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Abstract7

We provide a framework for representing segments of rational planar curves or patches of rational tensor
product surfaces with no singularities using semi-algebraic sets. Given a rational planar curve segment or a
rational tensor product surface patch with no singularities, we find the implicit equation of the corresponding
unbounded curve or surface and then construct an algebraic box defined by some additional equations and
inequalities associated to the implicit equation. This algebraic box is proved to include only the given curve
segment or surface patch without any extraneous parts of the unbounded curve or surface. We also explain
why it is difficult to construct such an algebraic box if the curve segment or surface patch includes some
singular points such as self-intersections. In this case, we show how to isolate a neighborhood of these special
points from the corresponding curve segment or surface patch and to represent these special points with
small curve segments or surface patches. This framework allows us to dispense with expensive approximation
methods such a voxels for representing surface patches.

Keywords: Rational curve segment, Rational surface patch, Semi-algebraic set, Implicitization8

1. Introduction9

Rational curve segments or surface patches are widely used in Computer Aided Geometric Design,10

Computer Graphics, and Computer Aided Design (CAD). The most popular representations in CAD are B-11

spline curves/surfaces and each curve segment/surface patch can be reduced to Bézier form. The parametric12

expression is best for rendering, since using the parametric form it is easy to generate many points on the13

curve or surface. But to determine whether a point lies on a curve or surface, it is easier to use the implicit14

expression for the curve or surface. Implicitization means finding an implicit representation starting from15

a parametric representation. When the parametrization is rational, the implicit equation is a polynomial16

equation in the Cartesian coordinates.17

Because of their many fundamental applications, implicitization algorithms for rational curves and sur-18

faces have been the focus of much attention over the past several decades (Buchberger, 1985; Busé, 2014;19

Chen et al., 2005; Manocha and Canny, 1992; Elkadi and Mourrain, 2004; Sederberg and Chen, 1995; Shen20

and Goldman, 2017, 2018; Yao et al., 2019). Among these many possible techniques, the method of Gröbner21

bases (Buchberger, 1985) is well-known in academic circles, since this method is theoretically complete.22

However, Gröbner bases have exponential computational complexity and hence are highly inefficient. In-23

stead, researchers have focused their attention on implicitization methods based on matrix constructions24

and resultant calculations (Busé, 2014; Chen et al., 2005; Manocha and Canny, 1992; Sederberg and Chen,25
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1995; Shen and Goldman, 2017, 2018), which are much more efficient than Gröbner basis computations.26

General implicitization methods generate algorithms for a given curve or surface. However, we need take27

care of the boundaries when we focus on a curve segment or a surface patch. It is not a trivial task to find28

implicitization algorithms for rational curves and surfaces where the parameters are not bounded and then29

it is even more difficult to find an exact implicit representation for a rational curve segment or a surface30

patch with bounded parameters.31

There are, however, alternative implicit representations for curves and surfaces such as radial basis32

functions (RBF) (Carr et al., 2001; Buhmann, 2003) and voxelizations method (Cohen-Or and Kaufman,33

1995; Laine, 2013). A radial basis function is a real-valued function whose value depends only on the distance34

from the origin. Sums of radial basis functions are typically used to approximate functions. An indispensable35

stage in 3-dimensional computer graphics is the synthesis of voxel representations of 3-dimensional objects.36

This stage is called voxelization and is concerned with converting geometric objects from their smooth shape37

representation into a set of voxels that best approximates the smooth object. Both of these methods are38

designed as approximation techniques and can be used for curve segments and surface patches. But these39

methods may then introduce a large amount of parametric data or mesh segments for some important40

geometric features.41

In this paper, we represent curve segments or surface patches with no singularities by semi-algebraic sets42

whose equations and inequalities are computed using the latest implicitization algorithms. For a given curve43

segment or surface patch with no singularities, we find the implicit equation of the corresponding rational44

curve or surface without boundaries and construct as well an algebraic box defined by some equations and45

inequalities associated to the implicit equation. The constructed algebraic box is proved to include only46

the expected curve segment or surface patch without any extraneous parts of the curve or surface. Using47

our constructions, the parametric expressions of the bounding curve segments or surface patches of the48

semi-algebraic set can be found directly. Further discussions show that it is difficult to construct a simple49

bounding algebraic box if the curve segment or surface patch includes some special points such as self50

intersection points. In this case, we prefer to isolate the neighborhood of this point from the curve segment51

or surface patch.52

The paper is organized as follows. In Section 2, we briefly recall the latest implicitization methods for53

planar rational curves and rational surfaces. In Section 3, we construct the semi-algebraic set for a parametric54

planar curve segment with no singularities. In section 4, we deal with the corresponding problem for surface55

patches with no singularities. Finally, we conclude our paper in Section 4 with a brief summary of our work56

along with a brief review of the motivation for this research.57

2. Implicitization58

Representing rational curve segments and surface patches using semi-algebraic sets is based on implic-59

itization for rational curves and surfaces. Hence, here we briefly review algorithms to implicitize rational60

curves and surfaces.61

Consider a rational planar curve in homogeneous form62

P(s) = (p1(s), p2(s), p3(s))63

where p1(s), p2(s), p3(s) are linearly independent polynomials of degree n with no common factors. Let64

F (x, y, w) = 0 be the implicit equation corresponding to the rational parametrization. Then the nonzero65

homogeneous polynomial F (x, y, w) is irreducible and F (p1(s), p2(s), p3(s)) ≡ 0. To implicitize rational66

planar curves, we can use either the technique of moving lines (Sederberg and Chen, 1995) or the method67

of μ-bases (Chen and Wang, 2002).68

Consider next a rational tensor product surface of bidegree (m,n) in homogeneous form69

P(s, t) = (p1(s, t), p2(s, t), p3(s, t), p4(s, t))70
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where p1(s, t), p2(s, t), p3(s, t), p4(s, t) are linearly independent polynomials of bidegree (m,n) with no com-71

mon factors. Let F (x, y, z, w) = 0 be the implicit equation corresponding to the rational parametriza-72

tion. Then the nonzero homogeneous polynomial F (x, y, z, w) is irreducible and F (p1(s, t), p2(s, t), p3(s, t),73

p4(s, t)) ≡ 0.74

The latest implicitzation method works correctly and efficiently even in the presence of base points by75

combining three complementary approaches to implicitization (Shen and Goldman, 2018). The algorithm76

first tries the Dixon A-resultant and univariate resultant methods (Chionh, 2001; Shen and Yuan, 2010),77

which work efficiently for some rational parametrizations with no base points as well as for some surfaces78

with very special configurations of base points. If these methods fail, the algorithm invokes the method of79

moving planes and moving quadrics for surfaces with simple base points, and some other cases that have80

sufficiently many moving planes and moving quadrics that follow the surface (Sederberg and Chen, 1995).81

For the remaining surfaces, we employ the latest method, which takes the resultant of three moving planes82

generated by three syzygies of low bidegrees and is simpler and more efficient than the μ-basis method (Shen83

and Goldman, 2017).84

We have implemented a Maplesoft package for implicitizing rational planar curves and rational tensor85

product surfaces, developed using the preceding implicitization techniques (Yao et al., 2019). From our86

experiments, we find that this package can compute the implicit equation of any bicubic tensor product87

surface efficiently. The results for implicitizing all the patches of the Utah teapot can be found in (Shen and88

Goldman, 2017) and additional experiments can be found in (Shen and Goldman, 2018). For ruled surfaces,89

the package uses a more efficient way to compute the implicit equation based on univariate resultants.90

3. Curve Segments91

A curve segment is often given in parametric form by restricting the parameter to a finite interval92

Cp = {(x, y, w) | (x, y, w) = P(s), s ∈ [0, 1]}.93

To find a semi-algebraic set to represent this curve segment, we first find the implicit equation of the rational94

curve95

C = {(x, y, w) | F (x, y, w) = 0}.96

The boundary points of Cp are p1 = P(0),p2 = P(1). To construct a semi-algebraic set to bound this97

curve segment, we generate two lines L1 and L2 passing through these two points. For instance, we can set98

L1 := ((x, y, w) − p1) · v0 = 0 and L2 := ((x, y, w) − p2) · v0 = 0 where v0 is a vector selected (see next99

paragraph and Lemma 1) so that the we can finally construct a bounding semi-algebraic set.100

To construct a region including the curve segment Cp, we introduce two additional curves Pi(s) =101

P(s) + (−1)iεv0, s ∈ [0, 1], which we denote by CFi,p. The implicit equations of Pi can be found directly102

as Fi(x, y, w) = F ((x, y, w) + (−1)iv0) = 0 and these polynomials define the curves Ci = {(x, y, w) |103

Fi(x, y, w) = 0}. The construction of the curves Pi is similar to finding an offset, the vector v0 can be104

selected as the mean of the normal vectors of Cp. Now we define a semi-algebraic set105

Ca = {(x, y, w) | F (x, y, w) = 0, Li(x, y, w) ≥ 0, Fi(x, y, w) > 0, i = 1, 2} (1)106

associated to the curve segment Cp. Notice that pi + εv0 − 2uεv0, u ∈ [0, 1] are the parametric forms of107

the segments of Li and these expressions define curve segments CLi,p = {(x, y, w) = u(pi − εv0) + (1 −108

u)(pi+εv0) = pi+εv0−2uεv0, u ∈ [0, 1]}. We will soon show (see Propositions 1 and 2) that under certain109

conditions, the curve segment can be represented as this semi-algebraic set, i.e., Cp = Ca (see Figure 1).110

Note that C is the closure of the curve defined by any parametrization. To ensure that only Cp, and no111

other segments of C, is included in the semi-algebraic set Ca, we need to consider some feature points of112

the curve C.113

The singular points of the implicit curve satisfy ∂F
∂x = ∂F

∂y = ∂F
∂w = F (x, y, w) = 0. If a singular point114

is on the curve segment Cp, we introduce a neighborhood isolating box for this point and approximate the115
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Figure 1: A curve segment included in a semi-algebraic set

curve segment in this box with a simple curve segment. For instance, we can use a cubic segment such that116

the segment has C2 continuity at the two end points with the original curve.117

If the singular point does not lie on the curve segment Cp but is included in the semi-algebraic set Ca,118

we need to remove this point from the semi-algebraic set.119

There may be points with real coordinates on C but associated to the complex parameters, that is, there120

may exist complex parameters tc = r + cJ, J2 = −1, c �= 0 such that P(tc) ∈ R3. The zero condition of121

the imaginary parts �(p1(tc)
p3(tc)

) = �(p2(tc)
p3(tc)

) = 0 leads to a polynomial system f1(r, c) = f2(r, c) = 0, where122

�(·) returns the imaginary part. Then by Bezout’s theorem this point set is generally zero dimensional123

if f1 and f2 are coprime. This system can be solved using a technique similar to Cylindrical Algebraic124

Decomposition (Caviness and Johnson, 1998). Briefly, one can eliminate one variable by computing the125

resultant with respect to this variable, then find the real roots of this resultant, and finally lift the real roots126

to the solutions of the system. There are also efficient methods that can be found in (Cheng and Jin, 2015;127

Sagraloff and Mehlhorn, 2016).128

For general applications, we always assume that the parameters are real numbers. If this kind of point129

corresponding to a complex parameter does not lie on the curve segment Cp, we need to remove this point130

from the semi-algebraic set.131

Proposition 1. Let Cp = {(x, y, w) | (x, y, w) = P(s), s ∈ [0, 1]} be a segment of a rational curve and let132

Ca = {(x, y, w) | F (x, y, w) = 0, Li(x, y, w) ≥ 0, Fi(x, y, w) > 0, i = 1, 2} be given as above. If133

1) There are no singular points in Cp;134

2) Each boundary line Li and Cp are not tangent at pi;135

3) Each boundary line Li and Cp have no intersection point other than pi;136

4) Each boundary curve Ci and Cp have no intersection point;137

5) Each boundary line segment CLi,p and the curve C have no intersection point other than pi;138

6) Each boundary curve segment CFi,p and the curve C have no intersection point,139

then the semi-algebraic set Ca is equivalent to the curve segment Cp.140

Proof. By conditions 3) and 4), all the points of the curve segment Cp lie in the same real region determined141

by the boundary lines or curves of Ca , so Cp ⊂ Ca.142

We now show that Cp ⊃ Ca. Suppose that there exists a point q0 ∈ Ca \ Cp and select another point143

q1 ∈ Cp. Then there exists a path q̃0q1 in C connecting q0 and q1, since C is a rational curve. The path144

curve q̃0q1 is totally included in Ca, otherwise q̃0q1 has intersections with at least one boundary curve of145

CLi,p or CFi,p, which cannot happen at any point other than an end point pi by conditions 5) and 6) (see146

Figure 2). By condition 2), the path curve q̃0q1 does not pass through the endpoints of Cp (see Figure 2,147

top), so q̃0q1 must leave Cp at a certain point qs. Hence qs is a self-intersection point of Cp and qs is a148

singular point of Cp, a contradiction to condition 1). Therefore there does not exist such a point q0, and so149

we conclude that Ca = Cp.150
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Figure 2 illustrates the possible cases not satisfying the conditions given in Proposition 1.

     

pC                              2p  

    1L  2L  

Cp tangent to L2 at p2

     

pC                          2p  

     1L  2L  

Cp and L2 have intersections other than p2

     

pC                                         2p  

     1p  1C   

Cp and C1 intersect

     

C                          2p  

     
1 ,L pC  

2 ,L pC  

C and CL2,p have intersections other than p2

     

C                              2p  

  2 ,F pC   

C and CF2,p have intersections other than p2

Figure 2: Excluded cases for the semi-algebraic set for the curve segment

151

Proposition 2. Let Cp = {(x, y, w) | (x, y, w) = P(s), s ∈ [0, 1]} be a segment of a rational curve with no152

singular points. Then this curve segment can be represented by the union of semi-algebraic sets153

m⋃
k=1

Ck,a =
m⋃

k=1

{(x, y, w) | F (x, y, w) = 0, Lki(x, y, w) ≥ 0, Fki(x, y, w) > 0, i = 1, 2.}154

Proof. For a non-singular point p0 associated to the parameter s0 and any ε > 0, consider the curve segment155

Cp,ε with s ∈ [s0 − ε, s0 + ε]. One can construct a semi-algebraic set Ca,ε for the curve segment Cp,ε156

Ca,ε = {(x, y, w) | F (x, y, w) = 0, Li(x, y, w) ≥ 0, Fi(x, y, w) > 0, i = 1, 2}157
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where εε and vε are parameters selected for the boundary lines and curves so that they satisfy conditions158

2)-6) of Proposition 1. By the Taylor approximation to the curve at s0, there exist εε and vε for such a159

semi-algebraic set. By Proposition 1 and the fact that the curve segment is a closed set, we have Ca,ε = Cp,ε.160

Now by compactness we can find a finite union of semi-algebraic set, say m sets, that cover the entire curve161

segment.162

Remark 1. The number m of the sets is associated to ε and the geometry of curve segment. In fact, the163

boundary surfaces, determined by the parameters εε and vε, are also associated to ε. So the conditions in164

Proposition 1 are associated to the curve segment and ε.165

3.1. Implicitization Algorithm for Curve Segments166

Lemma 1. For a curve segment P(s), s ∈ [0, 1] and a vector v0, the curve segments CFi,p and Cp have no167

intersection point if the unit normal vectors of the segment are strictly included in a half circle and v0 is a168

normal vector at any point of P(s), s ∈ [0, 1].169

Proof. Let v0 be a normal vector at a point of P(s), s ∈ [0, 1]. A line parallel to v0 has at most one170

real intersection point with the curve segment Cp since the unit normal vectors of the segment are strictly171

included in half a circle, i.e., the curve segment is a single-valued function relative to the vector v0. Hence,172

any translational curve segment CFi,p along the v0 has no intersection with Cp.173

Algorithm 1. Find an exact semi-algebraic set representing a rational planar curve segment P(s), s ∈ [0, 1]174

having no singular points.175

1. Find a vector v0 satisfying Lemma 1 and not parallel to tangent vectors of p1,p2. If no such v0 exists,176

subdivide the curve segment until there exist such v0 satisfying Lemma 1 for each subdivided segment.177

2. Construct an initial semi-algebraic set for the curve segments by the above set of the form Ca.178

3. Check conditions 3)-6) of Proposition 1 and update ε = ε/2 if some conditions do not hold.179

Algorithm 2. Find a semi-algebraic set for a rational planar curve segment P(s), s ∈ [0, 1] with given180

error.181

1. Compute the implicit equation F (x, y, w) of P(s);182

2. Compute the singular points of the curve (Pérez-Dı́az, 2007; Jia and Goldman, 2009).183

3. For each singular point, construct an isolating box. In the box we approximate the curve segment using184

a line segment with a given error (Cheng et al., 2009).185

4. For a curve segment with no singular points, find an exact semi-algebraic set using Algorithm 1.186

Remark 2. The approximation step in Algorithm 2 is needed in order to isolate the singular point and its187

neighboring region by a box. The approximating line segment can be replaced by a rational curve segment188

to meet the curve with high continuity. The approximated curve should have no other singular points in the189

isolating box and then the isolating box can be regarded as the semi-algebraic set for the approximated curve.190

With the same error control from the curve to the boundaries of the boxes, the implemented examples191

show that many fewer semi-algebraic sets are needed relative to the typical mesh method (see Figure 3).192

4. Surface Patches193

There are bounded surfaces such as spheres, tori, cyclides, Steiner surfaces, and surfaces of revolution194

generated by closed curves. In freeform geometric design, more surfaces are unbounded. Hence we have to195

study surface patches (see Figure 4, the Utah teapot includes 32 bicubic Bézier surface patches). Generally196

a surface patch is given in parametric form by restricting the parameters to finite intervals197

Sp = {(x, y, z, w) | (x, y, z, w) = P(s, t), s ∈ [0, 1], t ∈ [0, 1]}.198
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Figure 3: Curve segments bounded by meshes v.s. semi-algebraic boxes

In analogy with rational curves, we would like to find a semi-algebraic set to represent this tensor product199

surface patch. We first find the implicit equation of the rational surface200

S = {(x, y, z, w) | F (x, y, z, w) = 0}201

Suitable implicit varieties {(x, y, z, w) | Di(x, y, z, w) = 0} for the boundary space curves Ci, i = 1, . . . , 4202

where203

C1(t) = P(0, t), C2(t) = P(1, t),
C3(s) = P(s, 0), C4(s) = P(s, 1), (2)204

are also needed to determine the boundary curves.205

Our goal is to give a semi-algebraic set to restrict the surface patch by surfaces induced by the boundary206

curves.207

Sa = {(x, y, z, w) | F (x, y, z, w) = 0, Di(x, y, z, w) ≥ 0, i = 1, . . . , 4;Fj(x, y, z, w) > 0, j = 1, 2}208

where Di, i = 1, . . . , 4 are implicit equations of those cylindrical surfaces constructed for the curve Ci in (2)209

by setting210

Di(u, v) = Ci(u) + vvi,211

with the new parameter v and the given direction vectors vi, i = 1, . . . , 4. Note that we can easily implicitize212

those cylindrical surfaces by computing univariate resultants (Shen and Yuan, 2010).213

The functions Fj represent two surfaces such that214

{(x, y, z, w) | Di(x, y, z, w) ≥ 0, i = 1, . . . , 4;Fj(x, y, z, w) > 0, j = 1, 2}215

forms a semi-algebraic set included in a finite volume.216
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4.1. Constructing a semi-algebraic set for planar boundary curves217

For a boundary curve C, we first determine whether it is a planar curve. Consider a rational space curve218

C(t) = (c1(t), c2(t), c3(t), c4(t)) with degree m. We can write the parametrization in matrix form219

C(t) = (1, t, . . . , tm)

⎛
⎜⎜⎝

c10 c11 . . . c1m
c20 c21 . . . c2m
c30 c31 . . . c3m
c40 c41 . . . c4m

⎞
⎟⎟⎠

T

= (1, t, . . . , tm) ·MC .220

The rational space curve C(t) is planar if and only if Rank(MC) ≤ 3. One can always find a plane x0x +221

y0y + z0z + w0w = 0 where MC · (x0, y0, z0, w0) = 0 if the space curve is planar. For instance, the patches222

of the Utah teapot have planar boundaries (see Figure 4).223

Figure 4: A surface patch of the Uath teapot with boundary planes

Here we construct two boundary surfaces Fi, i = 1, 2 for the surface patch. For the surface S =224

{(x, y, z, w) | F (x, y, z, w) = 0}, suppose there are no singular points in Sp and there exists a point p0 ∈ Sp225

whose normal vector v0 = np0 in such that np0 ·n = v0 ·(∂P∂s × ∂P
∂t ) has no real roots (s, t) ∈ [0, 1]2, where np0226

is a normal vector such that np0 is not orthogonal to any other normal vectors of the points on the surface227

patch Sp. Moreover, there is an ε > 0 such that the planes Fi = ((x, y, z, w)−p0+(−1)iεnp0
)·np0

= 0, i = 1, 2228

have no intersections with the surface patch Sp. The condition {(x, y, z, w) | Fj = 0} ∩ Sp = ∅ is equivalent229

to the fact that there is no parameter pair {(s, t) | Fj(P(s, t)) = 0, (s, t) ∈ [0, 1]2}. Now introduce the230

semi-algebraic set231

Sa = {(x, y, z, w) | F (x, y, z, w) = 0, Di(x, y, z, w) ≥ 0, i = 1, . . . , 4;Fj(x, y, z, w) > 0, j = 1, 2.} (3)232

The boundary planes SDi
and SFj

, defined by Di and Fj , form a hexahedron and each face of the233

hexahedron can be represented by a plane (see Figure 5). Hence SDi
and SFj

can each be generated by four234

coplanar points; for instance, SDi
is generated by the four vertex points of the quadrilateral pi1,pi2,pi3,pi4.235

Now we can easily find a rational parametrization of the plane SDi by setting236

Di(u, v) = (1− u)((1− v)pi1 + vpi2) + u((1− v)pi3 + vpi4).237

Note that Di(u, v) can be an improper rational parametrization of SDi
, so each point of the quadrilateral238

face (patch) associated to SDi
is239

SDi,p = {(x, y, z, w) | (x, y, z, w) = Di(u, v), u ∈ [0, 1], v ∈ [0, 1]}.240

which may have more than one parameter corresponding to each point. Similar constructions apply for the241

rational parametrizations Fj(u, v) of the boundary surface SFj
and the quadrilateral face (patch) is denoted242

by SFi,p.243

When we discuss whether there are intersections between the quadrilateral face associated to SDi
and244

the corresponding surface S = {(x, y, z, w) | F (x, y, z, w) = 0}, we shall invoke the following lemma.245
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Lemma 2. Let Di(u, v) be a (improper) rational parametrization of a plane SDi and let SDi,p = {(x, y, z, w) |246

(x, y, z, w) = Di(u, v), u ∈ [0, 1], v ∈ [0, 1] be a quadrilateral face in SDi . Then a surface S = {(x, y, z, w) |247

F (x, y, z, w) = 0} has real intersections with the quadrilateral face SDi,p if and only if F (Di(u, v)) = 0 has248

real solutions in (u, v) ∈ [0, 1]2.249

Proof. Necessity is obvious whether or not the rational parametrization is proper.250

Sufficiency is also correct if the rational parametrization is proper. Now suppose that the parametrization251

Di(u, v) is improper and there exists an intersection point (x0, y0, z0, w0) belonging to SDi in the quadrilateral252

face. Then there must exist at least a corresponding parameter pair (u0, v0) ∈ [0, 1]2 such that Di(u0, v0) =253

(x0, y0, z0, w0), since (x0, y0, z0, w0) belongs to SDi,p. Here (u0, v0) ∈ [0, 1]2 is a real solution of F (Di(u, v)) =254

0.255

Figure 5: A surface patch included in a semi-algebraic set bounded by a hexahedron

Proposition 3. Let Sp = {(x, y, z, w) | (x, y, z, w) = P(s, t), s ∈ [0, 1], t ∈ [0, 1]} be a rational surface patch256

and let Fi = ((x, y, z, w)− p0 + (−1)iεnp0
) · v0 = 0, i = 1, 2 be two planes induced by P. If257

1) There are no singular points in Sp;258

2) P(s0, t), s0 = 0, 1 and P(s, t0), t0 = 0, 1 are planar curves;259

3) Each boundary plane SDi
and Sp have no tangent point at Ci;260

4) Each boundary plane SDi
and Sp have no intersection points other than Ci;261

5) Each boundary plane SFj and Sp have no intersection point;262

6) Each boundary quadrilateral face SDi,p and the surface S have no intersection points other than Ci;263

7) Each boundary quadrilateral face SFj ,p and the surface S have no intersection point,264

then the semi-algebraic set Sa defined in Equation (3) is equivalent to the surface patch Sp .265

Proof. According to the construction, Sp ⊂ {(x, y, z, w) | Di(x, y, z, w) ≥ 0} and Sp ⊂ {(x, y, z, w) |266

Fi(x, y, z, w) ≥ 0}. By conditions 4) and 5), all points of the surface patch Sp lie in the same real re-267

gion determined by the boundary planes; hence Sp ⊂ Sa.268

Now we show Sa ⊂ Sp. Otherwise, if there is one point p0 ∈ Sa \ Sp and another point p1 ∈ Sp,269

then there is a path p̃0p1 ∈ S connecting p0 and p1 since S is a rational surface. The path curve p̃0p1270

is included in Sa otherwise p̃0p1 has intersections with at least one quadrilateral face SDi,p or SFj ,p, i.e.,271

there are intersection points of the surface S and the quadrilateral face, which cannot happen by conditions272

6) and 7). From condition 3), p1 connects to p0 without touching any point at Ci on the boundary planes273

SDi
. Thus p̃0p1 must leave Sp at a certain point pm and pm is a singular point, which cannot happen by274

condition 1). Therefore there is no such point p0 so Sa = Sp.275

9



The main task is to check the conditions in Proposition 3.276

1. This condition means that ∂F
∂x = ∂F

∂y = ∂F
∂z = ∂F

∂w = 0 has no point in Sp. Hence this condition is277

equivalent to the set ∂F
∂x (P) = ∂F

∂y (P) = ∂F
∂z (P) = ∂F

∂w (P) = 0 having no real solutions (s, t) ∈ [0, 1]2;278

2. This condition is discussed at the start of Section 3.1;279

3. The normal vector along the curve C1 is (
∂P
∂s × ∂P

∂t )|s=0. This condition is equivalent to (∂P∂s × ∂P
∂t )|s=0 =280

(x0, y0, z0, w0) has no real solutions t ∈ [0, 1] where (x0, y0, z0, w0) is the normal vector of D1. Similar281

remarks apply to Di, i = 2, 3, 4;282

4. Substituting P(s, t) into the implicit equation D1(x, y, z, w) = 0, we get the equation D1(s, t) =283

D1(P(s, t)) = 0. Since the curve C1(t) belongs to the intersection, s is a factor of D1(s, t). Now check284

D1(s, t)/s = 0 as a planar curve in (s, t)-space; if there is no real part belonging to {(s, t) | s ∈ [0, 1], t ∈285

[0, 1]} then the plane SD1 is a good boundary plane associated to the surface patch. Here, good is286

equivalent to the fact that the surface patch Sp lies only on one of the half spaces separated by the287

boundary plane. Similar remarks apply to Di, i = 2, 3, 4;288

5. Fj(P(s, t)) = 0 have no real part belonging to {(s, t) | s ∈ [0, 1], t ∈ [0, 1]} ;289

6. F (Di(u, v)) = 0 have no real part belonging to {(u, v) | u ∈ [0, 1], v ∈ [0, 1]} other than the curve Di.290

To make the curve Ci be the boundary curve, we replace Di by two patches291

Di1(u, v) = u((1− v)pi1 + vpi2) + (1− u)Ci(v);
Di2(u, v) = u((1− v)pi3 + vpi4) + (1− u)Ci(v)

292

where the curve Ci is from (2).293

Since the curve Ci(v) belongs to the intersection, u is a factor of F (s, t) = F (Dij(u, v)). Now check294

if fj(u, v) = F (Dij(u, v))/u = 0, j = 1, 2 as a planar curve in (u, v)-space; if there is no real part295

belonging to {(u, v) | s ∈ [0, 1], t ∈ [0, 1]} for fj = 0, j = 1, 2 then the plane Di satisfies condition 6).296

7. F (Fj(u, v)) = 0 have no real part belonging to {(u, v) | u ∈ [0, 1], v ∈ [0, 1]}297

Proposition 4. Let Sp = {(x, y, z, w) | (x, y, z, w) = P(s, t), s ∈ [0, 1], t ∈ [0, 1]} be a rational surface patch.298

If299

1) there are no singular points in Sp;300

2) for any fixed s0 ∈ [0, 1] and t0 ∈ [0, 1] the space curves P(s0, t) and P(s, t0) are planar curves;301

3) the intersection curve of each plane from 2) and Sp have no tangent points along the corresponding302

curve segment;303

4) the intersection curve of each plane from 2) and Sp have no singular points.304

then this surface patch can be represented by the union of semi-algebraic sets305

⋃m
k=1 Sa,k =

⋃m
k=1{(x, y, z, w) | F (x, y, z, w) = 0, Dki(x, y, z, w) ≥ 0, i = 1, . . . , 4;

Fkj(x, y, z, w) > 0, j = 1, 2.}306

Proof. For a surface patch Sp, conditions 1)-3) are similar to Proposition 3. Suppose that some of conditions307

4)-7) are not satisfied, we will subdivide the Bézier patch to four smaller Bézier patches. If conditions 4)-7)308

on each patch hold, then we complete the construction. Otherwise, we continue to subdivide the patch on309

which some of conditions 4)-7) are not satisfied.310

We now show that each of conditions 4)-7) will hold on the subdivided patches after a finite number of311

subdivision steps.312

Since there is no singular point in Sp, for a point p0 associated to (s0, t0), there is an ε > 0 and εε for313

the constructed semi-algebraic set for the patch Sp,ε with s ∈ [s0 − ε, s0 + ε], t ∈ [t0 − ε, t0 + ε] such that the314

Fi = ((x, y, z, w) − p0 + (−1)iεεnp0) · np0 = 0, i = 1, 2 satisfy conditions 5) and 7) of Proposition 3. Note315

that Fi are simply generated as offset planes of the tangent plane at p0, but the planes are not necessarily316

offsets.317
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Now we check conditions 4) and 6) of Proposition 3 for the boundary planes SDi associated to the patch318

Sp,ε. For condition 6), if the quadrilateral face SD1,p and the surface S have intersections other than the319

boundary curve segment C1, the other intersections are separated from C1 since the intersections cannot320

be singular by assumption 4). Then we can decrease ε and εε so that the quadrilateral face SD1,p and the321

surface S have no intersections other than the boundary curve segment C1. Similar modifications apply for322

Di such that condition 6) of Proposition 3 holds.323

Finally, if 4) of Proposition 3 does not hold, then SD1 and Sp,ε have intersections other than the boundary324

curve segment C1 but separated from C1 since Sp,ε have no singular points. Thus there exists s̃0 ∈ [s0 −325

ε, s0 + ε] such that a curve segment P(s0, t), t ∈ [t0 − ε, t0 + ε] has no points belonging to SD1
∩ Sp,ε.326

Subdivide Sp,ε at s̃0 into Sp,ε,l and Sp,ε,r; then condition 4) of Proposition 3 holds for SD1
with respect to327

Sp,ε,l. Suppose this condition does not hold for Sp,ε,r. Then we can use a similar subdivision process and328

the process will terminate in a finite number of steps since the intersection curve of each plane from 2) and329

Sp has no singular points. Similar remarks apply for the three boundary planes. Now there is a subdivided330

patch including p0 such that 4) of Proposition 3 holds on this patch.331

Thus, we get a patch whose semi-algebraic set satisfies all the conditions of Proposition 3. Till now, we332

find a neighbour semi-algebraic set for a point p0 ∈ Sp. But after certain subdivisions, we can finally get a333

union of semi-algebraic sets that covers the patch Sp.334

4.2. Constructing a semi-algebraic set for general boundary curves335

A patch with planar boundaries can have a semi-algebraic set included in simple hexahedron, but most336

patches may have nonplanar boundaries. For the general patches whose boundary space curves C(t) are337

not planar, we need to introduce the boundary surfaces associated to the boundary curves by constructing338

cylindrical surfaces.339

For the surfaceS = {(x, y, z, w) | F (x, y, z, w) = 0} , suppose there are no singular points in Sp and there340

exists a vector v0 such that v0 · (∂P∂s × ∂P
∂t ) has no real solutions (s, t) ∈ [0, 1]2. Then there is an ε > 0 such341

that Pi(s, t) = P(s, t) + (−1)iεv0, i = 1, 2 has no intersections with the surface patch Sp. Let Fi = 0 be the342

implicit equation of Pi(s, t), which is given explicitly by343

Fi(x, y, z, w) = F (x+ (−1)iεv1, y + (−1)iεv2, z + (−1)iεv3, w + (−1)iεv4)344

with v0 = (v1, v2, v3, v4). Then {(x, y, z, w) | Fi = 0} ∩ Sp = ∅ is equivalent to the fact that there is no345

real parameter {(s, t) | Fj(P(s, t)) = 0, (s, t) ∈ [0, 1]2}. To construct the cylindrical surfaces, we select the346

vectors v1 = v2 = v3 = v4 = v0 (see Figure 6). Then D1(t, u) = C1(t) + v0u,D2(t, u) = C2(t) + v0u,

Figure 6: A surface patch included in a semi-algebraic set having four boundary cylindrical surfaces

347

D3(t, u) = C3(s) + v0u,D4(t, u) = C4(s) + v0u, are rational parametrizations of the boundary cylindrical348

surfaces. Now the semi-algebraic set349

Sa = {(x, y, z, w) | F (x, y, z, w) = 0, Di(x, y, z, w) ≥ 0, i = 1, . . . , 4;Fj(x, y, z, w) > 0, j = 1, 2.} (4)350

is a part of a column generated by the surface patch P and the vector v0.351
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Proposition 5. Let Sp = {(x, y, z, w) | (x, y, z, w) = P(s, t), s ∈ [0, 1], t ∈ [0, 1]} be a rational surface patch,352

and let Fj(x, y, z, w) = F (x+ (−1)iεv1, y+ (−1)iεv2, z+ (−1)iεv3, w+ (−1)iεv4) be two surfaces induced by353

Sp where v0 = (v1, v2, v3, v4) is a vector v0 such that v0 · (∂P∂s × ∂P
∂t ) has no real solutions (s, t) ∈ [0, 1]2. If354

1) there are no singular points in Sp;355

2) Each bounding cylinder Di and Sp have no tangent point at Ci;356

3) Each bounding cylinder Di and Sp have no intersection point other than Ci;357

4) Each boundary surface Fi and Sp have no intersection point;358

5) Each boundary cylindrical surface patch SDi,p = {(x, y, z, w) | (x, y, z, w) = Ci(u)+vv0, v ∈ [−ε, ε], u ∈359

[0, 1]} and the surface S have no intersection point other than Ci;360

6) Each boundary surface patch SFj ,p = {(x, y, z, w) | (x, y, z, w) = P(s, t)+(−1)iεv, i = 1, 2, s ∈ [0, 1], t ∈361

[0, 1]} and the surface S have no intersection point,362

then the semi-algebraic set Sa in Equation (4) is equivalent to the surface patch Sp.363

Proof. The proof of this result is similar to the proof of Proposition 3.364

For all the surfaces SDi
and SFj

, their parametrization and implicit equations are given explicitly. The365

parametrizations SDi may be improper, but we can still proceed by invoking Lemma 2. Once we get the366

semi-algebraic set Sa, we can also find, whenever needed, a proper parametrization for SDi
(Li et al., 2008).367

Proposition 6. Let Sp = {(x, y, z, w) | (x, y, z, w) = P(s, t), s ∈ [0, 1], t ∈ [0, 1]} be a rational surface patch.368

For a general vector v, if369

1) there are no singular points in Sp;370

2) the intersection curve of each cylindrical surface SDi
and Sp have no tangent points along the corre-371

sponding curve segment;372

3) the intersection curve of each cylindrical surface SDi
and Sp has no singular points.373

then this surface patch can be represented by the union of semi-algebraic sets374

⋃m
k=1 Sa,k =

⋃m
k=1{(x, y, z, w) | F (x, y, z, w) = 0, Dki(x, y, z, w) ≥ 0, i = 1, . . . , 4;

Fkj(x, y, z, w) > 0, j = 1, 2.}375

Proof. The proof of this result is similar to the proof of Proposition 4.376

4.3. Real Root Determination377

We need to compute the real intersection of two boundary surfaces in the construction of a semi-algebraic378

set Sa. This problem is equivalent to determining the existence of real roots of a planar curve within a given379

parameter region. Precisely, for a planar curve f(s, t) = 0, we will determine the existence of real components380

in [0, 1]2. Several standard methods can be used to determine these real components such as Cylindrical381

Algebraic Decomposition, solving the polynomial system (Mourrain and Pavone, 2009; Barton̆ et al., 2011)382

and topology analysis of planar curves (Eigenwillig et al., 2007; Cheng et al., 2009; Zapata and Mart́ın,383

2014). Here we would like to give a simple approach to solving this problem. We proceed in the following384

manner: Compute the real roots of the following system385

⎧⎪⎪⎨
⎪⎪⎩

Rest(f(s, t),
∂f
∂t (s, t)) = 0

Rest(f(s, t),
∂f
∂s (s, t)) = 0

f(s, 0) = 0
f(s, 1) = 0

(5)386
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Suppose that these roots are s1 < s2 < · · · < sk. Then the curve segments in each interval [si, si+1] are387

monotone, i.e., the product ∂f
∂s (s, t)

∂f
∂t (s, t) in [si, si+1] does not change sign. Select 0 = si1 < si2 < · · · <388

sil−1
< sil = 1 and consider f(sij , t) = 0 where sij ∈ {s1, · · · , sk}, j = 2, . . . , l− 1. Then f(s, t) = 0 has real389

parts in [0, 1]2 if f(sij , t) = 0 has real segments in [0, 1] for any j ∈ {1, · · · , l}.

Figure 7: Real part determination

390

4.4. Implicitization Algorithm of Surface Patches391

Lemma 3. For a rational surface patch P(s, t), s ∈ [0, 1], t ∈ [0, 1] and a vector v0, the surface patches SFi,p392

and Sp have no intersection point if the unit normal vectors of the patch are strictly included in half a unit393

sphere and v0 can be a normal vector at any point of P(s, t), s ∈ [0, 1], t ∈ [0, 1].394

Proof. Let v0 be a normal vector at a point of P(s, t), s ∈ [0, 1], t ∈ [0, 1]. A line parallel to v0 has at most395

one real intersection point with the surface patch Sp since the unit normal vectors of the segment are strictly396

included in half a sphere, i.e., the surface patch is a single-valued function relative to the vector v0. Hence,397

any surface patch SFi,p along the vector v0 has no intersection with Sp.398

Algorithm 3. Find an exact semi-algebraic set for a rational surface patch P(s, t), s ∈ [0, 1], t ∈ [0, 1]399

having no singular points.400

1. Find a vector v0 satisfying Lemma 3 (and not parallel to tangent vectors of the surface patch at the401

boundary curves). If no such vector v0 exists, subdivide the surface patch and such that there exist402

such v0 satisfying Lemma 3 for each subdivided segment.403

2. Construct an initial semi-algebraic set for the curve segments by the above set of the form Sa.404

3. Check conditions 2)-6) of Proposition 5 and update ε = ε/2 if some conditions do not hold.405

Surface patches without singular points are popular in geometric modeling and there are methods to406

design surface patches without singular points by checking certain geometric conditions (Zhao and Zhu,407

2015; Zhao et al., 2017). For a surface patch without singular points, we can find a semi-algebraic set for408

the patch.409

For the case where there might be singular points in the surface patch, we need to detect the existence410

of singular points. Since singularity analysis for rational surfaces is an important problem, there are many411

papers on computing these singularities including symbolic, numeric and hybrid techniques (Krishnan and412

Manocha, 1997; Andersson et al., 1998; Chen et al., 2006; Galligo and Pavone, 2006; Elber et al., 2009; Shen413

et al., 2012; Pérez-Dı́az et al., 2015). Therefore this topic is another typical problem in surfaces modeling414

and we shall assume there are techniques which can be used to deal with this problem.415

Algorithm 4. Find a semi-algebraic set for a rational surface patch P(s, t), s ∈ [0, 1], t ∈ [0, 1] with given416

error.417

1. Compute the implicit equation F (x, y, z, w) of P(s, t);418
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2. Check whether there exist singular points on the patch. If there are singular points and the patch is419

small enough, approximate the patch using some typical methods introduced above, otherwise subdivide420

the patch.421

3. For a surface patch with no singular points, find an exact semi-algebraic set using Algorithm 3.422

5. Experiments423

We have implemented our algorithm to find the semi-algebraic sets for the patches of the Utah teapot (see424

Figure 4, http://www.holmes3d.net/graphics/teapot/). This teapot is formed from 32 bicubic Bézier425

surface patches. Removing symmetric cases, we are left with ten different types of patches: upper lid, lower426

lid, upper body, middle body, lower body, upper spout, lower spout, upper handle, lower handle, bottom.427

We find that none of these patches have singular points and so we succeed to compute the semi-algebraic428

set for each patch. We display these patches, their semi-algebraic sets and their composites in Figures 8 and429

9. Some patches need to be subdivided into smaller pieces. All the semi-algebraic sets and the teapot are430

displayed in Figure 10.431

Our algorithm runs with Maplesoft 2017 on an Acer Swift5 Ultrabook with RAM 8G and Intel(R)432

Core(TM)@1.8 GHz, OS-Windows 10. The most time consuming parts of our algorithm deal with implici-433

tizing the surfaces, finding the direction vector v0, and detecting the real roots in verifying the conditions434

of Proposition 5. For implicitization, the timings are listed in (Shen and Goldman, 2017, 2018). After our435

construction, we have both implicit and parametric expressions for the boundary surfaces. Thus detecting436

real roots for verifying the conditions in Proposition 5 are quick (about two-three CPU seconds). The time437

required to find the correct vector v0 has some randomness. Here we find the vector v0 by testing the438

vectors in the half sphere given by Lemma 3. We can often get the correct vector quickly, but the worst439

case may cost about 10 minutes to get the correct vector or to subdivide the patch. Note that, in general,440

more subdivisions for the patch make finding v0 easier.441

6. Conclusion442

The representation of curve segments and surface patches are basic tasks in geometric modeling and443

computer graphics. The parametric form and mesh generation are commonly used. But for exact or highly444

precise computations one may need to introduce a large amount of parametric data or mesh segments in some445

regions with detailed features. This paper proposes an alternative framework, expressing curve segments446

and surface patches by semi-algebraic sets, which can be used as implicit representations. Both implicit447

equations and parametric expressions are given for the bounding curves/surfaces of the semi-algebraic set.448

For a surface patch with singular points; suppose the singularities are known; if we want to approximate449

more details such that singularities are preserved, then subtle topological analysis is needed. Based on this450

analysis, one way to represent a surface patch with singularities is to approximate the given surface patch451

with new surface patches. These approximate surface patches have no singular points but we can recover452

the singular points of the given patch from the intersection points of these approximating patches. We hope453

to provide such a subtle analysis in our future work.454
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Patch of Utah teapot Semi-algebraic set Patch v.s. algebraic set

Upper lid 16 subsets

Lower lid 4 subsets

Upper body 4 subsets

Middle body 1 subset

Lower body
1 subset

Figure 8: The patches of the Utah teapot and their semi-algebraic sets
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Patch of Utah teapot Semi-algebraic set Patch v.s. algebraic set

Upper spout 13 subsets

Lower spout 10 subsets

Upper handle 13 subsets

Lower handle 13 subsets

Bottom 1 subset

Figure 9: The patches of the Utah teapot and their semi-algebraic sets
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Figure 10: All the semi-algebraic sets for the teapot and these sets v.s. the teapot.
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