima of the
HKS at several of the HKS’s multiple “intrinsic scales” in
order to characterize shapes for matching, which produces
a segmentation of the shape as a byproduct. These meth-
ods all rely on surface mesh models and their innate data
structure for their formulations. By contrast, the state-
of-the-art for segmenting point cloud models remains so
limited that the large-scale open-source point cloud pro-
cessing project, i.e., Point Cloud Library, does not in-
clude any methods for segmenting point cloud models into
semantically-meaningful sub-shapes. One brief article was
published recently on the topic of feature identification
from laser scan data, but that article focuses only on ap-
proximate normal-based segmentation and doesn’t provide
any theoretical backing for their proposed techniques [41].

1.2. Framework Overview

Our shape analysis procedure for point cloud models,
whose main steps are illustrated in Figure 2, may be un-
derstood as a feed-forward network of three analyses:

1. Local shape description: Describe the local neigh-
borhoods on the shape via the SPCL (Section 2).

2. Shape similarity measure: Compute spectral shape
signatures to enable shape matching and discrimina-
tion (Section 3).

3. Segmentation: Segmente the shape by clustering
signature values and other information from the pre-
ceding steps over the model’s point cloud geometry
(Section 4).

The procedure starts with the computation of a dis-
crete estimate of the Laplace-Beltrami operator from the
input point cloud produced by the output of a depth cam-
era. This provides a local description of our input surface
at each point in the cloud. A spectral shape signature is
then computed for the point cloud model using the guide-
lines we provide in Section 3.1, obtaining a measure of
shape similarity which can be used for matching and dis-
criminating between arbitrary shapes. Finally, the simi-
larity measure and other analysis information is clustered
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over model points. This ensures that shape segments re-
tain context as part of the overall shape in the form of
their signature values.

1.3. Scope and Contributions

The main contributions of this paper are as follows.

• We show that spectral methods applied directly on
point clouds can be effectively used construct com-
pact shape signatures of noisy and incomplete point
clouds for point cloud analysis and segmentation.
We have developed and implemented one such con-
vergent estimate with known error bounds, namely
the Symmetric Point Cloud Laplacian (SPCL) [18,
19], but any other convergent estimate of this differ-
ential operator could be used in principle.

• We develop point cloud clustering tools for shape
segmentation, including equivalences between intrin-
sic neighborhood sizes on meshes and point clouds
and a novel point cloud formulation of a persistent
homological segmentation.

• We formulate and implement the first published uni-
fied analysis framework to perform shape descrip-
tion, similarity, and segmentation directly on point
cloud data that does not rely on surface reconstruc-
tion or meshing.

• We show that the proposed techniques are robust
against typical noise present in possibly incomplete
point clouds, and segment them into semantically
meaningful sub-shapes for point clouds scanned by
depth cameras (e.g. Kinect).

• We introduce a new clustering method based on the
Vietoris-Rips filtration for grouping segmented point
cloud model sub-shapes (i.e., features) into similar-
ity classes. This technique could be used to explore
geometric factorizations of and solid model recon-
struction from point cloud models.

Together, the work we present provides a highly-
automatable integrated analysis procedure for performing
direct shape comparison and segmentation of point cloud
models.

2. Local Shape Description

2.1. The Laplace-Beltrami Operator

The Laplace operator is a second-order differential op-
erator ∆f which describes the variation of a differentiable
function f within a space. It is defined as the divergence
of the gradient of the function

∆f = ∇ · ∇f

which is equivalent to the sum of the unmixed second-order
partial derivatives [42]. Intuitively, this operator describes

the flux of the gradient field of a function in that space.
The equivalent form on a Riemannian (i.e., real, smooth,
equipped with an inner product) manifold is called the
Laplace-Beltrami operator (LBO):

∆Mf = tr(H(f)) (1)

The Hessian H(f) of the function is a square matrix of
second-order partial derivatives that describes the local
curvature of the function f over the manifold. Taking the
trace of the Hessian in Equation (1) keeps only the un-
mixed second derivatives, as in the definition of the stan-
dard Laplacian.

This property of describing local curvature makes the
LBO of a surface a valuable tool in shape analysis. Dis-
cretizations of the LBO for various discrete representations
of a surface have been the subject of intense academic in-
terest [43]. A recently developed discretization (and the
first for point clouds) is the Point Cloud Data Laplacian
(PCDL) operator [20]. This operator is of particular inter-
est because of its stronger than usual convergence bounds.

A native definition of the LBO on a Riemannian man-
ifold M with metric g has the form

∆M =
1√
|det g|

n∑
ij=1

∂

∂xi

(
gi,j
√
|det g| ∂

∂xj

)
(2)

where det is the determinant. The PCDL on point cloud
P sampled from manifold M at scale t takes function f as
an input and has a similar form:

LtP f(p) =
1

4πt2

∑
σ∈Kd

Aσ
3

∑
q∈V (σ)

e−δ (f(p)− f(Φ(q))) (3)

where δ =||p− Φ(q)||2(4t)−1

Here the intrinsic dimension of the manifold is 2, Φ is the
projection onto an approximate local tangent plane, and
Aσ and V (σ) are the area associated to and the vertices
of a given simplex σ in the local triangulation Kd on that
tangent plane.

2.1.1. What Makes the Laplacian Special?

The LBO has been used for more than estimating cur-
vatures. First, we observe that the Laplacian on Rn com-
mutes with isometries on general Riemannian manifolds,
which is exactly what is needed in processes whose under-
lying physics are independent of position and direction,
such as heat diffusion and wave propagation in Rn. Hence,
the eigensystem of the LBO arises naturally in spectral
solutions to various physical problems on these manifolds
[44].

2.1.2. Construction of the PCDL/Matrix

The PCDL construction is point-wise agglomerative,
echoing the summations in the manifold-native form. The
operator is built row-by-row from local neighborhood esti-
mates in reduced-dimension tangent spaces approximated
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(a) Point cloud model (b) Local description c) Similarity measure d) Automatic segmentation

Figure 2: The stages of our point cloud model analysis procedure, from model to SPCL to an HKS vector to one of many possible segmentations.

Figure 3: An important part of the SPCL’s construction: Projecting a query point’s three-dimensional noisy point cloud neighborhood into
a locally-computed two-dimensional tangent space and triangulating the points in that lower-dimensional space: (a) A noised robot point
cloud model; (b) The neighborhood of a point in a corner of the third linkage; (c) The local approximate tangent plane computed for the
neighborhood; (d) Another angle showing the local approximate tangent plane and the neighborhood (camera is behind robot and looking
toward the end effector along the left side); (e) A view of the tangent plane from inside the robot model (viewed from the -z direction of
the tangent plane); (f) The neighborhood points projected into the tangent plane; (g) A 2D local Delaunay triangulation of the projected
neighborhood; (h) The triangles adjacent to the query point (the triangles whose areas sum to Api in Equations 4 and 6) are here highlighted
for clarity.

from the point cloud. Figure 3 shows the creation of one
such reduced-dimension tangent space and subsequent lo-
cal triangulation from PCA (principal component analy-
sis) of neighbors about the centroid of the local neighbor-
hood. It has been shown [20] that, given a sampling fine
enough to capture the highest-curvature features of the
manifold, these local neighborhood estimates approximate
the actual surface to a third order term.

Consider a sampling of points from a Riemannian man-
ifold such that no point on the manifold is farther than ε
from a point in the sampling. Let the reach ρ of the sur-
face be defined as the the radius of the largest ball which
can roll to touch every point on the surface [45]. This fac-
tor may be considered the “size” of the highest-curvature
features of the surface. The angle between the actual tan-
gent space to the surface and the approximate tangent
space into which points are projected by the projection Φ
in equation (3) is bounded to the order of O(f(ε)/ρ) and
for points which are near one another (within O(ρ/2)),

the projected approximate tangent plane distance approx-
imates the geodesic distance up to a third order term. As
sampling becomes finer (limε→0 L

t
P f(p)), the value of the

PCDL approaches that of the Laplace-Beltrami operator.
This is the essence of the convergence proofs for the PCDL
[20].

2.2. Symmetrizing the Point Cloud Data Laplacian

In order for the eigensystem of an LBO estimate to be
real, the estimate itself must be a real Hermitian (therefore
symmetric) matrix [34]. The PCDL estimate of the LBO
proposed in [20] and summarized above is not symmet-
ric for a general point cloud. Its asymmetry arises chiefly
due to the row-wise (equivalent to point-wise) computation
of representative areas and point-to-point distances in its
computation. The error between distance estimates in the
PCDL is small, bounded by a third order term in the dis-
tance, but neighborness of a pair of points is discrete, and
any discrepancy between distance measures can propagate
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inconsistency of neighborness (e.g., point i ’s row implies
that point j and it are neighbors, but point j ’s row implies
they are not).

To restore the LBO’s natural symmetry to the PCDL
estimate, we include [18, 19] the row-point’s area along
with the neighbor point’s area (as developed independently
in [46]), then average the operator across its matrix di-
agonal and compute the eigensystem by the generalized
eigenvalue problem. Thus, we compute the SPCL matrix
and eigensystem Φ and Λ for a point cloud representing
an ε-sampled 2D surface embedded in 3D space as

Wi,j =


−S(ε) · Api

Apj

9 · e−δ(ε,i,j), j 6= i

−
∑
jWi,j 6=i, j = i

(4)

where

S(ε) = 4
(
π(2 · ε)4

)−1

δ(ε, i, j) = ||pj − pi||24−1ε−2

Then

Ŵ = 2−1
(
W +WT

)
(5)

ŴΦ =diag(Api/3)ΛΦ (6)

Here, Apj is the total area of the simplices adjacent to
point pj in the local triangulation near that point. The
diagonal element of each row of the SPCL is the negative
sum of the other elements of that row, since the Laplace
operator is by definition an averaging operator [42]. The
local tangent spaces are approximated by PCA of each
local ball of points about the neighborhood’s centroid.

2.2.1. Error Bounds and Guarantees Retained by the SPCL

In order to improve robustness with respect to noise,
the distances used in each row of the PCDL between the
corresponding points were specified as post-projection Eu-
clidean distances in the tangent plane of the point associ-
ated with that row dTi(Φ(pi),Φ(pj)). It has been shown
that the error between dTi(Φ(pi),Φ(pj)) and the geodesic
distance in the manifold dM (pi, pj) is bounded by a third
order term for points closer than ρ/2 [20]:

dTi(u, v) ≤ dM (u, v) ≤ dTi(u, v) +O(d3) (7)

The size of neighborhood specified for construction of the
local triangulations is λ < ρ/4. This means that the dif-
ference in tangent-space Euclidean distances between two
points, each of which appearing in the tangent space be-
longing to the other (i.e., appearing in each others’ rows
in the operator), will be bounded by a third order term.

0 ≤ dM (u, v)− dTi
(u, v) ≤ O(d3) (8)

0 ≤ dT2(u, v)− dT1(u, v) ≤ O(d3) (9)

The error of the average of those two distance estimates
will therefore also be bounded by a third order term, mak-
ing the SPCL no worse an estimate than the PCDL in

terms of geodesic distances approximation.

avg(dT1 , dT2) ≤ dM (u, v) ≤ avg(dT1 , dT2) +O(d3) (10)

Similarly, the representative areas associated to points
appearing in one another’s tangent spaces is computed
from the local triangulations developed on the projected
points. Apj is the sum of triangle areas for simplices con-
taining pj . Each of those triangle area terms is a multipli-
cation of two point-to-point distances in the tangent space,
a term which must therefore be bound by O(d3) error from
the same area in the manifold. Averaging associated areas
then, just as averaging distances above, does not increase
the order of the error term. Thus, the SPCL retains the
error guarantees and convergence properties of the PCDL.

2.2.2. Normals at no additional computational cost

The construction of the SPCL requires the estimation
of approximate tangent spaces (i.e., of tangent planes for a
3D model) at each point in the sampled surface. This tan-
gent plane is computed with Principal Components Anal-
ysis (PCA) and the eigenvector associated with the least
eigenvalue corresponds to the estimated normal vector of
the surface at that point. This vector value computed
at each point as the SPCL is built provides an approxi-
mate normal at no additional computational cost. Figure
4 shows the good results of finding edges in a point cloud
model by examining the maximum angle between normal
vectors for the points in the local neighborhood of each
point.

Figure 4: A 26525 point sampling of the “fandisk” model showing
edges computed from point normal vector estimates obtained as a
byproduct of constructing the SPCL.

3. Shape Similarity Measure

3.1. Spectral Shape Signatures

A shape signature is a compact representation that
retains relevant information about a shape. A useful sig-
nature should retain enough information to discriminate
completely between any two general shapes or classes of
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shapes, while allowing straightforward computations of de-
gree of similarity and remaining a manageable size. Many
shape signatures have been proposed in the literature, but
have almost exclusively operated on meshes or parametric
surfaces, not point clouds [39, 24, 47].

The particular class of shape signatures known as “spec-
tral” shape signatures consists of signatures whose values
are computed by reference to the spectrum of the Lapla-
cian of a shape. Many of these signatures derive mean-
ing by analogy to physical processes that are governed
by the intrinsic geometry of the space in which they act.
The spectral shape signature we use in our investigations
is the Heat Kernel Signature, although we observe that
other shape signatures could be used within the proposed
framework instead, such as the Wave Kernel Signature,
Global Point Signature, ShapeDNA, or the Giaquinta–
Hildebrandt operator [48] (though reformulating this last
option would be more involved than for those dependent
on the Laplace-Beltrami operator only). In each case, the
use of the operator needs to be freed from any dependence
on mesh structure, as we discuss and demonstrate in the
following Sections.

3.1.1. The Heat Kernel Signature

The Heat Kernel Signature (HKS) is a spectral shape
signature founded in the physical process of heat diffusion
[24]. It has a number of desirable properties: it is invariant
up to model isometry, intrinsically multi-scale, and stable
under perturbations on the scale of typical depth camera
noise.

In order to get a physical sense for the meaning of the
HKS of a shape, consider a point source of heat applied to
a point on a surface. As time passes, the heat will diffuse
on the surface away from that point. The heat kernel
signature’s value kt at that point is the sum total of all
of the heat which has diffused away by time t. The heat
equation on a manifold is defined as

∂u

∂t
− α∆Mu = 0 (11)

where α is a positive constant, u is the thermal energy as
a function of time and location on the surface [49], and
∆M is the Laplace-Beltrami operator.

The heat kernel is a fundamental solution to the general
heat equation [50]. Consider an operator Ht that maps
any initial heat distribution u0(x) on a surface onto the
distribution of heat on that surface at any time t

Ht(u0(x)) = u(x, t) (12)

A unique solution to the heat equation above may be writ-
ten

Ht(u0(x)) =

∫
M

kt(x, y)u0(y)dy (13)

where kt(x, y) is called the heat kernel. Since Ht is com-
pact, positive semi-definite, and self-adjoint, the spectral

theorem from linear algebra, allows us to recast it in terms
of its eigensystem [51]:

kt(x, y)H =
∑

λHi φ
H
i (x)φHi (y). (14)

Ht being a solution to the heat equation, it also has the
form Ht = e−t∆M . The heat operator Ht therefore shares
the same eigenvectors as ∆M , and their eigenvalues are
related by λH = e−tλM . This relationship allows us to
write the heat kernel in terms of the eigensystem of the
Laplace-Beltrami operator as

kt(x, y) =
∑

e−λitφi(x)φi(y) (15)

The quantity kt(x, y) may be considered equivalent to a
measurement, for time t, of the amount of heat transferred
from point x to point y, for some initial distribution of heat
energy on the surface u0(x). Using this quantity as a mea-
sure for similarity would require mappings between each
of the neighborhoods, which would be difficult or time-
consuming to define between models.

The heat kernel signature (HKS) of a shape is a more
compact description of a shape than the heat kernel itself;
it is a restriction of the heat kernel to kt(x, x), i.e., the
diagonal of the heat kernel. This restriction captures the
“amount of heat” that has diffused away from point x by
“time” t, and is sufficient to describe the local area of point
x for the purposes of similarity [24]. Restricting the heat
kernel to the “time” domain over the model reduces the
computational complexity of the signature and obviates
the need to develop these local mappings for similarity.
This form of the heat kernel on M has the eigendecompo-
sition

kt(x, x)M =
∑

e−λitφi(x)φi(x) (16)

where λ and φ are the eigenvalues and eigenvectors of the
LBO of M .

Because of its dependence on the factor t, the HKS is
innately multi-scale and may be calculated over a range of
scales, which can be considered analogous to neighborhood
sizes. This allows the capture of information about a sur-
face over different degrees of locality, e.g., examining local
curvature information vs. examining the global shape of
the surface (extremity, global convexity/concavity, etc.).

3.2. Feature Points and Feature Vectors

For matching shapes and for efficient signature stor-
age, signatures are often queried for “feature points.” A
typical feature point from a signature is an extreme point
in some way, either locally or globally, representing a loca-
tion on the surface possessing some particular interesting
properties. In the case of a signature whose values cor-
respond roughly to local curvature (such as HKS at low
t-scale), a feature point in the signature may correspond
to a projection from or indentation into the surface, being
a point of extreme local curvature. Generally, the extreme
values of a signature on a shape have shown themselves
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(a) (b) c)

Figure 5: (a) The non-zero points of a row of the SPCL centered about the corner of a cube, colored according to segment after being clustered
into three segments by SPCL value, and shown on the noisy mesh from which this point cloud is sampled for clarity; (b) The points contained
in the first two segments of the clustering shown on the mesh for clarity; (c) The actual 1-, 2-, and 6-ring mesh neighborhoods around the
point of interest, colored to show correspondence with the point cloud estimate of 1-, 2-, and 6-ring neighborhoods.

useful for discriminating between shapes and for matching
[52]. Using lists of feature points, either as a group of fea-
tures themselves or in combination as a “feature vector,”
reduces the overhead for matching by reducing the number
of values that must be compared or computed.

Numerous features and feature vectors have been de-
fined from shape signatures, and they are typically chosen
experimentally to produce good results on some example
set of models. For example, one can select all of the local
maxima [24], a fixed number of extrema [22], or multiple
values per feature point for a set of local maxima [21].

The original work proposing HKS for meshes recom-
mended finding vertices that are locally maximal in the
HKS space by examining 2-ring neighborhoods in the mesh
considering those maximal points to be “feature points.”
Since we are dealing with point clouds rather than meshes,
we have at least two options for converting this 2-ring mesh
neighborhood. Specifically, we can:

1. use those points in the point cloud model that are
within the n nearest neighbors of each of the n near-
est neighbors of a point, which can exploit, for ex-
ample, the “nearest neighborness” property of a local
Delaunay triangulation;

2. exploit the neighborness information offered by SPCL,
as discussed further in Section 4.1. Specifically, be-
cause of the way we define the SPCL with respect to
the ε ball, the points corresponding to non-zero val-
ues in a row of the SPCL are those points which, if
the point cloud were well-meshed, would be vertices
in the 6-ring neighborhood of the vertex which corre-
sponds to that row. Those values are computed from
local areas and distances from the point correspond-
ing to the row, so for a relatively uniformly-sampled
point cloud, simple k-means clustering the points by
value into three clusters produces a reasonable ap-
proximation to the 1-ring neighborhood, the 2-ring
neighborhood, and the 6-ring neighborhood as illus-
trated in Figure 5.

Additionally, it has been recently proposed [21, 40] that
examining the values of a signature in terms of topological

persistence may yield a high quality feature vector. Such
methods are based on ideas from algebraic topology, such
as the Vietoris-Rips filtration, which computes linkages be-
tween elements as a network is grown between them [53].
Dey et al. [21] proposed a feature-point selection method
based on homological persistence. The method seeks to
grow segments around mesh elements by a procedure that
begins with the segment (initially, a single triangle) of least
persistence and joins it to the region adjacent to a par-
ticular edge of that triangle. This growing and merging
of regions to seek persistent feature points coincidentally
produces a segmentation of the shape under examination,
resulting in segments labeled under the name of the “cen-
tral triangle” of highest value in each region. They ob-
serve experimentally that 15 feature points defined by their
region-merging method are “usually sufficient” to differen-
tiate between models, and then calculate the HKS values
at the triangles so selected for each model at fifteen differ-
ent t scales. This 15-dimensional feature vector for each
feature point in the model exploits the multi-scale nature
of the HKS to aid in model discrimination.

The algorithm described relies heavily on mesh struc-
ture and properties. To adapt this n×n feature vector for
matching on point clouds, we reformulate the segmenta-
tion algorithm proposed in [40] to produce feature points.
We find a point of maximum HKS value within each region
of the segmentation (at a particular t scale). This point
provides a natural analogue to the “central triangle” of
that algorithm.

4. Segmentation

Humans are typically very good at segmenting shapes
into semantically meaningful sub-shapes [54]. Therefore,
a high quality automatic segmentation of an engineering
model should consist of a very similar set of segments to
a human segmentation of the same model [35]. Unfor-
tunately, the decomposition of a shape into semantically
meaningful “features” is a widely open problem not only
because the concept of a feature is almost always con-
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text/application dependent [55], but also because the so-
called intersecting features still pose a significant challenge
to the state of the art feature recognition methods.

4.1. Clustering for Segmentation

We develop a new segmentation which may be concep-
tually considered to be a 0-dimensional Vietoris-Rips fil-
tration and additionally explore the implementation within
our framework of two established methods: Heat Walks
[56] and a particular instance of curvature-aware segmen-
tation [57]. These and other segmentation methods can
be implemented within this framework and used to seg-
ment point clouds corresponding to organic and engineer-
ing shapes characterized by intricate feature patterns in-
cluding through holes, countersinks, chamfers, etc.

Defining a general unsupervised clustering method that
produces only engineering-relevant design features as clus-
ters without matching to a finite set of primitives is a very
challenging problem. Our solution is to apply tools from
algebraic topology and homology to develop a segmen-
tation method that, with some parameter adjustments,
produces segmentations separating large-scale engineering
features, such as fins or holes, regardless of the shape of
the model.

Guibas et al. [40] developed a shape segmentation
method that uses the heat kernel signature of a shape cal-
culated on a surface mesh model. Their method was in-
tended for use on “deformable shapes,” which could be a
very broad class of models; their demonstrations, however,
were on only “organic” models regularly observed under
various deformations. Specifically, the method described
in [40] is specified as an examination of persistence of re-
gions grown around HKS maxima defined over 1-ring mesh
neighborhoods. In a point cloud model, there is no mesh
and therefore no n-ring neighborhood structure. However,
we propose to use the SPCL itself to find equivalent neigh-
borhoods.

A recent clustering method that can be applied to both
meshes as well as point clouds is described by van Kaick et
al [58] and uses the approximate convexity-based method.
As discussed above in Section 3.1, the HKS is proportional
to curvature at low t-values and encodes more global in-
formation for higher t-values. This allows segmentation
methods based on the HKS to segment shapes based on
local curvature, just as in [58], but also by more heuristic
measures that allow segmentations to develop more natu-
rally as in so-called “part-based” (or “higher-level”) seg-
mentations [59]. It is also important to note that the seg-
mentation described in [58] produces segments, but does
not produce the semantics of these segments. This is the
convexity-based segmentation method developed in that
work does not rely on a similarity measure.

On the other hand, our segmentation relies on a specific
similarity metric so that we not only produce segmented
point clouds, but retain information about what shape
those point clouds are. This information could be used

in downstream processing, for example for reconstructing
parametrized solid models of the point cloud.

4.1.1. From Mesh Clustering to Point Cloud Clustering

The SPCL matrix described in Section 2.1 may be un-
derstood as a weighted adjacency graph for the point cloud
it describes. Local balls of points in sufficiently dense point
clouds may be considered in some important ways analo-
gous to n-ring neighborhoods in a mesh representation of
an object. It has been shown that the Euclidean distance
between the tangent space neighbors as computed in the
construction of the SPCL approximates the geodesic dis-
tance between those same points on the surface to a third
order error term. This means that the projection of the
local neighborhood of points into the approximate tangent
space is a good local approximation of the surface under
consideration. We can exploit this approximation to esti-
mate geodesic distances locally from Euclidean distances,
to estimate neighboring regions and cliques, and to find
the associated representative surface areas of the points in
the cloud.

Since neighbors in the local tangent spaces are neigh-
bors in the surface, the local neighborhoods used to create
the SPCL are neighborhoods in the surface represented
by the point cloud model, as well. Thus, we can treat
the LBO as a weighted neighborhood graph of the point
cloud. If we ignore the weights in this graph, and consider
only the connectivity information, we have a matrix of
neighborhood information in which the non-zero points in
each LBO row are analogous to the points in a particular
size of neighborhood in an equivalent mesh. Construct-
ing the SPCL using the same neighborhood size suggested
for the PCDL, each non-zero point in a given row in the
LBO is a member of the 6-ring mesh neighborhood of the
point corresponding to that row (see Figure 5). This cor-
respondence holds because the neighborhood size used in
computing the LBO rows is based on the intrinsic scale of
the point cloud (which is equivalent to the scale of a mesh
with vertices at those points).

Importantly, this implied structure allows us to com-
pute locality and connectivity for regions on the surface
by simple query, something simple in a complete surface
mesh, but previously not straightforward on point clouds.
We can also put this structure to work in defining clus-
terings that operate not just on the signature values on a
point cloud, but locally over the surface because we can
examine the way the signature values change across the
local neighborhoods on the point cloud.

Our persistent clustering method (See Algorithm 1)
takes as inputs the point cloud model itself, the SPCL and
the HKS thereof, and a user-selected scale τ . The highest
ν values (we note that ν = 10 seems to give good results)
of the weight matrix of the SPCL are taken as neighbors
of the point corresponding to that row. That is, ν repre-
sents the approximate number of one-ring neighbors of the
point in question in an equivalent mesh surface. The val-
ues of the HKS vector selected as clustering criterion are
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sorted in descending order. Beginning with the point in
the cloud with the highest associated HKS value, points
with maximum values within their neighborhood are as-
signed to their own cluster. Whenever a point is found
to not be a maximum within its neighborhood, that point
is assigned to the cluster of its highest-valued neighbor.
Whenever two clusters are adjacent to a point that is be-
ing investigated, the maximum HKS value of each cluster
is compared. If the difference between maximums is less
than or equal to the τ selected, the points belonging to
both clusters are assigned to the cluster with the high-
est maximum HKS value and the smaller-valued cluster is
removed. The clustering parameter τ can be tuned to con-
trol the number of desired segments for a particular model
as discussed in Section 5.8.

Algorithm 1 Clustering

function Clustering(PC,SPCL,ν,HKS,τ)
Find ν largest SPCL weight values for each row OR

nearest ν neighbors for each point
sorthks ← Sort points by HKS descending.
Pop sorthks
if maximum in neighborhood then

Assign Self-Cluster
else

Assign highest-value adjacent cluster
end if
if more than one adjacent cluster then

if max(cluster1)−max(cluster2) ≤ τ then
Merge the smaller-valued cluster into the

higher-valued cluster
end if

end if
end function

Algorithm 1 exploits the nearest neighborness property
of the SPCL to perform model segmentation, and follows a
similar procedure to that introduced in [40], but excises all
dependence on mesh structure in favor of ad-hoc neighbor-
hoods provided by the SPCL. We consider this persistence-
based segmentation method as a 0-dimensional persistent
homological filtration over a restriction of the neighbor-
hood graph induced by the SPCL to the top ten points in
each SPCL row. We use the HKS value difference between
points as a distance measure in the implied graph. Defin-
ing the segmentation in this way avoids reliance on mesh
structure, allowing us to meaningfully define this segmen-
tation on a point cloud model without disregarding local
connectivity information. In practice we find it expeditious
to seek a particular number of segments a priori to track
the births and deaths of segments, sort by lifespan, then as-
sign τ based on the number of segments desired/expected
survive during the merging process.

4.2. Heat Walks

The Heat Walk [56] is a segmentation method that uses
the full-sized heat kernel in contrast with the HKS’s re-

striction to the diagonal of that matrix. It assumes that
the Heat Walk algorithm develops knowledge about the
pathways of maximum heat flow capacity on the surface
and leverages that knowledge to segment the surface re-
sulting in a robust and stable segmentation method.

The Heat Walk algorithm operates as follows: The heat
kernel is computed for the shape, then a voting step is
used to find “exemplar” vertices, while non-exemplar ver-
tices are merged into accumulator regions represented by
those exemplars. After this merging, there will be por-
tions of the surface which are merged into accumulator
regions but which may be more accurately understood as
“dissipator” regions (rather than simply low-accumulation
regions). Vertices of this kind are split off into their own
dissipator region by a step which computes a difference be-
tween two quantities: (a) the difference between the value
at each vertex and the exemplar for the accumulator re-
gion to which is belongs and (b) the difference between
the value at that vertex and a uniform distribution over
the model. Vertices which are “closer” to a uniform value
over the model than to their accumulator exemplar are
considered dissipative.

We implemented a version of this algorithm that does
not rely on the mesh connectivity and hence can be applied
directly to a point cloud model, as follows:

1. Construct the SPCL of the point cloud as described
in Section 2.1.

2. Compute the heat kernel signature on the point cloud.
The heat kernel at scale t for points x and y, kt(x, y),
is computed as in Equation 15.

3. Initialize the value of the “heat potential” s1(x) for
each point x to be kt(x, x).

4. Find for each point an exemplar point to represent
that point. For a point x, for step m+1, its exemplar
em+1(x) is defined as the point y which maximizes
min(kt(x, y), sm(y)).

5. Update sm+1(x) using the set of exemplars, that is

sm+1(x) = max (min(kt(x, y), sm(y))) (17)

where y ∈ em, the set of exemplars at the current
step.

6. Update em+1 and sm+1 until the set em+1 does not
change from em, i.e., until the algorithm converges
to one set of exemplars. This completes the merging
into accumulator regions portion of the heat walk.
See Figure 9b.

7. Next, to find the dissipator region, compute the prob-
ability density function (PDF) for each point px, for
the uniform heat distribution pU , and, for each ag-
glomerative region i, the “mean cluster density” pi
(i.e, the pdf of the “average” point in a given accu-
mulator region). These are defined as

px(y) =
kt(x, y)∑
y kt(x, y)

(18)
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pU (y) =
1

n
(19)

pi(y) =

∑
x∈i kt(x, y)∑

x∈i
∑
y kt(x, y)

(20)

for each accumulator region i and where n is the
number of points in the point cloud.

8. Once these are computed, for each point, compute
the Kullback-Liebler divergence (KLD) between the
PDFs, defined as:

KLD(j|k) =
∑
i

j(i)log
j(i)

k(i)
(21)

The divergence of the PDF of each point with the
uniform distribution and with the average distribu-
tion for the region that point has been assigned are
compared. If KLD(px|pU ) < KLD(px|pi(x)) where
i(x) is the agglomerative cluster in which point x re-
sides, then point x is reassigned to a new dissipative
cluster. That is, points x with kt(x, y) distributions
closer to the uniform distribution than to the distri-
butions of the other points in its assigned cluster is
mis-labeled and should instead be part of the dissi-
pative cluster.

Although in [56] it is claimed that this segmentation
method is “fast”, in practice computing the entire heat
kernel for even a medium-sized point cloud is time con-
suming and the storage requirements are daunting. Even
a modest 10,000-point model has a heat kernel of size
10000 × 10000 = 1E8 floats (4E8 bytes) or doubles (8E8
bytes). In double precision, that requires storage on the or-
der of 760MB. Decimation or other data reduction schemes
may be used to reduce the impact of these drawbacks.

Segmentation results of the Heat Walks algorithm im-
plemented to operate directly on point clouds are pre-
sented in Section 5. Importantly, since the heat walk re-
tains a record of the exemplar point of that cluster for all
accumulator clusters, and since each of those points pos-
sesses a heat kernel signature value at s1(x), heat walks
outputs can be clustered for segment types as described
next.

4.3. Clustering Segments by Type

The segments produced by the heat walks and the per-
sistence segmentation method described above are con-
strained to local relevance by the neighborhood graph over
which we allow the segmentation to act. This constraint is
typically helpful: it requires that segments be connected
in the neighborhood graph, a necessary condition for a real
shape segment. However, in cases where a complex shape
is made up of a smaller number of distinct shape classes,
it is of interest to determine how many “types” of shapes
actually comprise the model. Since our persistent homo-
logical segmentation method relies on a physics-based sig-
nature and retains that distinctive physicality, we can com-
pare the values of the maximum HKS values contained by

the segments in order to group computed segments into a
smaller number of “sub-shapes”. We compute the number
of “types” of shapes by using the Vietoris-Rips filtration,
which can be followed by a similarity evaluation to seman-
tically identify each class of sub-shapes. The 0-dimensional
homology of the V-R filtration can be calculated quickly
over the very small and low-dimensional space of the lo-
cally maximum HKS values of the segments returned by
any other segmentation method. In fact, in this case, the
V-R filtration is acting essentially as a nearest neighbor
grouping algorithm acting on a scattering of points on a
number line. This procedure can, however, produce use-
ful results, as illustrated in Figure 12, where a segmenta-
tion showing that a number of segments detected within
a shape can sometimes be reduced to show that there are
some smaller number of distinct sub-shapes (or types of
segment) present.

In grouping clustered segments together to produce a
more relevant result, our method here is similar to that
presented in Chazal et al.’s paper on persistence in Rie-
mannian manifolds [60]; as the kinds of surfaces engineers
are typically interested in for design and analysis are Rie-
mannian, there may be additional utility to be found by
combining their research with our method as described
above. The 0-dimensional homology method we describe
and which we consider equivalent to the mesh method of
Guibas [40] is certainly useful. The 1-dimensional or even
2-dimensional homology of that same filtration may also be
of interest, but these investigations are outside the scope
of this paper and the subject of ongoing research.

5. Experimental Validations

In this Section we demonstrate the quality results ob-
tained by our point cloud analysis and segmentation on
a variety of models beyond those discussed in the previ-
ous Section. The proposed framework can be used not
only to measure the similarity between whole point cloud
models, but to segment these point cloud models into sub-
sets that correspond to features. The similarity of these
features can be measured in turn, allowing the individual
features to then be matched with known features from a
database. Furthermore, our method can in principle de-
tect the number of distinct shape classes that make up a
point cloud model, as illustrated in Figure 12, which could
potentially be used as a way to explore geometric factor-
izations as well as solid/geometric model reconstructions
of point cloud models.

Throughout this Section, adding model-scale or pro-
portional Gaussian noise to a model means that each point
in the cloud of that model has been displaced in the x, y,
and z directions by three samples drawn from a normal
distribution with µ = 0 and σ = pε. Recall from Section
3.1 that ε is the average distance between points in the
model’s point cloud.
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Figure 6: The noisy, poorly-aligned Kinect scans of the CERTH/ITI
database are highly resistant to quality meshing, as these two models
(with a naive meshing for each) demonstrate. The elephant mesh is
produced by the Surface Mesh function of 3DReshaper Meteor. The
dog mesh is produced by MeshLab’s RIMLS method.

5.1. Similarity and Classification for the
CERTH/ITI Range Scan Dataset

We present the following example on the CERTH/ITI
Range Scan Dataset, which is a freely-available database
of scanned point cloud models of a variety of small objects
[61] produced by the original Microsoft Kinect sensor with
a depth resolution of about 1 cm.

The 59 objects in the database, categorized into classes
as “17 land mammals, 6 dinosaurs, 11 sea mammals, 10
objects with humans, 2 guns, 2 bugs, 5 cars and 6 un-
categorized objects” [61], were scanned in eighteen differ-
ent rotations of a turntable. The database provides an
.XYZ file of the set of scans of each object rotated into a
common coordinate system (so-called “registered” scans).
Minimal cleaning has been performed to remove points
outside the bounds of the turntable (i.e., background re-
moval), but outliers remain, and the points of the aligned
scans are often positioned so that a reconstructed surface
through the points would result in self-intersections and
other surface degeneracies. These scans, which are simi-
lar to those produced by industrial and hobby range scan
systems, would be challenging to mesh without human op-
erator intervention. Figure 6 shows the low-quality meshes
which result from using established research and commer-
cial meshing techniques on two representative point clouds
from the dataset.

We demonstrate the efficacy of our point cloud method
for grouping shapes of this Kinect model database of 54
shapes. To this end, we remove the outlier points that re-
mained after background removal by discarding the points
belonging to non-merged segments of a given model that
contain fewer than 1% of the total model points. This de-
sign is intended to prevent the discarding of true disjoint
models if present while discarding unconnected patches
of points from the background, turntable, or very severe
alignment errors, although more sophisticated outlier de-
tection and removal methods [62, 63] could be employed

as well.
We normalize the size of the models to a unit bounding

box, and then compute the SPCL. The HKS at t = 0.001
was used to find 15 persistent clusters and subsequently a
15 × 15 feature vector was produced as described above.
The HKS values comprising the feature vector were scaled
to a max value of 1. Matching quality can be examined
with the models representing the top matches for a given
query. In Figure 7, we show an example of the top five
models matched to a particular query model using our
point cloud-based techniques.

The “natural” classification suggested by the CERTH
dataset authors would label the query model a member of
the class “dinosaurs” and only one of the top five matches
is also so classified (other categories represented include
“land mammals” and “other”). However, all of the top
five matches appear to belong to a slightly broader class
of “quadrupedal caudate land animals”, a more geomet-
rically defined class than the geometrically variable but
more deeply contextualized “dinosaurs” class.

The top-5 hit rate of our current CPU-based imple-
mentation used for the CERTH database of noisy and in-
complete point cloud models is > 61%. As a comparison,
a top-5 hit rate of 88% is reported in [21] for a database
of 50 noiseless and meshed models, in different poses and
different levels of completeness. The difference in the two
top-5 hit rates is due to the fact that the CERTH dataset
is not only more general, but also has significantly more
noise than the dataset used in [21], and that the categories
given by the CERTH dataset authors are, as noted above,
somewhat narrow and non-geometric.

Perhaps a more apt comparison, running our techniques
on point cloud models from the SHREC 2015 dataset and
an equivalent mesh pipeline results in an E metric [64]
score of 0.90 for point cloud and for mesh on a 32-model
query. This is an E score of near the middle of the pack
for results reported for model-retrieval routines tested on
the SHREC dataset [65]. The models in this dataset are
very incomplete, as well.

5.2. Persistence-Based Segmentation

The following examples demonstrate the quality seg-
mentation results which can be obtained using the tech-
niques proposed in this paper.

Figure 8(a)-(c) show the point cloud, HKS vector, and
automatic segmentation of the ABB robot model first in-
troduced in Figure 3. The proposed automatic persis-
tent homological segmentation clearly delineates the point
cloud into regions roughly corresponding to bulk design
features that an engineer would find meaningful. Note es-
pecially the very well-defined middle rotational link and
base link.

Figure 8(d)-(e) show the HKS and persistent homo-
logical segmentation for an approximately 150,000 point
turborotor-type industrial part. This point cloud is a
high-quality sampling at good resolution, demonstrating
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Figure 7: A query model from the CERTH/ITI dataset (left) and its five closest matches in the set according to matching HKS vectors from
noisy point cloud models. The numbers aligned with the matching models from the database are the distance scores computed from the HKS
feature vectors used to determine the best matches. Note the geometric and shape class similarities between query shape and matches.

(a) (b) (c) (d) (e)

Figure 8: (a) A point cloud Monte Carlo-sampled from an STL file of a robot courtesy of ABB [66] with model-scale noise (µ = ε/2, p = 0.125)
added to each point; (b) The HKS values for at t = 4λ−1

300ln10; (c) One of the many possible automatic segmentations of the model by using
Algorithm 1; (d) The HKS vector for a turborotor model at t = 0.001; (e) An automatic persistent homological segmentation of the turborotor
model output by Algorithm 1.

the efficacy of the presented framework on high-quality,
industrial-type point cloud models. Note the good defini-
tion of the numerous fins projecting from the central cone
and bore of the model.

Despite their different forms, resolutions, and constituent
features, the ABB robot and turborotor models are both
models of real engineering artifacts which can be segmented
by the techniques introduced in this article directly from
their point cloud information without either explicit con-
nectivity or normal vector information.

5.3. Heat Walks-based Segmentation

The core of our techniques can be extended to related
methods, such as enabling the use of the Heat Walk seg-
menter [56] on point cloud models. Figure 9(b)-(c) show
examples of the result of the Heat Walk segmentation
method used for a point cloud model as we discuss in Sec-
tion 4.2. The near identical results (shown in Figure 18)

between the point cloud model method run with the tech-
niques we introduce in this paper and the mesh model
method using traditional MeshLP, Heat Kernel, and Heat
Walks serve as an example of the usability and correspon-
dence of our methods.

(a) (b) (c)

Figure 9: A point cloud of the classic Armadillo model, first: (a)
colored with the HKS vector k0.1; (b) after running the accumulator
steps of the Heat Walk algorithm for t = 0.1 (through step 6 above),
and c) after the complete Heat Walk is finished, showing accumulator
regions and a dissipator region, as well, around the midsection
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5.4. Curvature-Aware Segmentation

Our techniques can be combined with methods which
seek to improve shape segmentation accuracy for “sharp”
shapes by incorporating explicit curvature information.

Figure 10 shows an example of combining spectral sig-
nature information with explicit local curvature informa-
tion for segmentations. In this example, we have used
the pointwise normal information which is computed as
a byproduct of local tangent space approximation during
SPCL construction (see Section 2.1) in reformulating the
“seeded” segmentation procedure of [57].

Figure 10: a) Poor results on the fandisk model from segmenting
without understanding of the various sharp edges, contrasted with
(b) a segmentation that includes explicit information about the lo-
cal curvature, derived from local normals as computed during the
construction of the SPCL.

Our formulation 1) determines approximate curvature
values by examining the maximum difference in normal
direction between points in local neighborhoods, 2) finds
sharp edges by finding vertices with particularly drastic
changes of normal direction (i.e., discontinuities) in their
neighborhood (see Figure 4 for an example of what this
looks like on the Fandisk model), 3) performs a k-means
clustering of the curvature values and treats local neigh-
bors with the same k-means cluster value as seeds, growing
those seed clusters without letting them cross sharp edges,
4) builds a region adjacency graph for the clusters based on
the mean curvature of the regions and the mean curvatures
of the boundaries between regions, then 5) merges clusters
across the smallest graph edges in that adjacency graph
(i.e., the most similar adjacent clusters on the surface) un-
til some desired number of clusters or the minimum graph
edge value is exceeds a prescribed threshold.

This example formulation underscores the flexibility of
our method for point cloud shape analysis, which allows
any analysis technique relying on a shape signature com-
puted on mesh models to be converted to operate on a
point cloud models.

5.5. Re-Clustering and Segment Type

The techniques proposed in this article can be used not
only to obtain segmentations, but to group the identified
segments by geometric similarity. By exploiting the simi-
larity information (computed in the HKS) that is retained
to identify the point clusters which make up the model

segments, we can, with little additional cost, understand
easily which segments represent similar features.

Figure 11 demonstrates the segment clustering tech-
nique of Section 4.3 on the Heat Walk segmentation from
Figure 9. Recall that in this technique, the segments iden-
tified by the Heat Walk are clustered by Heat Kernel values
to identify similarity between segmentation sub-shapes.
Note that the limbs have all been classified as the same
kind of cluster and that the three head sub-clusters have
been identified as one cluster.

Figure 11: The Armadillo model with the heat walks output seg-
ments clustered by our method from Section 4.3 by initial heat po-
tential value (i.e., heat kernel signature value) at the exemplar point
for that segment. For the dissipator cluster, we assign the mean of
the HKS values of the rest of the points (as that cluster is closer to
an ideal dissipator than to the other clusters). Note that all of the
limbs are assigned to the same segment type and all three head clus-
ters are also assigned to their own group. These groupings may both
happen in one clustering because the HKS value used to regroup the
segments by type includes local and global geometry information.

In Figure 12, the method identifies both shapes present
and in fact identifies two clusters as the point at which the
Clustering Balance [67] is minimized, implying that this is
the “best” clustering by that metric, as shown in Figure
13.

(a) (b) (c)

Figure 12: (a) The first HKS vector for this synthetic model of fused
spheres with Gaussian noise (µ = ε/2, p = 0.125) is used in (b)
to segment the model by the method described in Section 4.1 for a
particular set of parameters, showing eight individual segments; (c)
That same segmentation’s clusters is then merged down by hierarchi-
cal clustering to only two clusters, showing the two distinct shapes
present in the model.

These examples demonstrate that this technique can
be used to identify the number of feature types present in
a model. This information can, in turn, be used in down-
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stream applications where high-level semantic information
is critical, such as in manufacturing planning (e.g., holes
bored during in one operation, slots cut in a different oper-
ation) or robot task planning (are there handles and knobs
in a part or just handles?).

Figure 13: The Clustering Balance computed for the HKS values for
the fused spheres model from Figure 12 points to only two distinct
types of features. Note the steep drop off to two clusters.

5.6. Resistance to Noise and Model Incompleteness

Section 5.1 showed the robustness against noise of our
similarity computations. In those examples, the noise was
due to the sensing limitations of specific depth-camera
used for imaging. In this Section, we provide additional
evidence to various levels of noise that the proposed inte-
grated analysis and segmentation framework provides, by
revisiting the incomplete camel model of Figure 1 with the
proximal points in the knee areas, as well as the Armadillo
model with additions of Gaussian noise.

The original noiseless point cloud for the camel is highly
incomplete — most of the left side of the camel model is
simply missing as shown in Figure 14(c), which displays
the meshed surface output by the RIMLS reconstruction
[10] implemented in Meshlab. As we showed in Figure 1,
automatic meshing solutions may produce unpredictable
and unintended meshing results, which in this case is a
mesh model that conjoins the legs at the knees (Figure 1).
This is a form of topological noise.

In Figure 14(e)-(f), the camel point cloud model has
had model-scale Gaussian noise (µ = ε/2, p = 0.125)
added and the SPCL and HKS have then been computed,
augmenting the evidence for spectral methods’ robustness
against noise. The HKS vector t-values recommended for
database matching are based on the eigenvalues computed
during HKS computation (see Section 3.1), but lower and
higher HKS t-values are useful for emphasizing either global
(e.g., ends of a shape, projections from a core) or local
(e.g., smaller features, local curvatures) shape.

Running Algorithm 1 on the chosen HKS vector with
an appropriate τ value, currently obtained by examining

(a) (b) c)

d) e) f)

g) h) i)

Figure 14: a) The noiseless and incomplete camel model;(b) An
RIMLS meshing of the point cloud; c) Another view of the RIMLS
mesh showing the model incompleteness; d) The t = 0.1 HKS vector
for the noiseless camel model; e) The (t = 0.1) HKS vector for the
camel model with model-scale Gaussian noise (µ = ε/2, p = 0.125);
f) The HKS vector for t = 0.001 for the noised camel model, show-
ing additional definition at local scales but still retaining some of the
global understanding evinced by the higher t-value HKS vectors; g-i)
An automatic segmentation produced at t = 0.0001 into 7 segments.
Note especially the separation of the legs despite topological noise at
the knees.

the persistence diagram of this cluster, outputs automati-
cally a seven-segment (body, head, four legs, and tail is a
reasonable guess for a segmentation of a camel) segmen-
tation at τ = 29 as shown in Figure 14(g-i). Note the
distinct legs for both front and back pairs of legs.

The example of the Armadillo model which follows
the camel example demonstrates the impressive robustness
against sensor/geometrical noise which the HKS displays.
In rows two and three of Figure 15, the point cloud of the
Armadillo was noised by adding random numbers to each
coordinate of each point from a normal distribution with
a mean of zero and a standard deviation of approximately
50% and 100% of the average inter-point distance respec-
tively. As can be seen in the second and third columns,
despite very high levels of random noise, the HKS vectors
appear virtually unchanged and the PD-type segmenta-
tions naively computed from them are also highly consis-
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tent with the non-noised result.

a) (b) c)

d) e) f)

Figure 15: (a) The t = 0.1 HKS vector for the approximately 15,000
point Armadillo model with no added noise; (b & (c) The t = 0.1
HKS vector computed on the 50% (µ = 0 and σ = 0.5ε) and 100%
(µ = 0 and σ = ε) noised Armadillo PC model; (d-f) The PD-
type segmentation of the model into 7 segments for the noiseless and
noised models of (a-c).

5.7. Comparing Mesh-based and Point Cloud-based Seg-
mentations

In order to demonstrate the quality of the proposed
point cloud shape analysis framework against the known
quality of mesh model-based shape analysis, we compare
the database segmentation and shape matching of the Girl
Dancing Samba dataset of [68].

Figure 16 shows the first model in the dataset colored
with HKS vectors. Each model in the dataset has 9971
points in the point cloud model or 9971 vertices in the
mesh model. Since the 150 models in the database are
all of the same physical body, a person, and the spectral
signature we choose, the HKS, is to a large degree pose-
invariant, we should expect to see only small differences
between feature vectors and very similar shape segmenta-
tions between models.

Figure 17 shows that, as we expect, different models
of the same figure in different poses have highly similar
HKS vectors in both mesh and point cloud space. The
point cloud HKS for the first pose actually differentiates
the left hand of the model to a greater degree than the
mesh version does, again demonstrating the resistance of
point cloud methods to topological disturbance.

Additionally, Figure 18 shows the point cloud and mesh
versions of the Heat Walks segmentation for the Armadillo
model. Note the high degree of similarity. In each case,
every limb is segmented away from the core of the model
as is the tail and each ear-dominated head segment and
the midsection is identified as a dissipator region.

5.7.1. Mesh Segmentation Benchmark dataset

To compare the output produced by using the SPCL
and HKS with automatic persistence-based segmentations
on point cloud models without a surface mesh, we sample
the vertices from the models in [35]. We run our methods
on this dataset, map our segments from points back to
facets in the mesh models, for compatibility, by means of
the mode function in Matlab over the vertices associated
to each facet. The resultant plots in Figure 19 show that
even the naive segmentations produced automatically by
our example persistence-based segmentation display error
metrics reasonably similar to those of the other segmen-
tation methods tested in [35], despite making no use of
the surface mesh connectivity information exploited by the
other algorithms.

(a) (b)

Figure 16: The first model from the Girl Dancing Samba dataset
colored by HKS vector kt=0.1 as computed on (a) mesh model and(b)
point cloud. Note the similarity between computed HKS vectors
regardless of model type.

5.8. A Brief Overview of Parameter Dependence

There are a number of parameters that control the
computations of the SPCL, HKS as well as the cluster-
ing and segmentation methods described above. It is not
within the scope of this paper to provide a detailed discus-
sion of the influences of each parameter on the outputs or
to make an attempt to optimize the various parameters.
However, the results obtained from our methods are de-
pendent upon careful selection of these parameters, so we
will briefly demonstrate the effect upon the result of each
parameter manipulation, in order to make applying these
methods as straightforward as possible. Figure 20 shows
the synthetic 14,124 point “c4u” “ball & cube” model with
model-scale Gaussian noise (µ = ε/2, p = 0.125) added
and the baseline parameter values against which we will
be comparing parameter changes throughout the Section.
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model # pts # eigs SPCL time eigs time Total run time
Armadillo 5528 300 1.4s 9.9s 0.25 min
Armadillo 15228 300 4.0s 22.7s 0.59 min

camel 6815 300 1.6s 10.0s 0.22 min
camel 17036 300 4.15s 21.3s 0.45 min

turborotor 24503 150 8.8s 23.6s 0.59 min
turborotor 24503 300 8.7s 50.7s 1.05 min
turborotor 24503 500 8.8s 100.7s 1.91 min
turborotor 79723 300 21.2s 159.8s 3.21 min
turborotor 150163 300 42.0s 322.5s 6.46 min

robot 8446 300 2.4s 16.6s 0.34 min
robot 39889 150 10.1s 26.5s 0.73 min
robot 39889 300 10.1s 62.3s 1.35 min
c2u 4494 150 1.1s 3.12s 0.11 min
c2u 4494 300 1.1s 5.6s 0.16 min
c2u 35836 150 9.5s 35.6s 1.07 min
c2u 35836 300 9.5s 76.5s 1.78 min

Table 1: Running times for various models by number of points and number of eigenvalues computed. Running times measured using Matlab’s
tic and toc functions; eigenpairs computed with Matlab’s eigs function. All computations performed on a Dell XPS 13 9350 with an Intel
Core i5-6200U @ 2.30 GHz and 8GB RAM running Windows 10 x64.

(a) (b)

(c) (d)

Figure 17: a-d) The 1st and 45th models from the Girl Dancing
Samba dataset colored by the “first” HKS vector as computed on
mesh model (a& b) and point cloud model (c& d). Note in (c) the
(correct) distinction of the figure’s left hand compared with the mesh
model in (a).

HKS t-scale

The t-scale(s) parameter determines the extent to which
the HKS represents the surface either locally or globally.
Figure 20(d)-(f) shows the effect on clustering of choosing
a higher t-value (and therefore equivalently characterizing
the model by a larger neighborhood around each point)
for HKS computation. Note that we do not adjust the

(a) (b)

Figure 18: The Armadillo model with the Heat Walk segmentation
on (a) the point cloud version of the model and (b) the equivalent
mesh model. Note the near identical results between model types.

clustering parameter to find a better segmentation of the
surface for this higher t-value HKS in order to show the
interaction between the parameters in each step.

Clustering parameter τ

The third parameter, τ , controls region merging in the
agglomerative clustering procedure. Higher τ values cause
more regions to merge, resulting in fewer clusters whereas
lower τ values prevent regions from merging, resulting in
a larger number of clusters. Figure 20(g)-(i) exemplify
the result of an excessively low τ on the clustering output.
Notice, however, that despite a larger-than-desired number
of segments (57 rather than the 14 shown in Figure 20(b),
the reclustered model appears very similar to that in the
baseline example in Figure 20(c).

Unique cluster-type estimate n

Finally, the proposed re-clustering procedure requires a
user-defined estimate of the number of unique sub-shapes
output by the re-clustering algorithm. More advanced
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 19: For SPCL+HKS with naive persistent segmentations on point clouds vs other segmentation methods on mesh models from the
Mesh Segmentation Benchmark of [35]: (a-d) Plots by Category of Cut Discrepency, Consistency Error, Hamming Distance, and Rand Index;
(e-h) Plots by Segmentation of Cut Discrepency, Consistency Error, Hamming Distance, and Rand Index.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 20: (a) HKS at t = 0.25 with 300 SPCL eigs; (b) segmentation with τ = 0.007; (c) Re-clustered segmentation with n = 3; (d) HKS at
t = 1.0 with 300 SPCL eigs, (e) segmentation with τ = 0.007, (f) Re-clustered segmentation with n = 3; (g) HKS at t = 0.25 with 300 SPCL
eigs, (h) segmentation with τ = 0.002, (i) Re-clustered segmentation with n = 3; (j) HKS at t = 0.25 with 300 SPCL eigs, (k) segmentation
with τ = 0.007; (l) Re-clustered segmentation with n = 6.

clustering procedures which rely less on a priori infor-
mation, such as spectral clustering [69] or clustering by
reference to the gap statistic [70], or assisted by machine
learning algorithms may be used to reduce this dependence
of final sub-shape grouping on user input. These and other
methods for improving segmentation of point cloud models
are the subject of future investigations. Figure 20(l) shows
the poorer sub-shape grouping, compared to that of Fig-
ure 20(c) produced by sub-shape family estimation when
a higher-than-optimal estimate of the number of present
sub-shape families is used.

Additionally, we note that two factors primarily con-
tribute to longer running times for a given model: the

number of points in the model (equivalently, the sam-
pling of the model) and the number of SPCL eigenval-
ues computed for the HKS calculation. As shown in Ta-
ble 1, for a given model, increasing sampling density and
increasing the number of computed eigenvalues both ap-
pear to increase running time near linearly. This is as
we should expect: increasing the number of points in a
model increases the number of rows of SPCL linearly (and
each row’s computation is constant in number of model
points) and the increased number of SPCL rows increases
the eigenvalue computation runtime, which in general is
O(n3). In practice, however, for sparse matrices like the
SPCL, larger numbers of points seem to effect runtime of
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Matlab’s eigs function linearly. Similarly, increasing the
number of eigenvalues to be computed linearly increases
the number of eigenvalue solution steps taken, the run-
time for each of which depends only on number of model
points.

6. Conclusions

Depth camera technology is becoming ubiquitous, al-
lowing easy capture of dense, noisy point clouds models of
real objects. The obvious questions of how we can auto-
matically understand shapes from general 3D point cloud
inputs have been traditionally answered by first perform-
ing a surface reconstruction on the input point cloud, fol-
lowed by mesh processing. Unfortunately, meshing point
clouds is itself a non-trivial, often application-dependent
task with limited guarantees on the validity of the result-
ing mesh.

On the other hand, useful analysis methods for describ-
ing and segmenting point clouds without surface recon-
struction, especially those having engineering relevance,
are quite limited in the literature. “Mesh model” analysis
methods are well-developed, yet creating a quality surface
mesh from general noisy point cloud inputs automatically
remains challenging.

We presented an integrated analysis framework for shape
description, similarity, and segmentation on point cloud
models of real objects. We have shown that our symmet-
ric Laplace-Beltrami operator estimate, the SPCL, does
not worsen the error terms of the PCDL, which is known
to converge in the limit to the manifold Laplacian. This, in
turn, allows us to apply existing or develop new physics-
based spectral shape signature methods directly on the
point cloud. We showed that our construction provides the
neighborhood graph implied by the SPCL, which in turn
can be used to find mesh n-ring–equivalent local neigh-
borhoods and to apply algorithms from the mesh litera-
ture (such as those for finding feature vectors) to point
cloud models, affording a compact similarity-based tool
for comparing the shapes represented by point clouds. At
the same time, the proposed framework supports in prin-
ciple any other convergent estimate of the LBO. Thanks
to its reliance on models of physical phenomena, this com-
parison tool is highly robust against noise; various mesh
based signatures, which now can be applied to point clouds
within our framework, have even been shown to resist
mis-categorizing incomplete or damaged models. Conse-
quently, we illustrated the effectiveness of the proposed
framework by analyzing a database of point cloud models
output by Kinect, which contain defects and noise that
makes them resistant to meshing.

The framework proposed here, which enables the capa-
bility to perform similarity and segmentation directly on
point clouds, can be adapted to most application domains
that require point cloud processing, including robotics, de-
sign and manufacturing, and opens the doors to a number
of engineering applications. For example, this framework

can easily be applied to compare point cloud of physical ar-
tifacts to CAD model databases, irrespective of the native
CAD format, obviating the need to perform solid model
reconstruction or to deal with the difficult CAD interop-
erability issues. (Models for which a Hermitian LBO es-
timate is available can have spectral signatures computed
on them in the same way we here describe for point cloud
models; for those that do not or for which implementing
code for such procedure would require excessive effort or
time for some group, a Monte Carlo sampling of the surface
allows the point cloud methods we present to be used to
make comparisons). The concept of clustering the clusters
introduced here, which gives the ability to determine the
number of similar features in a given point cloud model, is
critical in manufacturing planning as well as geometric rea-
soning. Our method of re-clustering by signature values
lets us extract further salience information at low com-
putational cost, and is a feature unique to segmentations
that retain similarity information from the signature(s) on
which they are based. Finally, to facilitate real-world ap-
plication of this new analysis procedure, we have included
appendices in which we provide a guide to constructing
the SPCL and examine the manner in which application
results depend on the parameters in our methods.

Finally, our method can be viewed as a general purpose
point cloud analyzer, although there are several challenges
that need to be addressed next, including: understanding
the relationship between the number of eigenpairs and the
quality of the spectral shape similarity measures; choos-
ing automatically an appropriate number of segments for
a given model; a better understanding of how to auto-
matically set the available parameters which influence the
similarity and segmentation performance; and finally GPU
acceleration of the eigensystem and clustering computa-
tions.
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animation from multi-view silhouettes, in: ACM Transactions
on Graphics, Vol. 27, ACM, 2008, p. 97.

[69] U. Von Luxburg, A tutorial on spectral clustering, Statistics
and computing 17 (4) (2007) 395–416.

[70] R. Tibshirani, G. Walther, T. Hastie, Estimating the number of
clusters in a data set via the gap statistic, Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 63 (2)
(2001) 411–423.

21

http://livebooklabs.com/keeppies/c5a5868ce26b8125
http://livebooklabs.com/keeppies/c5a5868ce26b8125
http://www.itl.nist.gov/iad/vug/sharp/contest/2015/Range/data.html
http://www.itl.nist.gov/iad/vug/sharp/contest/2015/Range/data.html
http://www.itl.nist.gov/iad/vug/sharp/contest/2015/Range/results.html
http://www.itl.nist.gov/iad/vug/sharp/contest/2015/Range/results.html

	1 Introduction
	1.1 Prior Work
	1.1.1 Description and Similarity
	1.1.2 Clustering and Segmentation

	1.2 Framework Overview
	1.3 Scope and Contributions

	2 Local Shape Description
	2.1 The Laplace-Beltrami Operator
	2.1.1 What Makes the Laplacian Special?
	2.1.2 Construction of the PCDL/Matrix

	2.2 Symmetrizing the Point Cloud Data Laplacian
	2.2.1 Error Bounds and Guarantees Retained by the SPCL
	2.2.2 Normals at no additional computational cost


	3 Shape Similarity Measure
	3.1 Spectral Shape Signatures
	3.1.1 The Heat Kernel Signature

	3.2 Feature Points and Feature Vectors

	4 Segmentation
	4.1 Clustering for Segmentation
	4.1.1 From Mesh Clustering to Point Cloud Clustering

	4.2 Heat Walks
	4.3 Clustering Segments by Type

	5 Experimental Validations
	5.1 Similarity and Classification for the CERTH/ITI Range Scan Dataset
	5.2 Persistence-Based Segmentation
	5.3 Heat Walks-based Segmentation
	5.4 Curvature-Aware Segmentation
	5.5 Re-Clustering and Segment Type
	5.6 Resistance to Noise and Model Incompleteness
	5.7 Comparing Mesh-based and Point Cloud-based Segmentations
	5.7.1 Mesh Segmentation Benchmark dataset

	5.8 A Brief Overview of Parameter Dependence

	6 Conclusions

