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A 2-Norm Condition Number for Bézier Curve Intersection
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Abstract

We present a condition number of the intersection of two Bézier curves.
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1. Introduction

The problem of intersecting two planar Bézier curves is an important one in Computer Aided Geo-
metric Design (CAGD). Many intersection algorithms have been described in the literature, both geometric
(Sederberg and Parry [1986]; Sederberg and Nishita [1990]; Kim et al. [1998]) and algebraic (Manocha and Demmel
[1992]). Though the general convergence properties of these algorithms have been studied (e.g. Schulz
[2009]), no condition number for the intersection problem has been described in the CAGD literature1.

There are more generic condition numbers for rational polynomial systems (Herman and Tsigaridas
[2015]) or nonlinear algebraic systems ([Higham, 2002, Chapter 25, Section 25.4]). However, the condition
numbers with an algebraic focus (rather than an analytic one) often require too much computation to be
useful. The numerical analytic condition numbers are in some ways too general to be useful for planar Bézier
curve intersection.

In this paper, we describe a simple relative root condition number for this intersection problem. Since
tangent intersections are to transversal intersections as multiple roots are to simple roots of a function, this
condition number is infinite for non-transversal intersections. We present a few examples verifying that the
condition number increases as a family of intersections approach an ill-behaved intersection.

2. Preliminaries

Throughout, we will refer to a parametric polynomial plane curve given by

b(s) =

n∑

j=0

bjBj,n(s) (2.1)

as a Bézier curve, where Bj,n(s) =
(
n
j

)
(1−s)n−jsj is a Bernstein polynomial. When the parameter s ∈ [0, 1],

the coefficients Bj,n(s) ∈ [0, 1] as well and the evaluation is a convex combination of the control points

bj ∈ R2.

An intersection of two planar curves b0(s) and b1(t) corresponds to a root

[
α
β

]
of the function

F (s, t) = b0(s)− b1(t). (2.2)

Email address: dhermes@berkeley.edu (Danny Hermes)
1As far as the author has been able to tell. In many CAGD textbooks, there is a long review of methods for intersecting

two planar Bézier curves (e.g. Farin [2001]; Sederberg [2016]) but no mention of conditioning.
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Note that F : R2 −→ R2.
Each component x(s) and y(s) of a Bézier curve is a polynomial in Bernstein form. For such a polynomial

p(s) =

n∑

j=0

pjBj,n(s) (2.3)

the (absolute) condition number of evaluation is

p̃(s) =

n∑

j=0

|pj|Bj,n(s) (2.4)

(Farouki and Rajan [1987]) when the parameter s is in the unit interval.

3. Conditioning of Generic Root-finding

Consider a smooth function F : Rn −→ Rn with Jacobian Fx = J . We want to consider a special
class of functions of the form F (x) =

∑
j cjφj (x) where the basis functions φj are also smooth functions

Rn −→ Rn and each cj ∈ R. We want to consider the effects on a root α ∈ Rn of a perturbation in one of
the coefficients cj . We examine the perturbed function

G (x, δ) = F (x) + δφj (x) . (3.1)

Since G (α, 0) = 0, if J−1 exists at x = α, the implicit function theorem tells us that we can define x via

G (x (δ) , δ) = 0. (3.2)

Taking the derivative with respect to δ we find that 0 = Gxx
′ + Gδ. Plugging in δ = 0 we find that

0 = J (α)x′ + φj (α), hence we conclude that

x (δ) = α− J−1 (α)φj (α) δ +O
(
δ2
)
. (3.3)

This gives ∥∥J−1 (α)φj (α)
∥∥

‖α‖ . (3.4)

as the relative condition number for a perturbation in cj . By considering perturbations in all of the coeffi-
cients: |δj | ≤ ε |cj|, a similar analysis gives a root function

x (δ0, . . . , δn) = α− J−1 (α)

n∑

j=0

δjφj (α) +O
(
ε2
)
. (3.5)

With this, we can define a root condition number

Definition 3.1. For a smooth function F (x) =
∑

j cjφj (x) parameterized by the coefficients cj with root
α and Jacobian J (α), we define a relative root condition number

κα = lim sup
ε→0

‖δα‖ /ε
‖α‖ = lim

ε→0


 sup

|δj |≤ε|cj|

∥∥∥J−1 (α)
∑

j δjφj (α)
∥∥∥ /ε

‖α‖


 (3.6)

where α+ δα is a root of the perturbed function
∑

j(cj + δj)φj (x).
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In [Higham, 2002, Chapter 25, Section 25.4] a similar definition is given. Instead of bounding the
perturbations component-wise, it bounds the entire perturbation vector δ

lim
ε→0


 sup

‖δ‖≤ε‖c‖

∥∥∥J−1 (α)
∑

j δjφj (α)
∥∥∥ /ε

‖α‖


 . (3.7)

It is possible to rewrite
∑

j δjφj (α) = Fcδ where Fc =
[
∂Fi

∂cj

]

ij
=

[
φ0 (α) · · · φn (α)

]
is the Jacobian

of F with respect to the coefficients c. With this representation, the Higham condition number has a closed
form since ∥∥J−1Fcδ

∥∥ /ε ≤
∥∥J−1Fc

∥∥ ‖δ‖ /ε ≤
∥∥J−1Fc

∥∥ ‖c‖ (3.8)

for any matrix norm that is compatible with the vector norm used on δ. The Frobenius matrix norm and
vector 2-norm can be combined to give a condition number that is straightforward to compute:

κH =
∥∥J−1Fc

∥∥
F

‖c‖2
‖α‖2

. (3.9)

While this closed form for κH is useful, it provides a less sharp measure than the condition number κα

given in Definition 3.1 since the ball ‖δ‖2 ≤ ε ‖c‖2 can allow larger perturbations of a single coefficient than
the box determined by |δj | ≤ ε |cj | and allows perturbations in zero coefficients. When specialized to planar
Bézier curves, we’ll show in Theorem 4.1 that κα has a closed form as well2. In addition, this closed form
shows that κα is a natural extension of the one-dimensional equivalent given in (3.12) below.

3.1. One-dimensional Case

When n = 1, due to the triangle inequality:

|δα| =

∣∣∣∣∣∣
J−1

n∑

j=0

δjφj(α)

∣∣∣∣∣∣
≤ 1

|F ′(α)|

n∑

j=0

|δjφj(α)| . (3.10)

The sign and magnitude of each δj can be chosen to make δjφj(α) = |cjφj(α)| ε, hence for these values
equality holds in the triangle inequality:

∣∣∣∣∣∣

n∑

j=0

δjφj(α)

∣∣∣∣∣∣
= ε

n∑

j=0

|cjφj(α)| . (3.11)

Thus we get a root condition number for a polynomial given in Bernstein form

κα =
1

|αF ′(α)|

n∑

j=0

|cjφj(α)| =
F̃ (α)

|αF ′(α)| (3.12)

that agrees with the common definition ([Farouki, 2008, Equation 12.33]) for any polynomial basis φj .

4. Conditioning of Bézier Curve Intersection

To define a condition number for the intersection of two planar Bézier curves, we write the difference as

F (s, t) =

[
x0(s)
0

]
+

[
0

y0(s)

]
−
[

x1(t)
0

]
−
[

0
y1(t)

]
. (4.1)

We can show that there is a closed form for the condition number given by Definition 3.1, specialized to the
2-norm.

2When the 2-norm is used
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Theorem 4.1. Let

[
α
β

]
be the parameter vector

[
s
t

]
at which two planar Bézier curves b0(s) and b1(t)

have a transversal intersection. Then the root condition number of the intersection is

κα,β =

√
µ2
1 (v · v) + 2µ1µ2 |v ·w|+ µ2

2 (w ·w)

α2 + β2
(4.2)

where
J−1 (α, β) =

[
v w

]
µ1 = x̃0(α) + x̃1(β) µ2 = ỹ0(α) + ỹ1(β). (4.3)

Here b0(s) =
[
x0(s) y0(s)

]T
, b1(t) =

[
x1(t) y1(t)

]T
and the x̃i, ỹj are as defined in (2.4).

Proof. Let the curve b0(s) be of degree m and b1(t) be of degree n. Then F (s, t) can be written as a sum
of 2(m+ 1) + 2(n+ 1) terms:

F (s, t) =

m∑

i=0

c
(1)
i

[
Bi,m(s)

0

]
+

m∑

i=0

c
(2)
i

[
0

Bi,m(s)

]
+

n∑

j=0

c
(3)
j

[
−Bj,n(t)

0

]
+

n∑

j=0

c
(4)
j

[
0

−Bj,n(t)

]
. (4.4)

Since F (s, t) = b0(s) − b1(t) we have Jacobian J(s, t) =
[
b′0(s) −b′1(t)

]
. Since we are considering a

transversal intersection, we have det J(α, β) 6= 0. In a perturbed F , we replace each c
(k)
j with c

(k)
j + δ

(k)
j

where
∣∣∣δ(k)j

∣∣∣ ≤ ε
∣∣∣c(k)j

∣∣∣. By writing J−1 =
[
v w

]
, we have

J−1 (α)
∑

j

δjφj (α) =




m∑

i=0

δ
(1)
i Bi,m(α) +

n∑

j=0

δ
(3)
j Bj,n(β)


 v

+




m∑

i=0

δ
(2)
i Bi,m(α) +

n∑

j=0

δ
(4)
j Bj,n(β)


w = ν1v + ν2w (4.5)

where

|ν1| /ε ≤
m∑

i=0

∣∣∣c(1)i

∣∣∣Bi,m (α) +

n∑

j=0

∣∣∣c(3)j

∣∣∣Bj,n (β) = x̃0(α) + x̃1(β) = µ1 (4.6)

|ν2| /ε ≤
m∑

i=0

∣∣∣c(2)i

∣∣∣Bi,m (α) +

n∑

j=0

∣∣∣c(4)j

∣∣∣Bj,n (β) = ỹ0(α) + ỹ1(β) = µ2. (4.7)

As in (3.10), the bound can be attained by choosing the sign and magnitude of each perturbation so that

δ
(k)
j Bj,d = ε

∣∣∣c(k)j

∣∣∣Bj,d. The factor ε can be cancelled to give the relative root condition number

κα,β =
1√

α2 + β2
sup

|νk|≤µk

‖ν1v + ν2w‖2 (4.8)

=

√
sup|νk|≤µk

ν21 (v · v) + 2ν1ν2 (v ·w) + ν22 (w ·w)

α2 + β2
. (4.9)

Now we seek to maximize the objective function θ(ν1, ν2) = ν21 (v · v) + 2ν1ν2 (v ·w) + ν22 (w ·w) in the
rectangle [−µ1, µ1]× [−µ2, µ2].

To find interior critical points, we solve the system θν1 = θν2 = 0:

[
2v · v 2v ·w
2v ·w 2w ·w

] [
ν1
ν2

]
=

[
0
0

]
. (4.10)
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This system has the unique solution ν1 = ν2 = 0 unless ‖v‖2‖w‖2 = |v ·w|. By the Cauchy-Schwarz
inequality, this can only occur if v and w are parallel; since J−1 is invertible, we know they are not. Hence
θ(0, 0) = 0 is the only interior critical point and it is the global minimum.

Along the boundary of the rectangle, we fix one of ν1 or ν2 and the resulting univariate function is an
up-opening parabola. For example, fixing ν2 = c gives θ(ν1, c) = ν21 (v · v)+ν1 [2c (v ·w)]+c2 (w ·w) which
has positive lead coefficient ‖v‖22. The lead coefficient cannot be 0 since if v were the zero vector we would
have det J = 0. Since θ is an up-opening parabola along the boundary, any critical point must be a local
minimum.

Thus we know the maximum occurs at one of the four corners of the rectangle. Due to sign cancellation,
this leads to one of two values θ = µ2

1 (v · v)± 2µ1µ2 (v ·w) +µ2
2 (w ·w), the largest of which is µ2

1 (v · v)+
2µ1µ2 |v ·w|+ µ2

2 (w ·w). Thus

κα,β =

√
µ2
1 (v · v) + 2µ1µ2 |v ·w|+ µ2

2 (w ·w)

α2 + β2
(4.11)

as desired. �

With this closed form κα,β in hand, we can now compare to the Higham condition number κH from (3.9).

We’ll show that κα,β ≤ κH by comparing κ2
α,β

(
α2 + β2

)
to κ2

H

(
α2 + β2

)
=

∥∥J−1Fc

∥∥2
F
‖c‖22. In the case of

planar curves with basis as in (4.4),

∥∥J−1Fc

∥∥2
F
=

[
‖v‖22 + ‖w‖22

]
W where W =

m∑

i=0

B2
i,m(α) +

n∑

j=0

B2
j,n(β) (4.12)

is the sum of squared Bernstein weights. With two applications of the Cauchy-Schwarz inequality we know
that

κ2
α,β

(
α2 + β2

)
≤ (µ1 ‖v‖2 + µ2 ‖w‖2)

2 ≤
(
µ2
1 + µ2

2

) [
‖v‖22 + ‖w‖22

]
. (4.13)

So it remains to show that µ2
1+µ2

2 ≤ W ‖c‖22, which can be done with another application of Cauchy-Schwarz
to the terms in µ1 and µ2:

µ2
1 + µ2

2 ≤




m∑

i=0

∣∣∣c(1)i

∣∣∣
2

+

n∑

j=0

∣∣∣c(3)j

∣∣∣
2



W +




m∑

i=0

∣∣∣c(2)i

∣∣∣
2

+

n∑

j=0

∣∣∣c(4)j

∣∣∣
2



W = W ‖c‖22 . (4.14)

5. Condition Number in Practice

5.1. Transversal Intersection

Consider the line b0(s) =

[
2s
2s

]
and quadratically parameterized line b1(t) =

[
4t2

2− 4t2

]
which intersect

at α = β = 1/2. At the intersection we have J−1 = 1
8

[
2 2
−1 1

]
, so that v · v = w · w = 5/64 and

v · w = 3/64. Since the x-component of F (s, t) can be written as 2s − 4t2 = 2B1,1(s) − 4B2,2(t) and the
y-component as 2s+ 4t2 − 2 = 2B1,1(s)− 2B0,2(t)− 2B1,2(t) + 2B2,2(t) we have

µ1 = 2B1,1(α) + 4B2,2(β) = 2 (5.1)

µ2 = 2B1,1(α) + 2B0,2(β) + 2B1,2(β) + 2B2,2(β) = 3. (5.2)

Following (4.11), this gives κα,β =
√
202/8 ≈ 1.78. This low condition number is expected from a geometric

point of view; i.e. the intersection is a transversal intersection of two lines. However, when using the
resultant to eliminate each parameter, one of the two roots is a double root:

Rest (x0(s)− x1(t), y0(s)− y1(t)) = 64(2s− 1)2 (5.3)

Ress (x0(s)− x1(t), y0(s)− y1(t)) = 4(2t− 1)(2t+ 1). (5.4)

so an algebraic approach may lead to an incorrect conclusion that the intersection is ill-conditioned.
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5.2. Collapsing to One-dimensional Case

One key argument for choosing Definition 3.1 over the Highham condition number κH from (3.9) is that
κα,β is a natural extension of the condition number for the equivalent one-dimensional problem. To see that
this is so, we’ll define a “trivial” example by starting with a polynomial p(s) in Bernstein form and a simple
root α.

We define the Bézier curves b0(s) =

[
p(s)
0

]
and b1(t) =

[
0
t

]
. These curves intersect when β = 0 and

α is a root of p(s). At such an intersection µ1 = p̃(α) + 0, µ2 = 0 + β = 0 and

J−1 =

[
1/p′(α) 0

0 −1

]
(5.5)

so that v · v = 1/ [p′(α)]
2
, v ·w = 0 and w ·w = 1. This produces

κα,0 =

√
µ2
1 (v · v) + 0 + 0

α2 + 0
=

p̃(α)

|αp′(α)| , (5.6)

the commonly used condition number presented in (3.12).

5.3. Line-line Intersection with Poorly Behaved Coefficients

Consider the intersection of the lines y = x and y = 1 − x when x ∈ [0, 1]. These correspond to the
Bézier curves

b0(s) =

[
1
1

]
s, b1(t) =

[
0
1

]
(1 − t) +

[
1
0

]
t. (5.7)

By adding a scalar D > 0 to each component, we leave F (s, t) and hence the solution unchanged. However,
the coefficients of the curves change:

b0(s) =

[
D(1− s) + (1 +D)s
D(1− s) + (1 +D)s

]
, b1(t) =

[
D(1− t) + (1 +D)t
(1 +D)(1− t) +Dt

]
. (5.8)

At the solution α = β = 1/2, we have µ1 = µ2 = 2D + 1 and

J−1 =
1

2

[
1 1
−1 1

]
(5.9)

so that v · v = w ·w = 1/2 and v ·w = 0. So, we see the condition number κα,β =
√
2(2D + 1) increases

towards infinity as D does. This is what we expect as the coefficients grow so large that their ratio (1+D)/D
approaches 1.

5.4. Family of Lines Approaching Coincidence

Consider a family of intersections in which one of the lines approaches the other:

b0(s) =

[
s
1

]
, b1(t) =

[
t

(1 + r)(1 − t) + t

]
. (5.10)

These lines y = 1 and rx + y = 1 + r intersect when α = β = 1. However as r −→ 0+, the lines become
coincident: if r = 0 the single intersection becomes infinitely many.

At the solution, we have µ1 = µ2 = 2 and

J−1 =
1

r

[
r 1
0 1

]
(5.11)

so that v · v = 1, v ·w = 1/r and w ·w = 2/r2. Again we have a condition number

κα,β =

√
4

r2
+

4

r
+ 2 =

2

r
+ 1 +

r

4
+O

(
r2
)
. (5.12)

that increases towards infinity as the parameter r −→ 0+.
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6. Conclusion and Future Work

The author hopes that this can be useful for evaluating and comparing the performance of curve inter-
section implementations. By establishing a straightforward and easy to compute closed form, the condition
number can be used more often to differentiate between cases where the algorithm or computer code is
at fault for loss in accuracy and cases where the conditioning of the intersection itself is the cause. The
framework set forth in Section 3 can be applied in future work to compute the condition number of higher
order intersections such as surface-surface intersections in R3.
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on Bézier curves.

References

References

Farin, G., 2001. Curves and Surfaces for CAGD, Fifth Edition: A Practical Guide (The Morgan Kaufmann Series in Computer
Graphics). Morgan Kaufmann.
URL https://www.amazon.com/Curves-Surfaces-CAGD-Fifth-Practical/dp/1558607374

Farouki, R., Rajan, V., Nov 1987. On the numerical condition of polynomials in Bernstein form. Computer Aided Geometric
Design 4 (3), 191–216.
URL https://dx.doi.org/10.1016/0167-8396(87)90012-4

Farouki, R. T., Feb 2008. Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable. Springer.
URL https://www.amazon.com/dp/B00FC7KYVG

Herman, A., Tsigaridas, E., 2015. Bounds for the condition number of polynomials systems with integer coefficients. In:
Computer Algebra in Scientific Computing. Springer International Publishing, pp. 210–219.
URL https://doi.org/10.1007/978-3-319-24021-3_16
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