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Abstract

We present a new numerical code for modeling co- and post-seismic response of the
Earth’s crust to earthquakes. The code consists of two FORTRAN programs: The
first program, PSGRN, calculates the time-dependent Green functions of a given
layered viscoelastic-gravitational half-space for four fundamental dislocation sources
[the strike-slip double-couple, the dip-slip double-couple, the compensated linear
vertical dipole (CLVD) and the point inflation] at different depths. The results pro-
vide a data base for the second program, PSCMP, which automatically discretizes
the earthquake’s extended rupture area into a number of discrete point disloca-
tions and calculates the co- and post-seismic deformation by linear superposition.
According to the correspondence principle, the same propagator algorithm used in
our previously published elastic modeling software, EDGRN/EDCMP, is adopted
to compute the spectral Green functions. The temporal Green functions are then
obtained by the Fast Fourier Transform (FFT) extended with an anti-aliasing tech-
nique, that ensures numerical stability when calculating the post-seismic transients.
Moreover, the new software considers the coupling between the deformation and the
Earth’s gravity field, so that its output includes not only the complete deformation
field consisting of 3 displacement components, 6 stress (strain) components and 2
tilt components, but also the geoid and gravity changes. In particular, the gravity
effect is treated using a new consistent approach that remedies an incorrect formu-
lation used in many earlier publications. The performance of the software is shown
by an example.
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1 Introduction

During the recent years, revolutionary improvements have been achieved in
space geodesy. Especially, since Interferometric Synthetic Aperture Radar (In-
SAR) and continuous Global Positioning System (GPS) monitoring became
more frequently used, not only the instantaneous co-seismic deformation but
also delayed post-seismic deformation can be measured with millimeter accu-
racy (see e.g., Klotz et al., 2001; Jacobs et al., 2002; Fialko, 2004). A possibly
important controlling factor for the post-seismic deformation transients is the
inelastic response of the Earth, since it consists of an elastic brittle upper crust
and ductile viscoelastic deeper parts. The latter might be the asthenosphere,
or shallower zones such as, for example, an inelastic lower crust or deeper parts
of the fault zone less narrow than the fault itself.

Methods for modeling the elastic co-seismic deformation were developed and
widely used in the 1950s and 1960s. Since the late 1960’s, three steps were
taken to obtain developments for modeling post-seismic effects more compre-
hensively: (1) the extension to layered half-spaces to treat a medium with an
elastic seismogenic part and an inelastic creeping part, (2) viscoelastic be-
havior was introduced, and (3) gravitation was found to be a non-negligible
influence, particularly on the long-term relaxation process for the case of large
thrust or normal faulting events, hence it was incorporated.

The first attempts to provide inelastic models were made for the 3D defor-
mation field of an elastic crust above a viscoelastic half-space with different
rheologies (Braslau and Lieber, 1968; Rosenman and Singh, 1973a,b; Singh
and Rosenman, 1974; Nur and Mavko, 1974). For a review of the progress in
these efforts until the late 1990’s, see Roth (1994) and Piersanti et al. (1997).
Recently, Matsu’ura and Sato (1997) and Hashimoto and Matsu’ura (2000,
2002) included empirical friction laws in the viscoelastic half-space model to
explain earthquake cycles by the stress changes along an infinitely long fault
due to tectonic loading.

Gravitational effects were first introduced by Rundle (1980a,b, 1981, 1982),
with the assumption of depth-independent gravitational acceleration. Between
1994 and 1996, several sequent papers were published that presented the
viscoelastic-gravitational dislocation theory and the corresponding numeri-
cal tools (see: Ferndndez and Rundle, 1994a,b; Fernandez et al., 1996a.b; Yu
et al., 1996a,b). These were followed by similar approaches for the case of
magma intrusions (Folch et al., 2000; Ferndndez et al., 2001), using the source
presentation of Bonafede (1990). Recently, Wang (2005a) found an incorrect
formulation included in the earlier treatment of the gravity effect, resulting in
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new approaches solving the problem being presented by Ferndndez and Rundle
(2004) and Wang (2005b).

According to viscoelasticity theory, post-seismic deformation transients are
controlled by (1) the source time function, usually a Heaviside step function,
and (2) the relaxation of the shear stress in the inelastic media with time. To
avoid the complicated convolution in the time domain, all approaches use the
correspondence principle (cf. Fung, 1965), which states that a linear viscoelas-
tic boundary-value problem can be solved by adopting the associated elastic
solutions, in which the elastic moduli are replaced by the Laplace or Fourier
transformed complex moduli. Then the time-domain solutions are obtained
via the inverse Laplace transform. Since the viscoelastic response spectra are
usually complicated functions of the Laplace time-conjugate parameter (fre-
quency), results in the closed analytical form are only possible for few par-
ticularly simple models, for example the homogeneous viscoelastic half-space
without gravity effects. For more complicated models, numerical methods must
be used, which in general require a dense sampling of the response spectra that
are first obtained by the Haskell propagator algorithm, and then by the Hankel
transform. However, both procedures are computationally expensive.

With the increase in computing capacity, various semi-analytical inversion
methods were proposed. Schapery (1962) introduced the collocation technique
by assuming that the viscoelastic response can be approximated by a finite se-
ries of decaying exponentials. Another popular method is the full normal mode
analysis introduced by Peltier (1985). Mitrovica and Peltier (1992) compared
these two major inversion methods. Their results indicate that the collocation
method requires certain preliminary knowledge about the relaxation times.
An un-experienced choice of collocation points may lead to erroneous results.
In contrast, the full normal mode analysis scans all poles and ensures the in-
version accuracy by the residue theorem. However, the finding of poles is very
time-consuming, and a complete listing of them is often only possible for a
few major relaxation modes for the response functions of selected wavelengths
rather than the spatio-temporal Green functions, which generally include an
infinite number or even a continuous spectrum of relaxation modes.

With modern computers, the purely numerical inversion is no longer as time-
consuming. The numerical tool presented in this paper is based on the Riemann-
Mellin contour integral in combination with the FFT technique, a straightfor-
ward and full-spectrum method for ensuring numerical stability in calculating
post-seismic transients. Because of the complicated non-linear relationship be-
tween geophysical observables and subsurface structure, a direct inversion for
rheological parameters is in general difficult. Since the software provides a
forward modeling tool, usually a large set of models must be run to select the
best-fitting one. Therefore, the efficiency of the software and the stability of
its numerical results are crucial. For this purpose, we present several practical



techniques used in the new implementation. The efficiency of our computation
method is demonstrated by an example.

Here we present a method and software to determine the surface and sub-
surface deformation, as well as changes in the geoid and gravity, due to the
common geophysical sources in a multi-layered viscoelastic-gravitational half-
space. The rheology incorporated is the Standard Linear Solid (SLS) rheology
(with the Maxwell rheology as one of its special cases). We have put a strong
emphasis on the high performance of the software, both with respect to speed
as well as accuracy. This is achieved by the effective techniques (orthonormal-
ized Haskell propagator, analytical asymptotes, filter techniques, etc.) used
to solve the stability and convergence problems when computing the Green
functions (Wang et al., 2003; R. Wang, 1999; Wang and Kiimpel, 2003). These
techniques lead to small, fast and very accurate programs.

2 A consistent approach for including the gravitational effect

The extension of the earlier elastic dislocation theory with the gravitational
effect was first made by Rundle (1980b) based on the generally governing equa-
tions for infinitesimal static deformation in a self-gravitating, hydrostatically
prestressed Earth (Love, 1911),
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where I' is the Lagrangian incremental stress tensor, u is the displacement
vector, v is the Eulerian incremental potential, g is the acceleration due to
gravity, (G is the gravitational constant, and p is the density. For an isotropic
and elastic medium, Hooke’s linear constitutive relation between the stress
and strain holds,

T = (\V-u)I+u[Vu+ (V)] (3)

where X and p are the two Lamé constants, I is the unit tensor, and (Vu)”
denotes the tensor transpose of Vu.

In order to apply Egs.(1) and (2) to a simplified plane-Earth model, Rundle
approximates the Earth’s gravity g by its surface value and treats it as a
constant external body force. Since the self-gravitating term, pV in Eq.(1),
is negligible for co- and post-seismic deformation, it is in general enough to
consider the so-called reduced problem, in which the deformation equations



are decoupled from the potential field equation (Rundle, 1982). To construct
the Haskell propagator for the reduced problem, four Hankel-transformed fun-
damental displacement solutions of the poloidal (P-SV) type and two of the
toroidal (SH) type are needed. Since the SH solutions include only horizon-
tal movements without volume changes, they are not affected by the gravity
field. The Hankel-transformed P-SV solutions with the gravity effect have been
given in the form

= 2(F) exp [£mq 2(k)z], (4)

where k is the horizontal wavenumber (parameter of the Hankel transform),
z is the cylindrical coordinate being positive downwards, and £m are the
four vertical wavenumbers of the deformation field,
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For k > kg, the elastic-gravitational Haskell propagator can be constructed
in analogy to the purely elastic one. Particularly for £ >> k,, the elastic-
gravitational solutions converge to the purely elastic ones, implying that the
gravity can only affect deformation over long wavelengths.

However, a problem occurs for k < k,. In this case, the boundary value prob-
lem has no solution at all because only one of the four fundamental solutions
given by Eq.(4) is regular at infinite depth, but two are in general required.
It should be mentioned that the regularity at infinite depth is necessary from
both the physical and the mathematical points of view. If any non-regular
solution is used instead of the missing regular one, two consequences are ex-
pected: (1) A small local perturbation may cause a global reaction of the
half-space, and (2) the reaction cannot be uniquely determined because there



are two non-regular solutions for choice. The parameter £, therefore repre-
sents a critical wavenumber of the model. As shown by Wang (2005a), this
regularity problem was ignored in many previous studies. In fact, the solution
given in Eq.(4) that is valid for £ > k, was implicitly extrapolated to the
invalid wavenumber region 0 < k < k,. Consequently, kernel functions (i.e.
the Hankel-transformed response functions) obtained became complex even in
the static elastic case and exhibit singularities near the critical wavenumber.

We explain the regularity problem by the physically inconsistent assumptions
made for the half-space model. In fact, any compressible medium should be-
come more compact under hydrostatic pressure. Therefore, when including
the constant gravity, a self-consistent half-space model should either be in-
compressible, or have an increasing density with depth. Otherwise, the model
is not in a hydrostatical equilibrium state and is therefore unstable. The ex-
istence of the critical wavenumber implies that an unpredictable deformation
at infinite depth can be induced by a small near-surface perturbation, if the
wavelength of the perturbation is large enough — a certainly non-physical
consequence.

Another problem is the long-term instability occurring when the shear mod-
ulus of a compressible layer of the model relaxes to a very small value. In
contrast to the regularity problem for the low wavenumber range, the insta-
bility may appear at any wavenumber. However, the physical causes for these
two different problems are the same, that is as u — 0, the finite compress-
ible layer becomes practically an infinite medium considering the vanishing
gravitational wavelength of this layer (1/k;, — 0).

Wang (2005b) has shown that these two numerical problems can be overcome
by using the Adams-Williamson condition (Longman, 1963). This condition
requires the density gradient resulting from the initial hydrostatic equilibra-
tion. It is given by

dp _ p’g
_ 9
= 9)

where the parameter k = A + 24/3 is the bulk modulus which is assumed to
be constant during the viscoelastic relaxation (see below). In fact, the Adams-
Williamson condition is well satisfied by most realistic Earth models, except
for an asthenospheric structure.

When including this density gradient, the equation for the reduced problem
reads

2
V- T+ pgVu, — (pV ‘u+ Huz> ge, = 0, (10)
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where g = ge, has been used.

In the upper and lower Earth’s crust, the density deviations needed to satisfy
the Adams-Williamson condition are within a few percent. Therefore, after the
density gradient is explicitly considered, the remaining density parameter p in
Eq.(10) can still be treated as a constant value. Using this approximation, we
find that the four vertical wavenumbers given by Egs.(5) and (6) are modified
to
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The coefficients given by Eq.(7) are still valid.

Note that the real part of the modified eigenvalues +=m; o never vanishes for
k > 0. Thus, no critical wavenumber exists even for y — 0. The regularity
problem for the low wavenumber range and the numerical instability for the
long-term relaxation are therefore avoided by this regularization approach.

3 Implementation of the rheology

In most seismic reference Earth models, the quality factor of the bulk modulus
is at least one order higher than that of the shear modulus. On that account,
only the shear modulus will be considered to be viscoelastic while the bulk
modulus remains elastic. Viscoelasticity is described by the SLS rheology de-
fined by three parameters: the unrelaxed shear modulus p,, the viscosity n and
the parameter o which is the ratio of the fully relaxed modulus to the unre-
laxed modulus (Fig. 1). In the frequency domain, the complex shear modulus
is then given by

u(zw) =u 0‘(1_0‘)+iwn/ﬂo
° (1_a)+iwn//ﬁo’

(14)



where w is the angular frequency, and ¢« = y/—1. Note that the complex shear
modulus defined here differs from the Fourier transform of the shear relaxation
function by the factor iw (see e.g., Christensen, 1971).

Obviously, the SLS rheology becomes identical to the Maxwell rheology when
the relaxation ratio @ — 0. Another special case is @ — 1 for the perfect
elasticity. For the latter case, the viscosity parameter in Eq.(14) is meaningless.

The complex Lamé constant A(iw) can be derived from the complex shear
modulus p(iw) by assuming a constant bulk modulus:

M) = Ao+ 5 o = (i) (15)

where ), represents the unrelaxed Lamé constant.

4 A practical anti-aliasing technique

Once the boundary-value problem has been solved in the frequency domain
using the correspondence principle, the time-dependent Green functions can be
obtained by the inverse Fourier transform. It is known that aliasing problems
may appear when using the discrete FFT algorithm.

If the sampling interval of the frequency, which is antiproportional to the time
window used, is not high enough, signals beyond the time window will appear
at the origin time. These alias signals may result in a wrong estimation of
the co-seismic deformation. To solve the problem, we adopt the anti-aliasing
technique that has been used in computing synthetic seismograms (Kind and
Seidl, 1982). Instead of the Fourier spectrum, for example X (iw), the Laplace
spectrum X (o + iw), where o is a small positive constant, will be computed.
The inversion for its time-domain function x(t) is then given by

z(t) =€ F~' [X (0 + iw)]
17
=e %_/ X (o +iw)e™ dw. (16)
In fact, Eq.(16) can be directly derived from the well-known Riemann-Mellin
inversion formula.

Note that X (o +iw) is the Fourier spectrum of the function e 7z (¢), i.e. z(t)
filtered by the window function e °¢. Using Eq. (16), the amplitude of the alias
signals appearing at the origin time are reduced by the factor e=°7, where T



is the length of the time window used. We therefore define § = e and

call it the alias-suppression factor. The smaller the § factor chosen, the more
effectively are the alias signals suppressed. On the other hand, a too small
(B value will enhance at the same time the numerical errors of the long-term
relaxation signals. In most practical cases, to choose 0.1 < 3 > 0.5 should
be appropriate if the time window used is large enough to cover the main
relaxation process.

Another aliasing problem are numerical oscillations due to the limited cut-off
frequency used, which is antiproportional to the sampling interval. In general,
the viscoelastic response to a Heaviside dislocation source is characterized by
three stages: (1) the instantaneous elastic response, (2) the transient viscoelas-
tic relaxation process, and (3) the steady end state. An approximation of such
time behavior using a single relaxation time can be expressed in the form

o(t) = [zp+ (2 — 3,)e”"7| H(t), (17)

where z; is the instantaneous co-seismic change, x, is the permanent change,
7 is the relaxation time, and H () is the Heaviside function.

The Laplace transform of the function z(t) is

T T — T
X w) = —2 T 18
(0 + ) o+iw+a+iw+1/7' (18)

For a multi-layered model, there may be several relaxation times or even a
continuous relaxation spectrum. In this case, the parameter 7 represents the
main relaxation time of the model. Because the spectrum given by Eq. (18)
converges slowly to zero, numerical oscillations related to the cut-off frequency
may appear when using the discrete FFT. To overcome the problem, the co-
seismic and steady-state solutions, x; and z,, respectively, are also computed.
Then, Eq. (18) is used for the first-order prediction and subtracted from the
computed spectra. The numerical inverse FF'T is then only applied to the
residual spectra, and the end result is obtained by adding Eq.(17) to the
inverse FFT of the residual spectra. The key point of this approach is the
estimation of the main relaxation time 7, which may be different for different
observables at different positions. In the present implementation, the parame-
ter 7 is estimated independently for each Green function component, following
the criterion that the residual takes a value as small as possible at the cut-off
frequency.

Numerical tests have shown that the above two techniques are very efficient.
The two aliasing problems have been satisfactorily solved. In most cases, a
stable FF'T result can be obtained even if the time window used is not large
enough and/or the time sampling rate is not high enough.



5 The computation procedures and the input/output data

As for our elastic-modeling software, EDGRN/EDCMP, the present viscoelastic-
gravitational version also consists of two programs. The first program, PS-
GRN, is used to prepare the time-dependent Green functions that describe
the response of the viscoelastic-gravitational model to the 4 fundamental dis-
location sources at different depths with a Heaviside time history. The second
program, PSCMP, is used to compute the transient deformation, as well as
changes in the geoid and gravity field induced by finite fault planes of an
earthquake via linear superposition. Usually, PSGRN is considerably more
time-consuming than PSCMP. However, once the Green functions have been
calculated, they can be repeatedly used for different earthquakes, as long as
the Earth model remains unchanged. This is the reason why the computation
is divided into these two steps.

Examples for the input files (psgrn.inp for PSGRN and pscmp.inp for PSCMP)
are supplied with the programs. They also include explanations of all input
parameters. Users can modify the parameter values for their own applications,
change the file name, and insert any additional comments.

The output from PSGRN are Green functions covering 13 observables (3 dis-
placement components, 6 stress components, 2 tilt components, and 2 geopo-
tential components, i.e. the gravity and geoid changes) induced by the 4 dif-
ferent dislocation sources (strike-slip, dip-slip, CLVD and inflation). Since the
CLVD and inflation sources are axisymmetric, the associated observables are
reduced by their tangential components. In summary, there are 44 indepen-
dent Green functions in the discrete form. The data may then be stored in a
given directory to serve as a data base.

As an input of PSCMP, an earthquake is represented by an arbitrary number
of rectangular fault planes with different locations and orientations (strike, dip
and rake). PSCMP discretizes these fault planes automatically to a set of point
dislocations using the same spatial resolution as used for Green functions, and
carries out the convolution integration. The observation positions can be either
a set of irregular stations, a 1D equidistant profile or a 2D equidistant array.
In addition, users can choose either a local Cartesian coordinate system or
the geographic coordinate system. In the latter case, a projection to the local
Cartesian system which is needed for the internal convolution procedure will
be made using the equality criterion for distance and azimuth. Output from
PSCMP are all or a selected part of the 13 observables in the form of time
series and/or scenarios (“snapshots”).
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6 Comparisons with some previously published results

Wang (2005b) compared the gravity effects on the co- and post-seismic sur-
face deformation computed by the present code and by the code FLTGRV
published by Ferndndez et al. (1996a). In general, both results show that the
gravity reduces the magnitude of the long-wavelength part of the vertical dis-
placement of the crust due to the buoyancy effect at the surface and internal
density discontinuities. For example, for large thrust earthquakes with a rup-
ture area as large as 400 x 120 km?, the results of the present code indicate that
gravity can affect the co-seismic vertical movement by up to 4 percent. Over
longer timescales, when ductile flow in the lower crust must be accounted for,
the gravity effect on the vertical displacement can reach up to 20 percent. In
comparison, the gravity effect obtained by the code FLTGRV showed a similar
spatial form, but seems to include a constant offset, like a rigid-body motion
of the crust, in both co- and post-seismic cases. Wang (2005b) concluded that
such an offset (comparable with the peak-to-peak amplitude of the gravity
effect in the thrust zone.) is unrealistic because it leads to an average surface
subsidence, which is inconsistent with thrust-fault mechanisms.

Here we have recomputed deformation models presented by Pollitz (1997).
Two Earth models (A and B) were used (see the upper panels of Fig. 2 and
3). Figure 2 shows the co- and post-seismic displacement parallel to the fault
strike of a strike-slip dislocation. For both models, our results indicate no
significant influence of gravity on deformation of strike-slip earthquakes, and
agree with those obtained by Pollitz (1997), who used a spherical geometry.

Figure 3 is comparable with Figs. 3 and 6 in Pollitz (1997), showing the ver-
tical displacement and the displacement perpendicular to the fault strike of
a buried thrust event. For Model A, we can reproduce Pollitz’s results at the
co-seismic and early post-seismic period, but find some differences at the late
post-seismic period. In particular, for ¢ = 457 in the nongravitational case,
our results indicate smaller subsidence at the far ends of the half-space pro-
file than those of Pollitz (1997) for the spherical profile. Similar differences
can also be seen for Model B. Additionally, our results indicate a smaller
gravity effect for Model B than Pollitz’s results. All these differences may be
attributed to the curvature effect neglected in the present plane-Earth model,
but also to the wavelength cut-off (the limited maximum degree of the spheri-
cal harmonics) used for the spherical model. It should be mentioned that such
a cut-off problem does not exist in the present code, in which the analytical
half-space solution (Okada, 1992) is used for the short-wavelength asymptote,
so that the numerical calculation is only needed for the long-wavelength resid-
uals due to the gravity effect and the layering of the model. In addition, the
analytical propagator scheme used for plane-Earth models is in general more
accurate than the numerical propagator scheme (for example the Runge-Kutta
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integration) used for spherical Earth models.

Model A with the same half-space geometry was also considered by Rundle
(1982) (see his Figs. 6 and 7). There is a good agreement between his results
and ours for the vertical displacement in the nongravitational case, and a
slight difference (a few percent) at ¢t = 457 in the gravitational case. It seems
that numerical errors caused by the previous regularity problem are not so
serious for earthquakes with a small to moderate magnitude, but they become
non-negligible for large-scale earthquakes (for example M, > 8) as shown by
Wang (2005b).

7 Examples

As an example of the application of the programs PSGRN/PSCMP, co- and
post-seismic deformation induced by the great Valdivia (Chile) earthquake
of May 22, 1960 (M, = 9.5) have been computed. This earthquake is the
largest event ever recorded by a seismic network (Kanamori and Cipar, 1974).
The strike of the rupture surface was chosen in our model to coincide with
the local trend of the Peru-Chile trench, which is about N8°E (Smith and
Sandwell, 1997). The rupture surface had an area of 850 x 130 km?, dipping
20°E. The depth of the upper edge of the fault plane was set to 4 km, and
a homogeneous slip of 17 m (Slip distribution 1) is used. The rake angle was
fixed at 105°, which coincides with the long-time direction of relative motion
between the Nazca and South American plates (Barrientos and Ward, 1990;
Plafker and Savage, 1970).

The Earth’s crust is modeled by means of a layered half-space, with a 55 km
thick elastic layer over a viscoelastic half-space (Table 1). The viscosity of this
underlying half-space is set to 10! Pas (Piersanti, 1999; Pollitz et al., 1998).
To show the capacity of the software to handle several fault planes, we also
consider a second slip distribution (Slip distribution 2). Previous publications
suggest that the majority of the slip on the rupture surface of the Valdivia
event took place on its northernmost part (Barrientos and Ward, 1990). Ac-
cordingly, we also computed the deformation for a model with 3 fault planes,
reproducing the same rupture area as before, but assigning a slip of 22 m
to the northernmost 150 km, 17 m to the central 550 km and 12 m to the
southernmost 150 km.

The results are shown in Figs. 4—8. The dark grey rectangle on each panel
shows the projection of the rupture area onto the surface. The upper two pan-
els on each figure show the results for the model with the homogeneous slip
distribution, whereas the lower two show the same results for the variable slip
distribution on the rupture surface. The two panels on the left of each figure
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reflect the modeled co-seismic deformation associated with the event, the two
on the right show to the modeled post-seismic deformation rate 50 years after
the event, which roughly corresponds to the present day. Figure 8 shows the
time histories of the co- and post-seismic deformation for a position at 73°W
and 41°S and for the two slip models. Interestingly, the N-S displacement,
the vertical displacement and the gravity change show non-monotonic varia-
tions within the first 100 years following the event, a phenomenon caused by
superposition of multiple stress relaxation processes in space and time.

8 Discussion and conclusions

In the application example, we modeled the co- and post-seismic deformation
of the 1960 Valdivia earthquake for areas up to 500 km distant from the fault
plane. In comparison to spherical models such as those used by, for example
Pollitz (1997) and H. Wang (1999), an obvious disadvantage of the plane-Earth
model is that it neglects the Earth’s surface curvature, which may affect an
earthquake’s far-field deformation. However, since the source extension of a
large earthquake is in general limited to about 1000 km, significant co- and
post-seismic deformation may arise at distances of up to a few hundred kilo-
meters from the earthquake’s rupture edges. Therefore, the spatial extension
of the deformation field, even for the largest earthquake, is smaller than about
1500 km. The maximum arch height of such a spherical area over its average
plane surface is less than 25 km, or 2 percent of its horizontal extension. For
such a small geometric deviation, we may expect that its influence on the
deformation field is similarly small. Thus, the curvature effect should not be
larger than a few percent. Additionally, we should keep in mind that the static
displacements decrease with distance by about 1/r2. Therefore, the co- and
post-seismic deformation calculated by PSGRN/PSCMP should be accurate
enough for most applications to present-day data sets.

In comparison with other similar modeling tools published previously, the
present software PSGRN/PSCMP includes several improvements:

e A new and consistent approach is used for including the gravity effects in
the plane-Earth models.

e The loss-of-precision problem of the Haskell propagator algorithm is fully
avoided by the orthonormalization technique.

e The numerical accuracy of the inverse Laplace transform is remarkably im-
proved by using FFT with the anti-aliasing extension.

e A data-base of Green functions will be automatically generated, which can
be used repeatedly for modeling the deformation field of different earth-
quakes.

e There is no restriction on the number of layers of the model used.
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e Large-scale earthquakes are represented by a number of rectangular fault
planes with different locations and orientations.

e Both geographical and local Cartesian coordinate systems may be used.

e The output includes a complete set of deformation components and the
geopotential changes at the surface or any given depth in the form of time
series and/or scenarios (“snapshots”).
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Tables and figures

Table 1

The 2-layer half-space model used in the application example. The unrelaxed moduli
Ao and p, are given in round brackets to indicate that they are not independent
quantities, but derived from the density p and seismic velocities V}, and V. 7 is
the viscosity and « is the ratio between the relaxed and unrelaxed shear modulus
according to the SLS rheology.

depth P Vo Vs (Ao = to) n a
[103 m]  [10® kg/m3] [10° m/s] [10° m/s] [10%° Pa] [10'° Pa-s] [-]
0 — 55 2.90 6.70 3.87 (4.33) 00 1.0
55 — 00 3.40 8.00 4.62 (7.25) 1.00 0.0
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(1 = Ot)llo
Ol

Fig. 1. Model of the SLS rheology. u, is the unrelaxed modulus, 7 is the viscosity,
and 0 < a < 1 is the relaxation ratio. Note the two special cases, @ = 1 and o = 0,
representing perfect elasticity and the Maxwell rheology, respectively.
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Fig. 2. Coseismic and additional post-seismic surface displacement calculated for
two Earth models, for a profile perpendicular to the fault strike through the center
of the rupture surface. The source is a vertical strike-slip dislocation. The fault is 200
km along the strike and 30 km along the dip (penetrating the entire elastic upper
layer). 7 (= 21/p,) is the characteristic Maxwell relaxation time. U represents the
magnitude of slip on the fault plane and U, is the displacement parallel to the fault
strike. These results are comparable with Figs. 9 and 10 of Pollitz (1997).
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Fig. 3. Same as Fig. 2, but for a buried thrust fault dipping at 30 degree. U, and U,
are the displacement perpendicular to the fault strike and the vertical displacement,
respectively. These results are comparable with Figs. 3 and 6 of Pollitz (1997) and,
for the vertical displacement of Model A, with Figs. 6 and 7 of Rundle (1982).
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Fig. 4. Horizontal surface displacements and velocities induced by the 1960 Valdivia,
Chile, earthquake, computed using PSGRN/PSCMP. The modeled earthquake rup-
ture surface is shown by the dark grey rectangle. The parameters for the fault were
chosen from former studies (Barrientos and Ward, 1990; Smith and Sandwell, 1997).
Upper two panels show the results for a model with homogeneous slip over the
rupture surface. Left: modeled co-seismic deformation; right: modeled post-seismic
deformation rate 50 years after the event (present day). Lower two panels show the
results for a model with larger slip on the northernmost part of the rupture surface.
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Fig. 5. Same as Fig. 4 but for the vertical displacements (downwards positive).
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Fig. 6. Same as Fig. 4 but for the geoid changes.
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Fig. 7. Same as Fig. 4 but for the gravity changes. Note that here the gravity change
is defined by the change measured by a gravimeter, resulting from the interior
density change and the vertical motion of the gravimeter (“free air correction”).
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Fig. 8. Time histories of the co- and post-seismic changes for the position at 73°W
and 41°S and for the two slip distributions. The local Cartesian coordinate system
is used: The N-S component is positive northwards, the E-W component is positive
eastwards, and the vertical component is positive downwards.
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