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Construction of periodic adapted
orthonormal frames on closed space curves

Rida T. Farouki
Department of Mechanical and Aerospace Engineering,

University of California, Davis, CA 95616, USA

Soo Hyun Kim and Hwan Pyo Moon
Department of Mathematics,

Dongguk University–Seoul, Seoul 04620, Republic of Korea

Abstract

The construction of continuous adapted orthonormal frames along C1

closed–loop spatial curves is addressed. Such frames are important in
the design of periodic spatial rigid–body motions along smooth closed
paths. The construction is illustrated through the simplest non–trivial
context — namely, C1 closed loops defined by a single Pythagorean–
hodograph (PH) quintic space curve of a prescribed total arc length. It
is shown that such curves comprise a two–parameter family, dependent
on two angular variables, and they degenerate to planar curves when
these parameters differ by an integer multiple of π. The desired frame
is constructed through a rotation applied to the normal–plane vectors
of the Euler–Rodrigues frame, so as to interpolate a given initial/final
frame orientation. A general solution for periodic adapted frames of
minimal twist on C1 closed–loop PH curves is possible, although this
incurs transcendental terms. However, the C1 closed–loop PH quintics
admit particularly simple rational periodic adapted frames.

Keywords: rational adapted frames; closed spatial curves; arc length constraints;
Pythagorean–hodograph curves; Euler–Rodrigues frame; spatial rigid–body motion.
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1 Introduction

The specification of orientational constraints along smooth space curves is a
basic problem in spatial kinematics. For a curve r(ξ) defined by a polynomial
or rational parameterization, orientation may be specified by an orthonormal
frame (f1(ξ), f2(ξ), f3(ξ)), and a rational dependence of the frame on the curve
parameter ξ is desirable. An adapted frame employs the curve tangent t(ξ) =
r′(ξ)/|r′(ξ| as the vector f1(ξ), while f2(ξ), f3(ξ) span the normal plane. For a
rational adapted frame, r(ξ) should be a Pythagorean–hodograph (PH) curve,
since only PH curves possess rational unit tangents [5].

Along a spatial path r(ξ), the variation of an adapted frame is described
by its angular velocity ω through the differential relations

df1
ds

= ω × f1 ,
df2
ds

= ω × f2 ,
df3
ds

= ω × f3 ,

where s denotes arc length along r(ξ). The angular velocity may be expressed
in terms of components relative to the frame itself as ω = ω1f1 +ω2f2 +ω3f3,
and the constraint expressed by ω1 ≡ 0 identifies a rotation–minimizing frame
(RMF), wherein the normal–plane vectors f2 and f3 exhibit no instantaneous
rotation about the tangent f1. The rotation–minimizing frames — also called
Bishop frames [2] — are of great importance in swept surface constructions,
robot path planning, 5–axis CNC machining, and related applications. Many
schemes for the approximation of RMFs on space curves have been proposed,
and recently the focus has been [1, 3, 6, 10, 11, 14, 16, 17] on identifying curves
that admit rational RMFs — see [7] for a survey of these developments.

The construction of an RMF on a space curve corresponds to solving an
initial value problem [19] — i.e., specifying the frame orientation at any point
of the curve determines its orientation at every other point. Consequently, an
RMF cannot match freely–specified initial and final orientations for a rigid–
body motion along a prescribed space curve. To address this limitation of
the RMF, the concept of a minimal–twist frame (MTF) has been introduced
[15]. An MTF matches specified initial and final frame orientations on a pre–
determined curve, with a consistent sense of the angular velocity component
ω1 between them, and the least value of its integral with respect to arc length.
Methods for constructing rational MTFs on spatial PH curves of degree 5
and 7 have been proposed in [12] and [15]. Moreover, these methods minimize
the squared deviation of ω1 about its mean value.

Prior studies of adapted frames on PH space curves have focused on open
paths r(ξ), ξ ∈ [ 0, 1 ] with r(1) 6= r(0). We consider here closed C1 paths with
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r(1) = r(0) and r′(1) = r′(0), and we wish to guarantee matched initial/final
frames, (f1(1), f2(1), f3(1)) = (f1(0), f2(0), f3(0)), at the juncture point. This
adapted frame periodicity is not (in general) satisfied by the RMF.

The plan for the remainder of this paper is as follows. First, Section 2
briefly reviews some salient features of the quaternion and Hopf map forms of
spatial PH curves. Section 3 then introduces a novel two–parameter family
of non–planar C1 closed curves consisting of a single PH quintic segment,
and elucidates their properties. Section 4 introduces the phase angle function
between two adapted frames on a given space curve and the angle discrepancy
of a single adapted frame on a C1 closed curve, and employs them to construct
periodic MTFs along the C1 PH quintic closed loops identified in Section 3.
Section 5 then describes a simple method for constructing rational adapted
frames with C1 periodicity on C1 PH quintic closed loops. Finally, Section 6
recapitulates the main results of this study, and identifies further desirable
developments of the methodology proposed herein.

2 Spatial Pythagorean-hodograph curves

The quaternion and Hopf map forms [4, 9] are alternative (equivalent) models
for the construction of spatial PH curves. The former generates a Pythagorean
hodograph r′(ξ) from a quaternion1 polynomial

A(ξ) = u(ξ) + v(ξ) i + p(ξ) j + q(ξ) k (1)

and its conjugate A∗(ξ) = u(ξ)−v(ξ) i−p(ξ) j− q(ξ) k through the product2

r′(ξ) = A(ξ) iA∗(ξ) = [u2(ξ) + v2(ξ)− p2(ξ)− q2(ξ) ] i

+ 2 [u(ξ)q(ξ) + v(ξ)p(ξ) ] j + 2 [ v(ξ)q(ξ)− u(ξ)p(ξ) ] k , (2)

and the latter generates a Pythagorean hodograph from complex polynomials

α(ξ) = u(ξ) + i v(ξ) , β(ξ) = q(ξ) + i p(ξ) (3)

through the expression

r′(ξ) = (|α(ξ)|2 − |β(ξ)|2, 2 Re(α(ξ)β(ξ)), 2 Im(α(ξ)β(ξ))) . (4)

1Calligraphic characters such as A are used to denote quaternions, their scalar (real)
and vector (imaginary) parts being denoted by scal(A) and vect(A). Bold symbols denote
either complex numbers or vectors in R3 — the meaning should be clear from the context.

2Note that products of the form A iA∗ always generate pure vector quaternions.
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The parametric speed (i.e., the derivative ds/dξ of arc length s with respect
to the curve parameter ξ) is defined in these two representations by

σ(ξ) = |r′(ξ)| = |A(ξ)|2 = |α(ξ)|2 + |β(ξ)|2 .

The equivalence of (2) and (4) can be seen by setting A(ξ) = α(ξ) + kβ(ξ),
where the imaginary unit i is identified with the quaternion basis element
i. It is advantageous to simultaneously employ both the forms (2) and (4)
— the Hopf map form yields a simpler expression for the imposition of arc
length constraints, but the quaternion form is somewhat more convenient in
formulating algorithms to construct PH curve interpolants.

The Euler–Rodrigues frame (ERF) is an adapted orthonormal frame that
is defined on any spatial PH curve [4] through the rational expressions

(e1(ξ), e2(ξ), e3(ξ)) =
(A(ξ) iA∗(ξ),A(ξ) jA∗(ξ),A(ξ) kA∗(ξ))

|A(ξ)|2
, (5)

wherein e1(ξ) is the curve tangent, while e2(ξ), e3(ξ) span the normal plane.
The ERF angular velocity may be expressed as ω = ω1e1 + ω2e2 + ω3e3,
and we are primarily interested in the tangent component ω1, which specifies
the rate of rotation of e2(ξ) and e3(ξ) about e1(ξ). This component may be
expressed [7] as

ω1(ξ) = 2
h(ξ)

σ2(ξ)
, (6)

where h(ξ) is the polynomial specified in terms of the components of (1) or
(3) as

h(ξ) = u(ξ)v′(ξ)− u′(ξ)v(ξ)− p(ξ)q′(ξ) + p′(ξ)q(ξ) . (7)

3 C1 PH quintic closed loops

We wish to study the construction of spatial PH curves r(ξ), ξ ∈ [ 0, 1 ] that
form C1 closed loops, with identical initial and final points pi = pf and unit
tangents ti = tf at ξ = 0 and ξ = 1, and a prescribed total arc length S.
The construction builds on the analysis developed in [8] — which establishes
the existence of a two–parameter family of spatial PH quintic interpolants
to given G1 Hermite data with any prescribed arc length S > |pf − pi|.
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3.1 Analysis of the interpolant

We focus here on canonical form data specified by pi = pf = 0, ti = tf = i,
and S = 1. An arbitrary initial/final point p can be imposed by choosing
it as the integration constant for r′(ξ), and a general initial/final tangent t
and arc length S can be obtained through a scaling/rotation transformation,
achieved by replacing (1) with A(ξ)Q, where Q is the constant quaternion
that satisfies the equation

Q iQ∗ = S t ,

whose solutions may be expressed in terms of a free parameter φ as

Q =
√
S

t + i

| t + i |
exp(iφ) .

Using the Hopf map form defined by (3)–(4), satisfaction of the end–point
condition r(1) = r(0) = 0 yields one real and one complex equation, namely∫ 1

0

|α(ξ)|2 − |β(ξ)|2 dξ = 0 and

∫ 1

0

2α(ξ)β(ξ) dξ = 0 , (8)

while imposing the arc length S = 1 yields the real equation∫ 1

0

|α(ξ)|2 + |β(ξ)|2 dξ = 1 . (9)

Combining the first of equations (8) with (9) yields the simpler conditions∫ 1

0

|α(ξ)|2 dξ = 1
2

and

∫ 1

0

|β(ξ)|2 dξ = 1
2
. (10)

We focus on the spatial PH quintics, which are generated by complex quadratic
polynomials expressed in terms of the Bernstein basis

bmi (ξ) =

(
m

i

)
(1− ξ)m−iξi , i = 0, . . . ,m

on ξ ∈ [ 0, 1 ] as

α(ξ) = α0 b
2
0(ξ) +α1 b

2
1(ξ) +α2 b

2
2(ξ) ,

β(ξ) = β0 b
2
0(ξ) + β1 b

2
1(ξ) + β2 b

2
2(ξ) . (11)
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The second of equations (8) then reduces to

6α0β0 + 3α0β1 + 3α1β0 +α0β2 +α2β0

+ 4α1β1 + 3α1β2 + 3α2β1 + 6α2β2 = 0 , (12)

while equations (10) become

6 |α0|2 + 6 Re(α0α1) + 2 Re(α0α2)

+ 4 |α1|2 + 6 Re(α1α2) + 6 |α2|2 = 15 , (13)

6 |β0|2 + 6 Re(β0β1) + 2 Re(β0β2)

+ 4 |β1|2 + 6 Re(β1β2) + 6 |β2|2 = 15 . (14)

For C1 continuity, we assume that |r′(0)| = |r′(1)| = w2 where w > 0. Then
to match the end tangents (α0,β0) and (α2,β2) must satisfy

|α0|2 − |β0|2

|α0|2 + |β0|2
=
|α2|2 − |β2|2

|α2|2 + |β2|2
= 1 ,

2α0β0

|α0|2 + |β0|2
=

2α2β2

|α2|2 + |β2|2
= 0 ,

and consequently they must be of the form

α0 = w exp(iψ0) , β0 = 0 , α2 = w exp(iψ2) , β2 = 0 , (15)

where ψ0 and ψ2 are free parameters.3

Proposition 1. A canonical–form C1 PH quintic closed loop r(ξ) satisfying
|r′(0)| = |r′(1)| = w2 is uniquely identified in terms of the parameters ψ0, ψ2

in (15) by the coefficients

α0 = w exp(iψ0) , β0 = 0 ,

α1 = − 3

4
w [ exp(iψ0) + exp(iψ2) ] , β1 =

√
15

2
,

α2 = w exp(iψ2) , β2 = 0 ,

where w is specified by

w =

√
6

3− cos(ψ2 − ψ0)
. (16)

3The parameters ψ0 and ψ2 determine the orientation of normal–plane vectors of the
Euler–Rodrigues frame at the curve end points, and they also influence the curve shape.
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Proof : Using the coefficients (15), equation (12) simplifies to

(3α0 + 4α1 + 3α2)β1 = 0 .

Discounting the case β1 = 0 — in which β(ξ) ≡ 0, and expression (4) yields
a straight line — we must have

α1 = −3

4
(α0 +α2) .

Substituting this with α0,α2 given by (15) into (13) gives (after considerable
simplication) the unique value (16) for w — which is obviously real for any
choice of ψ0, ψ2. Finally, from equation (14) with β0,β2 given by (15) we
obtain 4 |β1|2 = 15, and hence

β1 =

√
15

2
exp(iψ1) ,

where ψ1 is a free parameter. Since the expression (4) remains unchanged
on replacing α(ξ) and β(ξ) with exp(iψ)α(ξ) and exp(iψ)β(ξ) for any ψ,
we may choose ψ1 = 0 without loss of generality.

Note that the corresponding coefficients of the quaternion polynomial
A(ξ) = A0 b

2
0(ξ) +A1 b

2
1(ξ) +A2 b

2
2(ξ) in (2) are

A0 = w (cosψ0 + sinψ0 i) ,

A1 = − 3

4
w [ (cosψ0 + cosψ2) + (sinψ0 + sinψ2) i ] +

√
15

2
k ,

A2 = w (cosψ2 + sinψ2 i) .

We now present a few examples of C1 PH quintic closed loops determined
by different choices of the parameters ψ0 and ψ2.

Example 1. Consider the case ψ2 = ψ0 + π/2, so that w =
√

2. Figure 1
illustrates the family of C1 PH quintic closed loops determined by ψ0 = kπ/30
for 0 ≤ k ≤ 20 and ψ2 = ψ0 + π/2, with hue values varying from red to blue.

Remark 1. When ψ2 = ψ0 + kπ for even k, we have w =
√

3 and hence

u(ξ) =
√

3 cosψ0 [ 1− 5

2
b21(ξ) ] , v(ξ) =

√
3 sinψ0 [ 1− 5

2
b21(ξ) ] ,
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(a) (b)

(c) (d)

Figure 1: The family of C1 PH quintic closed loops determined by ψ0 = kπ/30
for 0 ≤ k ≤ 20 and ψ2 = ψ0 + π/2 are shown with hues varying from red to
blue and different viewpoints — (a) perspective, (b) top, (c) left, (d) front.

7



p(ξ) = 0 , q(ξ) =

√
15

2
b21(ξ) ,

and by the partition–of–unity property of the Bernstein basis, we obtain

x′(ξ) = 3 [ 1− 5

2
b21(ξ) ]2 − 15

4
[ b21(ξ) ]2 ,

y′(ξ) = 3
√

5 cosψ0 [ 1− 5

2
b21(ξ) ] b21(ξ) ,

z′(ξ) = 3
√

5 sinψ0 [ 1− 5

2
b21(ξ) ] b21(ξ) .

When ψ2 = ψ0 + kπ for odd k, on the other hand, we have w =
√

6/2 and
hence

u(ξ) =

√
6

2
cosψ0 [ b20(ξ)− b22(ξ) ] , v(ξ) =

√
6

2
sinψ0 [ b20(ξ)− b22(ξ) ] ,

p(ξ) = 0 , q(ξ) =

√
15

2
b21(ξ) .

Consequently,

x′(ξ) =
3

2
[ b20(ξ)− b22(ξ) ]2 − 15

4
[ b21(ξ) ]2 ,

y′(ξ) =
3
√

10

2
cosψ0 [ b20(ξ)− b22(ξ) ] b21(ξ) ,

z′(ξ) =
3
√

10

2
sinψ0 [ b20(ξ)− b22(ξ) ] b21(ξ) .

In both cases, y′(ξ) and z′(ξ) are linearly dependent, and we have n·r′(ξ) ≡ 0
where n = (0, sinψ0,− cosψ0). The curve lies in the plane through the origin
defined in terms of coordinates p = (x, y, z) by n · p = 0. For 0 ≤ ψ0 < 2π,
these planes form a pencil about the x–axis as a common line.

Example 2. For the choice ψ0 = kπ/10 with 0 ≤ k ≤ 5, Figure 2 illustrates
the family of planar C1 PH quintic closed loops together with the pencil of
the planes when ψ2 = ψ0, while Figure 3 illustrates the family of curves and
pencil of the planes when ψ2 = ψ0 + π.

3.2 Control points of the interpolant

The control points p0, . . . ,p5 for the Bézier representation

r(ξ) =
5∑
i=0

pi b
5
i (ξ)
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(a) (b)

(c) (d)

Figure 2: The family of C1 PH quintic closed loops determined by ψ0 = kπ/10
for 0 ≤ k ≤ 5 and ψ2 = ψ0 are shown together with the pencil of the planes
from different viewpoints — (a) perspective, (b) top, (c) left, (d) front.

(a) (b)

(c) (d)

Figure 3: The family of C1 PH quintic closed loops determined by ψ0 = kπ/10
for 0 ≤ k ≤ 5 and ψ2 = ψ0 + π are shown together with the pencil of the
planes from different viewpoints — (a) perspective, (b) top, (c) left, (d) front.
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of r(ξ) may be obtained [5] with integration constant p0 = 0 as

p1 = p0 +
1

5
A0 iA∗0 ,

p2 = p1 +
1

10
(A0 iA∗1 +A1 iA∗0) ,

p3 = p2 +
1

30
(A0 iA∗2 + 4A1 iA∗1 +A2 iA∗0) ,

p4 = p3 +
1

10
(A1 iA∗2 +A2 iA∗1) ,

p5 = p4 +
1

5
A2 iA∗2 .

They may be expressed explicitly in terms of the quantities w,ψ0, ψ2 as

p0 = 0 , p1 =
w2

5
i ,

p2 =
w2

20
[ 1− 3 cos(ψ2 − ψ0) ] i +

√
15

10
w (cosψ0 j + sinψ0 k) ,

p3 =
w2

20
[ 3 cos(ψ2 − ψ0)− 1 ] i−

√
15

10
w (cosψ2 j + sinψ2 k) ,

p4 = − w
2

5
i , p5 = 0 . (17)

If ψ2 = ψ0+kπ for integer k, the control points satisfy the planarity condition
n · pi = 0 for i = 0, . . . , 5 where n = (0, sinψ0,− cosψ0) as in Remark 1.

From (17) we see that the curve r(ξ) depends individually on ψ0, ψ2 and
not just on their difference. Hence, the problem of constructing a canonical–
form C1 spatial PH quintic loop admits a two–parameter family of solutions.

Remark 2. The ability to construct non–planar C1 closed loops from single
PH quintic segments is a remarkable property. PH quintics are analogous to
“ordinary” cubic curves in their shape freedoms [5] — they are the lowest–
order curves, in their respective classes, that can match first–order Hermite
data. However, an ordinary cubic that satisfies r(1) = r(0) and r′(1) = r′(0)
has colinear Bézier control points p0,p1,p2,p3 and therefore degenerates to
a (multiply–traced) straight line. On the other hand, the quintic PH curves
generate true spatial C1 closed loops of any desired arc length S, and they
also incorporate two free shape parameters.

The parametric speed σ(ξ) = |r′(ξ)| is the quartic polynomial specified
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by the Bernstein coefficients

σ0 = |A0|2 = w2 ,

σ1 = scal(A0A∗1) = − 3

4
[ 1 + cos(ψ2 − ψ0) ]w2 ,

σ2 =
2 |A1|2 + scal(A2A∗0)

3
=

[ 9 + 13 cos(ψ2 − ψ0) ]w2 + 30

12
,

σ3 = scal(A1A∗2) = − 3

4
[ 1 + cos(ψ2 − ψ0) ]w2 ,

σ4 = |A2|2 = w2 , (18)

and the corresponding polynomial arc length function

s(ξ) =

∫ ξ

0

σ(t) dt =
5∑
i=0

si b
5
i (ξ) (19)

is characterized by the coefficients

s0 = 0 and si = si−1 +
σi−1

5
, i = 1, . . . , 5 . (20)

3.3 Frenet frame, curvature, torsion

For the canonical–form C1 PH quintic closed loop r(ξ) we have

u(ξ) = w cosψ0 b
2
0(ξ)−

3

4
w (cosψ0 + cosψ2) b

2
1(ξ) + w cosψ2 b

2
2(ξ) ,

v(ξ) = w sinψ0 b
2
0(ξ)−

3

4
w (sinψ0 + sinψ2) b

2
1(ξ) + w sinψ2 b

2
2(ξ) ,

p(ξ) = 0 , q(ξ) =

√
15

2
b21(ξ) .

The Frenet frame (t(ξ),n(ξ),b(ξ)) and the curvature κ(ξ) and torsion τ(ξ)
of r(ξ) are defined [20] by

t(ξ) =
r′(ξ)

|r′(ξ)|
, n(ξ) =

r′(ξ)× r′′(ξ)

|r′(ξ)× r′′(ξ)|
× t(ξ) , b(ξ) =

r′(ξ)× r′′(ξ)

|r′(ξ)× r′′(ξ)|
,

κ(ξ) =
|r′(ξ)× r′′(ξ)|

σ3(ξ)
, τ(ξ) =

(r′(ξ)× r′′(ξ)) · r′′′(ξ)
|r′(ξ)× r′′(ξ)|2

.
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Now every spatial PH curve satisfies [13] the relation

|r′(ξ)× r′′(ξ)|2 = 4 σ2(ξ) ρ(ξ) ,

where ρ(ξ) is the polynomial defined by

ρ = (up′ − u′p+ vq′ − v′q)2 + (uq′ − u′q − vp′ + v′p)2 . (21)

Using Maple we find that, for the canonical–form C1 closed–loop PH quintic,
the quartic polynomial ρ(ξ) has the symmetric Bernstein coefficients

ρ0 = ρ4 = 15w2 , ρ1 = ρ3 = 0 , ρ2 = − 5w2 cos(ψ2 − ψ0) , (22)

and for the scalar triple product f(ξ) = (r′(ξ)× r′′(ξ)) · r′′′(ξ) we obtain the
degree 6 polynomial

f(ξ) = w2 sin(ψ0 − ψ2)
6∑
i=0

fi b
6
i (ξ) (23)

with the symmetric Bernstein coefficients

f0 = f6 = 180w2 , f1 = f5 = − 60w2 , f2 = f4 = 36w2 ,

f3 = − [ 27 + 15 cos(ψ2 − ψ0) ]w2 − 90 . (24)

Hence, the curvature and torsion can be written as

κ(ξ) =
2
√
ρ(ξ)

σ2(ξ)
, τ(ξ) =

f(ξ)

4σ2(ξ) ρ(ξ)
. (25)

The form (23) indicates that r(ξ) degenerates to a planar curve if ψ0 and ψ2

differ by an integer multiple of π, consistent with Remark 1.

Remark 3. Although the PH quintic closed loop was constructed with only
C1 continuity at the point r(1) = r(0), we note from expressions (25) and the
coefficients (18) of the parametric speed, and from (21)–(22) and (23)–(24),
that κ(1) = κ(0) = 2

√
15/w2 and τ(1) = τ(0) = − 3/w2, so r(ξ) is actually

continuous in tangent, curvature, and torsion at r(0) = r(1). The normal
and binormal are not continuous, however, since

n(0) = (0, cosψ0, sinψ0) , n(1) = (0,− cosψ2,− sinψ2) ,

b(0) = (0,− sinψ0, cosψ0) , b(1) = (0, sinψ2,− cosψ2) .
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3.4 Twist of the Euler–Rodrigues frame

We now consider the behavior of the ERF along the canonical C1 PH quintic
closed loop r(ξ).

Lemma 1. For the canonical–form C1 PH quintic closed loop, the tangent
component (6) of the ERF angular velocity cannot change sign.

Proof : Since σ(ξ) = u2(ξ)+v2(ξ)+p2(ξ)+q2(ξ) > 0 for all ξ, expression (6)
for ω1(ξ) can only change sign if h(ξ) defined by (7) changes sign. However,
using the above forms for u(ξ), v(ξ), p(ξ), q(ξ) the polynomial (7) reduces to
the quadratic expression

h(ξ) =
1

2
w2 sin(ψ0 − ψ2) [ 3 b20(ξ)− 2 b21(ξ) + 3 b22(ξ) ] . (26)

Since h(ξ) has a negative discriminant, it has no roots on [ 0, 1 ] and ω1(ξ)
can not change sign on this interval.

Hence, the normal–plane vectors e2(ξ), e3(ξ) maintain a consistent sense
of rotation about the tangent e1(ξ). This eliminates the need to consider the
possibility of inflections (reversals in the sense of rotation) of the ERF — as
was necessary in [15] for the case of general PH quintic space curves.

The twist TERF of the ERF characterizes the total rotation of the normal–
plane vectors e2, e3 about the tangent e1 along r(ξ), namely

TERF =

∫ S

0

ω1 ds =

∫ 1

0

ω1(ξ)σ(ξ) dξ = 2

∫ 1

0

h(ξ)

σ(ξ)
dξ . (27)

As noted in Lemma 1, the integrand in the above expression cannot change
sign. This integrand has a numerator of degree 2 and denominator of degree
4, and the integral admits closed–form reduction through a partial fraction
decomposition. Let z1, z1 and z2, z2 be the two pairs of complex conjugate
roots4 of σ(ξ) = u2(ξ) + v2(ξ) + p2(ξ) + q2(ξ), so that

σ(ξ) = c (ξ − z1)(ξ − z1)(ξ − z2)(ξ − z2)

for some real constant c 6= 0. A closed–form solution for the roots is possible
using Ferrari’s method [22]. Dividing h(ξ) and σ(ξ) by c, the partial–fraction
decomposition of the integrand in (27) has the form

h(ξ)

σ(ξ)
=

c1

ξ − z1

+
c1

ξ − z1

+
c2

ξ − z2

+
c2

ξ − z2

, (28)

4Because of the symmetry of the coefficients (18), the roots of σ(ξ) are symmetrically
disposed about the interval [ 0, 1 ] — they are of the form a± i b and 1−a± i b for real a, b.
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where the complex values

c1 =
h(z1)

(z1 − z1)(z1 − z2)(z1 − z2)
, c2 =

h(z2)

(z2 − z1)(z2 − z1)(z2 − z2)
(29)

are the residues of h(ξ)/σ(ξ) at its poles z1, z2 and c1, c2 are their conjugates.
From (28) we then have the indefinite integral∫

h(ξ)

σ(ξ)
dξ = c1 ln(ξ − z1) + c1 ln(ξ − z1)

+ c2 ln(ξ − z2) + c2 ln(ξ − z2) , (30)

and by combining conjugate terms we obtain the real expression∫
h(ξ)

σ(ξ)
dξ = 2 Re(c1) ln |ξ − z1| − 2 Im(c1) arg(ξ − z1)

+ 2 Re(c2) ln |ξ − z2| − 2 Im(c2) arg(ξ − z2) . (31)

TERF is obtained by evaluating (31) between the limits ξ = 0 and ξ = 1.

3.5 Representative examples

We now present a few examples of the C1 PH quintic closed loops, which will
subsequently be used as reference curves for the frame construction problem.

Example 3. For the canonical–form loop corresponding to parameter values
ψ0 = 0 and ψ2 = π/2 we obtain w =

√
2 from (16). With p0 = p5 = (0, 0, 0)

the interior control points are

p1 = (2/5, 0, 0) , p2 = (1/10,
√

30/10, 0) ,

p3 = (−1/10, 0,−
√

30/10) , p4 = (−2/5, 0, 0) ,

and for the coefficients (18) of the parametric speed we obtain

(σ0, σ1, σ2, σ3, σ4) = (2,−3/2, 4,−3/2, 2) .

The roots of σ(ξ) are 0.158596 ± 0.203855 i and 0.841404 ± 0.203855 i, and
the quadratic polynomial (7) has coefficients

(h0, h1, h2) = (−3, 2,−3) .

Hence, we obtain the ERF twist from (27), (29), and (31) as

TERF = −2.613462 .

Figure 4 illustrates this curve together with the ERF normal–plane vectors,
and Figure 5 shows its curvature and torsion profiles.
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Figure 4: The C1 PH quintic closed loop constructed in Example 1, showing
the normal–plane vectors of (left) the Euler–Rodrigues frame and (right) the
Frenet frame. Note the mismatch of the normal–plane vectors for both these
frames at the C1 loop juncture point r(0) = r(1), identified by a dot.
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Figure 5: Curvature and torsion profiles for the canonical–form C1 closed
loop in Example 1, specified by the parameter values ψ0 = 0 and ψ2 = π/2.
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Example 4. For the canonical–form loop corresponding to parameter values
ψ0 = − π/2 and ψ2 = 3π/4 we obtain

w =

[
6
√

2

3
√

2 + 1

]1/2
.

In this case, the ERF twist is

TERF = 1.464840 .

As seen in Figures 6 and 7, the curve has a milder deviation from planarity
than the curve in Example 3.

Figure 6: The C1 PH quintic closed loop constructed in Example 2, showing
the normal–plane vectors of (left) the Euler–Rodrigues frame and (right) the
Frenet frame. Note the mismatch of the normal–plane vectors for both these
frames at the C1 loop juncture point r(0) = r(1), identified by a dot.

4 Periodic frames on closed curves

We now address the problem of constructing periodic adapted frames along
space curves that form closed loops.
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Figure 7: Curvature and torsion profiles for the canonical–form C1 closed
loop in Example 2, specified by the parameter values ψ0 = − 1

2
π and ψ2 = 3

4
π.

4.1 Phase angle between adapted frames

We first introduce the concept of the phase angle between two adapted frames
(f1(ξ), f2(ξ), f3(ξ)) and (g1(ξ),g2(ξ),g3(ξ)) along a given space curve r(ξ). It
is assumed herein that all adapted frames are positively oriented, in the sense
that f1 × f2 = f3.

Definition 1. Let (f1, f2, f3) and (g1,g2,g3) be adapted frames along the space
curve r(ξ). Then the phase angle θ(ξ) of (g1,g2,g3) relative to (f1, f2, f3) is
a real–valued function such that[

g2(ξ)
g3(ξ)

]
=

[
cos θ(ξ) sin θ(ξ)
− sin θ(ξ) cos θ(ξ)

] [
f2(ξ)
f3(ξ)

]
. (32)

The phase angle θ(ξ) is evidently a continuous function if (f1, f2, f3) and
(g1,g2,g3) are both continuous adapted frames. However, it is indeterminate
up to an integer multiple of 2π — i.e., if θ(ξ) is a phase angle of (g1,g2,g3)

relative to (f1, f2, f3) then θ̃(ξ) = θ(ξ) + 2kπ for k ∈ Z is also a phase angle.
So we can always choose θ(ξ) such that 0 ≤ θ(0) < 2π. Note that the range
of the phase angle θ(ξ) is not restricted to [ 0, 2π).

An important instance of the phase angle concerns the orientation of an
RMF relative to the Frenet frame. An RMF (t,u,v) is characterized by the
property that its angular velocity

Ω = α t + β u + γ v
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has a vanishing component in the direction of the curve tangent t, i.e., α ≡ 0,
so the angular velocity has the form5

Ω = − (ṫ · v) u + (ṫ · u) v .

Klok [19] showed that the RMF normal–pane vectors u and v are solutions
of the system of ordinary differential equations

u′(ξ) = −r′′(ξ) · u(ξ)

|r′(ξ)|2
r′(ξ) , v′(ξ) = −r′′(ξ) · v(ξ)

|r′(ξ)|2
r′(ξ) ,

for given initial conditions u(0) and v(0). It is known [18] that the phase
angle φ(ξ) of the RMF relative to the Frenet frame is

φ(ξ) = φ0 −
∫ ξ

o

τ(t)σ(t) dt , (33)

where τ(ξ) and σ(ξ) are the torsion and parametric speed of r(ξ), and φ0

is the phase angle of the initial RMF (t(0),u(0),v(0)) relative to the initial
Frenet frame (t(0),n(0),b(0)).

The following Lemma describes the relation between the angular velocities
of two adapted frames on a space curve, in terms of the phase angle between
them. This relation has been presented in [15] in the particular context of
the MTF and ERF — we state it here for general adapted frames.

Lemma 2. Let (f1, f2, f3) and (g1,g2,g3) be adapted frames along a space
curve r(ξ), ξ ∈ [ 0, 1 ] and let Ωf and Ωg be their angular velocities. Then if
θ(ξ) is the phase angle of (g1,g2,g3) with respect to (f1, f2, f3), we have

Ωg = Ωf + θ̇ f1 = Ωf +
θ′

σ
f1 .

Proof : We can express the frame angular velocities as

Ωf = Ωf ,1f1 + Ωf ,2f2 + Ωf ,3f3 , Ωg = Ωg,1g1 + Ωg,2g2 + Ωg,3g3 . (34)

By straightforward computation using (32), and observing that fi · ḟi = 0 and
fj · ḟk + ḟj · fk = 0, we have

Ωg,1 = ġ2 · g3 = Ωf ,1 + θ̇ ,

Ωg,2 = ġ3 · g1 = cos θΩf ,2 + sin θΩf ,3 ,

Ωg,3 = ġ1 · g2 = − sin θΩf ,2 + cos θΩf ,3 .

5Here dots denote derivatives with respect to the curve arc length s.

18



Substituting these expressions and (32) into (34) then yields

Ωg = Ωf + θ̇ f1 .

For adapted frames, the first component of the angular velocity plays an
important role, since it determines the rate of rotation of the normal–plane
vectors. If two frames (f1, f2, f3) and (g1,g2,g3) are as in Lemma 2, their
angular velocity components in the direction f1 = g1 satisfy

Ωg,1 = Ωf ,1 + θ̇ ,

and consequently their twists Tf and Tg are related by

Tg =

∫ S

0

Ωg,1 ds =

∫ S

0

Ωf ,1 + θ̇ ds = Tf + ∆θ ,

where ∆θ = θ(1)− θ(0).

4.2 Adapted frame angle discrepancy on closed curves

Let (f1(ξ), f2(ξ), f3(ξ)) be an adapted frame defined on a C1 closed loop r(ξ),
ξ ∈ [ 0, 1 ] satisfying

r′(0) = r′(1) and f1(0) =
r′(0)

|r′(0)|
=

r′(1)

|r′(1)|
= f1(1) .

In many applications, it is desirable that the entire frame should be periodic
along r(ξ), i.e., we also require that

f2(0) = f2(1) and f3(0) = f3(1) .

However, none of the familiar adapted frames — the Frenet frame, ERF, and
RMF — are (in general) periodic. To identify a condition for periodicity, we
introduce the angle discrepancy of an adapted frame along a closed loop.

Definition 2. Let (f1, f2, f3) be an adapted frame along a C1 closed loop r(ξ),
ξ ∈ [ 0, 1 ]. Then the angle discrepancy D of (f1, f2, f3) is the unique angle in
[ 0, 2π) such that[

f2(1)
f3(1)

]
=

[
cosD sinD
− sinD cosD

] [
f2(0)
f3(0)

]
,

and the frame (f1, f2, f3) is said to be periodic if its angle discrepancy is zero.
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Remark 4. The angle discrepancy of (f1, f2, f3) is the angle from fi(0) to fi(1)
for i = 2 or 3, as measured on the coincident normal planes at r(0) = r(1)
oriented by the common tangent vector t = f1(0) = f1(1). This angle can be
expressed in terms of the complex argument function as

D = arg [ fi(0) · fi(1) + i (fi(0)× fi(1)) · f1(0) ]

for i = 2 or 3. Thus, the angle discrepancy DFF of the Frenet frame (t,n,b)
is obtained directly as

DFF = arg [ n(0) · n(1) + i (n(0)× n(1)) · t(0) ]

= arg [ b(0) · b(1) + i (b(0)× b(1)) · t(0) ] .

Similarly, the angle discrepancy of the ERF (e1, e2, e3) can be computed from

DERF = arg[ ei(0) · ei(1) + i (ei(0)× ei(1)) · e1(0) ] , i = 2 or 3 .

We now analyze the relation between the angle discrepancies of two frames
using the phase angle function.

Lemma 3. Let (f1, f2, f3) and (g1,g2,g3) be adapted frames on a C1 closed
loop r(ξ), ξ ∈ [ 0, 1 ]. If θ(ξ) is the phase angle function of (g1,g2,g3) relative
to (f1, f2, f3), and Df , Dg are the angle discrepancies of these frames, then

Dg = Df + ∆θ mod 2π ,

where ∆θ = θ(1)− θ(0).

Proof : By the definition of the angle discrepancy, we have[
g2(1)
g3(1)

]
=

[
cosDg sinDg

− sinDg cosDg

] [
g2(0)
g3(0)

]
, (35)

[
f2(1)
f3(1)

]
=

[
cosDf sinDf

− sinDf cosDf

] [
f2(0)
f3(0)

]
. (36)

Moreover, the initial and final orientations of the frame normal–plane vectors
are related through the phase angle function by[

g2(0)
g3(0)

]
=

[
cos θ(0) sin θ(0)
− sin θ(0) cos θ(0)

] [
f2(0)
f3(0)

]
, (37)
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[
g2(1)
g3(1)

]
=

[
cos θ(1) sin θ(1)
− sin θ(1) cos θ(1)

] [
f2(1)
f3(1)

]
. (38)

Substituting (37) and (38) into (35), we obtain[
f2(1)
f3(1)

]
=

[
cos(Dg + θ(0)− θ(1)) sin(Dg + θ(0)− θ(1))
− sin(Dg + θ(0)− θ(1)) cos(Dg + θ(0)− θ(1))

] [
f2(0)
f3(0)

]
,

and comparing this with (36) yields

Df = Dg + θ(0)− θ(1) mod 2π .

When a new adapted frame (g1,g2,g3) is constructed from a given adapted
frame (f1, f2, f3) and a phase angle function θ(ξ), the condition for periodicity
of (g1,g2,g3) is stated in the following Theorem, which is a straightforward
consequence of Lemma 3.

Theorem 1. Suppose θ(ξ) is the phase angle function of (g1,g2,g3) relative
to (f1, f2, f3). Then the frame (g1,g2,g3) is periodic if and only if

∆θ = θ(1)− θ(0) = −Df + 2kπ , k ∈ Z .

For a C1 closed loop, the RMF is not (in general) periodic. By Lemma 3
with the phase angle φ(ξ) of the RMF relative to the Frenet frame specified
by (33), the angle discrepancy DRMF of the RMF can be expressed as

DRMF = DFF −
∫ 1

0

τ(ξ)σ(ξ) dξ mod 2π .

It is noteworthy that the angle discrepancy of the RMF depends on both the
angle discrepancy of the Frenet frame and the total torsion. In fact, the total
torsion is the twist of the Frenet frame since the angular velocity vector of
the Frenet frame — known as the Darboux vector [20] — is

ω = τ t + κb .

We now investigate the relation between the angle discrepancy and the
twist of an adapted frame on a closed space curve.

Lemma 4. Let (g1,g2,g3) be an adapted frame on a C1 closed loop r(ξ),
ξ ∈ [ 0, 1 ]. If Dg and Tg are the angle discrepancy and the twist of (g1,g2,g3)
then

Dg = DRMF + Tg mod 2π ,

where DRMF is the angle discrepancy of the RMF.
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Proof : Let Ωg = Ωg,1 g1+Ωg,2 g2+Ωg,3 g3 and Ω = Ω1 t+Ω2 u+Ω3 v be the
angular velocities of the frame (g1,g2,g3) and the RMF, respectively, and
let θ be the phase angle of (g1,g2,g3) relative to (t,u,v). Then by Lemma 2
we have

Ωg,1 = Ω1 + θ̇ = θ̇ ,

since the RMF satisfies Ω1 = 0. Applying Lemma 3 then yields

Dg = DRMF + ∆θ = DRMF +

∫ S

0

θ̇ ds

= DRMF +

∫ S

0

Ωg,1 ds = DRMF + Tg mod 2π .

4.3 C1 periodic frame on closed loops

In many applications, a C1 periodic adapted frame (g1,g2,g3) on a C1 closed
curve r(ξ) is required. When the frame (g1,g2,g3) is constructed by rotation
of a given adapted frame (f1, f2, f3) using the phase angle function θ(ξ), the
C1 periodicity condition can be stated in terms of the initial and the final
derivatives of the phase angle function as follows.

Theorem 2. Suppose θ(ξ) is the phase angle function of (g1,g2,g3) relative
to (f1, f2, f3). Then (g1,g2,g3) is a C1 periodic frame if and only if

(a) ∆θ = θ(1)− θ(0) = −Df + 2kπ, k ∈ Z
(b) θ̇(1)− θ̇(0) = Ωf ,1(0)− Ωf ,1(1).

Proof : In addition to the C0 periodicity condition (a), the condition (b) is
a straightforward consequence of Lemma 2.

4.4 Periodic MTF on C1 PH quintic closed loops

For a C1 closed–loop PH quintic r(ξ), ξ ∈ [ 0, 1 ] with the ERF (e1, e2, e3) we
wish to construct a periodic MTF (g1,g2,g3) such that

g2(0) = g2(1) = ĝ2 and g3(0) = g3(1) = ĝ3 .

The initial phase angle θi = θ(0) is the angle from e2(0) to ĝ2, which is chosen
in the range [ 0, 2π). From the periodicity condition in Theorem 1, the final
phase angle is

θf = θi −DERF + 2kπ
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for some k ∈ Z. Then the twist Tg of the frame (g1,g2,g3) is

Tg = TERF + ∆θ = TERF −DERF + 2kπ .

To obtain the MTF, we need to choose the integer k for which Tg becomes
the reduced minimal twist Tmin ∈ (−π, π ]. The mean angular velocity of the
MTF is then given by

Ω1 =
Tmin

S
.

If we do not require the MTF to be rational, we can simply construct it with
the constant angular velocity Ω1 by choosing [15] the phase angle function

θ(ξ) = θi + Ω1 s(ξ)− 2

∫ ξ

0

h(t)

σ(t)
dt , (39)

where s(ξ) is defined by (19)–(20), and the integral admits the closed–form
expression (30). This is illustrated by the following examples.

Example 5. For the canonical–form loop in Example 3, the ERF has the
initial and final instances

(e1(0), e2(0), e3(0)) = (i, j,k) and (e1(1), e2(1), e3(1)) = (i,−j,−k) .

Thus, the angle discrepancy of ERF is DERF = π. To construct the periodic
MTF (g1,g2,g3) starting with the initial orientation of the ERF, we choose
an initial phase angle θi = 0 and final phase angle θf = −DERF = −π. The
total twist of the periodic frame is

Tg = −2.613462− π + 2kπ ,

and with k = 1 we obtain the reduced minimal twist

Tmin = 0.528131 .

Since the loop has arc length S = 1, the mean angular velocity Ω1 is simply
Tmin. Using the phase angle function computed from (39), we can construct a
periodic MTF with constant angular velocity. Figure 8 shows the constructed
periodic MTF and the variations of the MTF and ERF angular velocities.
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(a)
(b)

Figure 8: (a) Variation of the vectors g2(ξ), g3(ξ) of the periodic MTF along
the canonical–form loop in Example 3. (b) Graphs of the tangent component
of angular velocity for the ERF (solid line) and the MTF (dashed line).

Example 6. Consider the periodic MTF with a constant angular velocity
along the canonical–form loop in Example 4. The initial and the final ERF
orientations are

(e1(0), e2(0), e3(0)) = (i,−j,−k) and (e1(1), e2(1), e3(1)) = (i,−k, j) ,

and the angle discrepancy is DERF = π/2. To construct the periodic frame,
we set θi = 0 and θf = − π/2. The reduced minimal twist (with k = 0) is

Tmin = 1.464840− π

2
+ 2kπ = −0.105957 ,

and the mean angular velocity is Ω1 = −0.105957. Using the phase angle
function (39), we construct the periodic MTF shown in Figure 9.

5 Rational periodic frames on closed loops

We now consider the possibility of constructing rational periodic adapted
frames on C1 PH quintic closed loops, as discussed in Section 3. We adopt the
notations in [15] concerning the construction of rational adapted frames on
PH curves through rational rotations to the ERF. For a complex polynomial
w(ξ) = a(ξ) + i b(ξ), we associate the phase angle function

θ(ξ) = 2 tan−1
b(ξ)

a(ξ)
, (40)

24



(a)

(b)

Figure 9: (a) Variation of the vectors g2(ξ), g3(ξ) of the periodic MTF along
the canonical–form loop in Example 4. (b) Graphs of the tangent component
of the angular velocity of the ERF (solid line) and the MTF (dashed line).

such that

cos θ(ξ) =
a2(ξ)− b2(ξ)
a2(ξ) + b2(ξ)

, sin θ(ξ) =
2a(ξ)b(ξ)

a2(ξ) + b2(ξ)
,

and the rotation (32) specified by the phase angle (40) then has the rational
parameterization[

g2(ξ)
g3(ξ)

]
=

1

a2(ξ) + b2(ξ)

[
a2(ξ)− b2(ξ) 2a(ξ)b(ξ)
− 2a(ξ)b(ξ) a2(ξ)− b2(ξ)

] [
f2(ξ)
f3(ξ)

]
. (41)

The phase angle can be compactly expressed as

exp(i θ(ξ)) =
w2(ξ)

|w(ξ)|2
=

w(ξ)

w(ξ)
,

and from (40) the derivative of the phase angle function is

θ′(ξ) = 2
a(ξ)b′(ξ)− a′(ξ)b(ξ)

a2(ξ) + b2(ξ)
.

In the construction of rational MTFs [15] and of C1 spline frames [21],
quadratic polynomials w(ξ) were employed. However, a linear polynomial
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w(ξ) suffices for constructing C1 periodic frames along the canonical–form
PH quintic closed loops r(ξ) identified in Section 3. This is possible because
of the nice symmetry properties of canonical–form PH quintic closed loops.
Let θi and θf be the initial and the final phase angles of a new frame relative
to the ERF. The coefficients of the linear polynomial

w(ξ) = w0(1− ξ) + w1ξ

are then w0 = exp(i 1
2
θi), w1 = γ exp(i 1

2
θf ) for a real parameter γ 6= 0 [15].

Proposition 2. For the canonical–form PH quintic closed loop r(ξ) with the
Bézier control points (17), the adapted frame (g1,g2,g3) obtained by rotating
the ERF through the phase angle induced by the linear polynomial

w(ξ) = exp
(
i1
2
θi
)

(1− ξ) + γ exp
(
i1
2
θf
)
ξ (42)

becomes a C1 periodic frame if

θf = θi −DERF + 2kπ (43)

for some k ∈ Z and γ = ±1.

Proof : Equation (43) is simply the C0 periodicity condition. For the C1

periodicity, we need
Ω1(0) = Ω1(1),

where the angular velocity of (g1,g2,g3) is Ω(ξ) = Ω1(ξ)g1(ξ)+Ω2(ξ)g2(ξ)+
Ω3(ξ)g3(ξ). If ω(ξ) = ω1(ξ)e1(ξ)+ω2(ξ)e2(ξ)+ω3(ξ)e3(ξ) is the ERF angular
velocity, the rotation rates of the normal planes are related by

Ω1(ξ) = ω1(ξ) +
θ′(ξ)

σ(ξ)
.

The parametric speed σ(ξ) of the canonical PH quintic loop is symmetric on
[ 0, 1 ] because of the symmetry of its Bernstein coefficients (18). The angular
velocity ω1(ξ) = 2h(ξ)/σ2(ξ) is also symmetric because h(ξ) defined by (7)
is also symmetric. Using σ(0) = σ(1) and ω1(0) = ω1(1), the C1 periodicity
condition reduces to θ′(0) = θ′(1). For the linear polynomial w(ξ) in (42),
the derivative of the phase angle θ(ξ) is

θ′(ξ) =
2 γ sin 1

2
∆θ

(1− ξ)2 + γ cos 1
2
∆θ 2(1− ξ)ξ + γ2ξ2

.
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Thus the frame (g1,g2,g3) is C1 periodic if

2 γ sin 1
2
∆θ =

2

γ
sin 1

2
∆θ ,

or equivalently if γ = ±1.

We now apply the proposed method with the linear polynomial w(ξ) to
the canonical–form PH quintic loops constructed in Section 3.

Example 7. For the canonical–form loop in Example 3, the initial and the
final phase angles are chosen as θi = 0 and θf = −π for C0 periodicity. The
coefficients of the linear polynomial w(ξ) are then w0 = 1 and w1 = − γ i,
and hence a(ξ) = 1− ξ, b(ξ) = − γ ξ. The rational adapted frames obtained
by applying the rotation (41) to the ERF have C1 periodicity for γ = ±1.

The frames constructed by this process are illustrated in Figure 10(a) for
γ = 1 and in Figure 10(b) for γ = −1. The behavior of the angular velocity
of the periodic frames as compared with the ERF are shown in Figure 10(c)
for γ = 1, and in Figure 10(d) for γ = −1. By virtue of Lemma 1, the ERF
angular velocity is always negative. For γ = 1, the angular velocity of the
rational periodic frame is smaller than that of the ERF, so the frame suffers
a counter–clockwise twist along the curve, and the total twist is

Tg = −5.755055 .

For γ = −1, on the other hand, the angular velocity of the rational periodic
frame is greater than that of the ERF, with total twist

Tg = 0.528131 ,

which agrees with the reduced minimal twist computed in Example 5.

Example 8. Consider the canonical–form loop in Example 4. With the same
boundary conditions θi = 0 and θf = − 1

2
π as in Example 6, C1 rational

periodic frames are constructed with γ = ±1. The variation of the normal–
plane vectors is shown in Figure 11(a) for γ = 1, and Figure 11(b) for γ = −1.
The corresponding angular velocities are plotted Figure 11(c) for γ = 1 and
in Figure 11(d) for γ = −1. For this example, the twist of each frame is

Tg = −0.105957 (γ = 1) and Tg = 6.177228 (γ = −1) ,

so the former has the same value as the reduced minimal twist.
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(a) (b)

(c) (d)

Figure 10: The rational C1 periodic frames along the canonical–form loop
in Example 3 are illustrated in (a) for γ = 1, and in (b) for γ = −1. The
angular velocities of the ERF (solid line) and of the periodic frame (dashed
line) are compared in (c) for γ = 1, and in (d) for γ = −1.
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(a) (b)

(c) (d)

Figure 11: The rational C1 periodic frames along the canonical–form loop
in Example 4 are illustrated in (a) for γ = 1, and in (b) for γ = −1. The
angular velocities of the ERF (solid line) and of the periodic frame (dashed
line) are compared in (c) for γ = 1, and in (d) for γ = −1.
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6 Closure

The construction of periodic rigid–body motions along closed spatial paths,
exhibiting coincident initial and final orientations, is a fundamental problem
in spatial kinematics that cannot be solved by familiar orthonormal frames
such as the rotation–minimizing frame or Euler–Rodrigues frame on spatial
PH curves. The present study develops a framework for the construction of
periodic adapted orthonormal frames on C1 closed–loop paths, and illustrates
it in the simplest non–trivial context: the C1 closed–loop PH quintics.

Several novel concepts and constructs arose in the context of this study.
The existence of a two–parameter family of non–planar quintic PH curves
that form C1 closed loops of any prescribed total arc length was established.
The theory of continuous adapted orthonormal frames on C1 closed loops was
then developed, based upon a phase angle function that describes the relative
orientation of two distinct adapted frames, and the angle discrepancy for a
single adapted frame on a C1 closed loop. These allow periodic minimal twist
frames to be constructed on closed–loop spatial PH curves, using a normal–
plane rotation with a transcendental dependence on the curve parameter.

It was further shown that a simple solution for an exact rational periodic
adapted frame (though not of minimal twist) on C1 closed–loop PH quintics is
possible. The focus of the present study was to elaborate the basic principles
underlying the construction of periodic adapted frames, and to demonstrate
their feasibility with simple examples. Two avenues for further investigation
come to mind. First, since the C1 closed–loop PH quintics have limited shape
freedoms, algorithms for the construction of higher–order closed–loop PH
curves are desirable. Second, the ability to simultaneously achieve rationality,
periodicity, and the minimal–twist property of adapted frames on closed loops
is the ultimate goal. This is a non–trivial problem, since the ERF, which is
typically invoked as a rational adapted “reference” frame, often has a non–
monotone angular velocity component in the path tangent direction.
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