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Abstract

Integer ambiguity resolution is the process of estimating the unknown ambiguities

of carrier-phase observables as integers. It applies to a wide range of interfero-

metric applications of which Global Navigation Satellite System (GNSS) precise

positioning is a prominent example. GNSS precise positioning can be accom-

plished anytime and anywhere on Earth, provided that the integer ambiguities of

the very precise carrier-phase observables are successfully resolved. As wrongly

resolved ambiguities may result in unacceptably large position errors, it is crucial

that one is able to evaluate the probability of correct integer ambiguity estimation.

This ambiguity success rate depends on the underlying mathematical model as

well as on the integer estimation method used. In this contribution, we present the

Matlab toolbox Ps-LAMBDA for the evaluation of the ambiguity success rates.

It allows users to evaluate all available success rate bounds and approximations

for different integer estimators. An assessment of the sharpness of the bounds

and approximations is given as well. Furthermore, it is shown how the toolbox
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can be used to assess the integer ambiguity resolution performance for design and

research purposes, so as to study for instance the impact of using different GNSS

systems and/or different measurement scenarios.

Keywords: Ambiguity Success Rate, GNSS, Interferometry, Integer Estimation,

Ps-LAMBDA

1. Introduction1

The range of applications depending on precise positioning in real-time with2

a Global Navigation Satellite System (GNSS) has been growing dramatically in3

the past decades, and will continue to do so with the advent of more signals and4

systems by means of modernized GPS, the European Galileo and the Chinese5

Compass. The applications range from navigation and geodetic surveying to Earth6

observation, construction, and safety-of-life navigation.7

All these applications have in common that they rely on the very precise GNSS8

carrier-phase observations for precise (and real-time) positioning. These observa-9

tions are ambiguous by an unknown integer number of cycles. Only if the ambi-10

guities can be resolved correctly, is it possible to obtain accuracies at centimeter-11

level or below. It is therefore important to assess the probability of correct integer12

estimation, called the success rate. Although a variety of success rate bounds have13

been developed, no standard software exists to evaluate these bounds for different14

integer estimation methods. In this contribution, we introduce the new Matlab15

tool Ps-LAMBDA for the evaluation of interferometric ambiguity success rates.16

Here we briefly address some specific examples of the broad-ranging geo-17

science applications for which correct integer ambiguity estimation is crucial.18

For these applications, the success rate tool is valuable, not only for deciding19
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on whether or not to fix the ambiguities in (real-time) data processing algorithms,20

but also for design and research purposes, so as to study for instance, the impact21

or potential of using different GNSS systems, different measurement scenarios22

and/or choice of signals, receivers or baseline lengths.23

As a first example, we mention the GNSS Real-Time Kinematic (RTK) tech-24

nique, (Odijk, 2002; Li and Teunissen, 2011; Euler et al., 2004; Takac and Zelzer,25

2008). It is widely used for mapping, geodetic surveying and network applica-26

tions, (Blewitt, 1989; Bock, 1996; Strang and Borre, 1997; Leick, 2004; Hofmann-27

Wellenhof et al., 2008; Teunissen and Kleusberg, 1998). With GNSS-RTK, centimeter-28

level positioning in real-time can be achieved based on relative positioning to one29

or more base stations. Cancellation or mitigation of common error sources allows30

for improved precision, but centimeter-level accuracies can only be achieved after31

the successful estimation of the integer ambiguities.32

Recently, the RTK-technique has been extended to the concept of Precise Point33

Positioning (PPP), (Heroux and Kouba, 1995; Zumberge et al., 1997). With PPP,34

satellite orbit and clock corrections from a global network of receivers are used to35

enable subdecimeter accuracies. This has the advantage that PPP does not rely on36

a dense network of receivers, and thus can be used anywhere on Earth. The newly37

developed PPP-RTK technique allows to exploit the precise GNSS carrier-phase38

measurements, such that higher precisions and shorter convergence times become39

feasible, (Odijk et al., 2012; Geng et al., 2012; Collins et al., 2009; Laurichesse40

et al., 2009). Hence, also for PPR-RTK, reliable integer estimation is crucial.41

Another example is GNSS-based georeferencing as used in many remote sens-42

ing applications. The remote sensing platforms range from survey ships, to air-43

borne and Unmanned Airborne Vehicles (Everaerts, 2008; Rieke et al., 2011),44
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and even spaceborne platforms, (Buist et al., 2010; Kroes et al., 2005; Leung and45

Montenbruck, 2005; Huber et al., 2010; Nadarajah et al., 2012). GNSS allows for46

precise positioning and attitude determination of the platforms, in real-time or in47

post-processing mode. In either case, to enable precise georeferencing, successful48

carrier-phase ambiguity resolution is needed.49

Integer ambiguity resolution is also important in the quality control of GNSS50

data. Loss-of-lock and/or high receiver dynamics may cause integer cycle slips51

in the carrier phase data. Successful cycle slip detection and repair is therefore52

important to maintain the integrity of the data (deLacy et al., 2011; Dai et al.,53

2009; Wu et al., 2010).54

Also several non-positioning applications of GNSS can be given as examples.55

For instance, the use of GNSS stations at fixed locations for deformation moni-56

toring and change detection, e.g. in tectonic active regions, near volcanoes and in57

areas susceptible to deformation, (Dong and Bock, 1989; Fernandes et al., 2004;58

Michel et al., 2001). Or the use of observed GNSS path delays for atmospheric59

profiling, integrated water vapor measurement and creating ionosphere maps, (Be-60

vis et al., 1992; Van der Hoeven et al., 2002; Schon and Brunner, 2008; Todorova61

et al., 2008; Wickert et al., 2009). In all these applications, the precise carrier-62

phase observables are needed, but the signal of interest can only be extracted once63

the unknown integer ambiguities are resolved.64

Next to GNSS, Ps-LAMBDA also applies to all other interferometric tech-65

niques for which the integer ambiguity resolution problem plays a role. Interfero-66

metric Synthetic Aperture Radar (InSAR) is one example. The associated interfer-67

ometric phase observations can be described by a linear function of topographic68

height, surface deformation, and the integer ambiguity parameters. Precise esti-69
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mation of the surface deformation is thus dependent on successful resolution of70

the integer parameters, (Hanssen et al., 2001). Similarly, the fringe phase obser-71

vations from Very Long Baseline Interferometry (VLBI) include unknown integer72

ambiguities, which need to be resolved in order to achieve the 1 mm global posi-73

tioning accuracy, (Hobiger et al., 2009). As another example, we mention the use74

of acoustic waves for precise positioning, e.g. for indoor and underwater applica-75

tions, (Das Neves Viegas and Cunha, 2007). Again integer ambiguity resolution76

is the key.77

78

As the above examples show, the evaluation of the integer ambiguity success rate79

is important for a wide range of interferometric applications. In this contribu-80

tion, we use GNSS and its models to present and describe the Matlab toolbox81

Ps-LAMBDA. Section 2 presents the basic GNSS model and the essence of cor-82

rect integer ambiguity estimation. Section 3 reviews the three integer estimators83

integer rounding (IR), integer bootstrapping (IB) and integer least squares (ILS).84

In Section 4, the multivariate success rate is defined and the Ps-LAMBDA soft-85

ware to evaluate the success rate is described . In Section 5 the available success86

rate bounds and approximations of IR, IB and ILS are presented, together with87

an assessment of their performance. Section 6 presents an example of how the88

toolbox can be used to assess the performance potential of the American GPS, the89

European Galileo, and the Chinese Compass satellite systems.90
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Table 1: Overview of GNSS frequencies of open signals.

Band Frequency GPS Galileo Compass

L1 1575.42 MHz X X

B1 1561.098 MHz X

L2 1227.60 MHz X

E5b/B2 1207.14 MHz X X

L5/E5a 1176.45 MHz X X

2. GNSS model and integer estimation91

2.1. GNSS observation equations92

Precise GNSS positioning relies on the carrier-phase observations, which can93

be observed with millimeter precision versus decimeter precision for the pseudor-94

ange observations. The frequencies of the GPS, Galileo and Compass open signals95

are given in Table 1. Glonass is not considered because ambiguity resolution is96

generally not applied as Glonass applies Frequency Division Multiple Access.97

The pseudorange and carrier-phase observables on frequency j and satellite-98

receiver pair s − r at epoch t are denoted as ps
r, j

(t) and φs
r, j

(t), respectively. Their99

observation equations are formulated as , cf.(Hofmann-Wellenhof et al., 2001;100

Teunissen and Kleusberg, 1998; Leick, 2004; Strang and Borre, 1997; Misra and101

Enge, 2001):102

ps
r, j(t) = ρ

s
r(t) + T s

r (t) + µ jI
s
r (t) + cdts

r, j(t) + es
r(t)

φs
r, j(t) = ρ

s
r(t) + T s

r (t) − µ jI
s
r (t) + cδts

r, j(t) + λ jM
s
r, j + ǫ

s
r (t)

(1)103

where ρs
r is the satellite-receiver range, T s

r is the troposphere delay, I s
r is the iono-104

sphere delay, dts
r, j

and δts
r, j

are the pseudo-range and carrier-phase satellite-receiver105
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clock biases, Ms
r, j

is the time-invariant carrier-phase ambiguity, c is the speed106

of light, λ j is the wavelength for frequency j, µ j = (λ j/λ1)2, and es
r and ǫ s

r are107

the remaining error terms, respectively. The real-valued carrier-phase ambiguity108

Ms
r, j
= φr, j(t0) + φs

j
(t0) + N s

r, j
is the sum of the initial satellite-receiver phases and109

the integer ambiguity N s
r, j

.110

The structure of the observation equations of the pseudorange and carrier-111

phase observables is the same, only that the latter contains an ambiguity term.112

This implies that if the ambiguities can be resolved, the carrier-phase observations113

will start to act as very precise pseudorange observations.114

The initial phases and clock biases present in Eq.(1) can be eliminated through115

differencing the observation equations. The so-called double differenced (DD)116

observation equations, using simultaneous observations from two receivers and117

two satellites, take the form:118

pls
qr, j(t) = ρ

ls
qr(t) + T ls

qr(t) + µ jI
ls
qr(t) + els

qr(t)

φls
qr, j(t) = ρ

ls
qr(t) + T ls

qr(t) − µ jI
ls
qr(t) + λ jN

ls
qr, j + ǫ

ls
qr(t)

(2)119

where pls
qr, j

(t) =
(

ps
r, j

(t) − pl
r, j

(t)
)

−
(

ps
q, j

(t) − pl
q, j

(t)
)

, and similar notation for the120

other DD variates. The DD troposphere slant delays are usually reduced to a121

single DD zenith delay T zenith
qr by means of mapping functions. The DD ionosphere122

delays can usually be neglected for baselines shorter than 15 km. For longer123

baselines, a priori ionosphere corrections can be used. In that case the uncertainty124

of those corrections should be taken into account.125

Under the assumption that the error terms els
qr and ǫ lsqr in Eq.(2) are zero-mean126

variables, the observation equations can be used to set up a mixed integer linear127

model, as some of the parameters are reals and others are integer.128

The observation equations in Eq.(2) are parameterized in terms of the satellite-129
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receiver ranges ρls
qr(t), which depend on both the satellite and receiver positions.130

Assuming the satellite orbits known, these ranges can be linearized with respect to131

the unknown receiver coordinates. The linearized observation equations obtained132

in this way are then parameterized in terms of the between-receiver baseline vector133

increments, and the model is an example of a mixed integer linearized model.134

2.2. Solving the GNSS model135

The mixed integer linear(ized) model can now be defined as:136

y ∼ N(Aa + Bb,Qyy), a ∈ Zn, b ∈ Rp (3)137

The notation ”∼” is used to describe ”distributed as”. The m-vector y contains138

the pseudorange and carrier-phase observables, the n-vector a contains the DD139

integer ambiguities, b is the real-valued parameter vector of length p, including140

baseline or position components and possibly tropospheric and ionospheric delay141

parameters. The coefficient matrices are A ∈ R
m×n and B ∈ R

m×p, with [A B]142

of full column rank. The variance-covariance (VC-) matrix Qyy is an m × m pos-143

itive definite matrix. In most GNSS applications, the underlying distribution is144

assumed to be the multivariate normal distribution.145

In general, a three-step procedure is employed to solve model (3) based on the146

least squares criterion. In practice, a user may want to include a validation step147

after step 1 and step 2.148

Step 1: Float solution149

In the first step, the integer property of the ambiguities a is discarded and the150

so-called float solution can be obtained with standard least squares:151





â

b̂




=









AT

BT




Q−1

yy [A B]





−1 



AT

BT




Q−1

yy y (4)152
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with:153 



â

b̂




∼ N









a

b




,





Qââ Qâb̂

Qb̂â Qb̂b̂








(5)154

Qââ and Qb̂b̂ are the VC-matrices of the float ambiguity and baseline estimators,155

respectively.156

Step 2: Integer estimation157

In the second step, the float ambiguity estimate â is used to compute the cor-158

responding integer ambiguity estimate, denoted as159

ǎ = I(â) (6)160

with I : R
n 7−→ Z

n the integer mapping from the n-dimensional space of reals161

to the n-dimensional space of integers. In this step, there are different choices of162

mapping function I possible, which correspond to the different integer estimation163

methods. Popular choices are integer least squares (ILS), integer bootstrapping164

(IB) and integer rounding (IR). Each of the methods will be discussed in more165

detail in the following subsections.166

Step 3: Fixed solution167

In the third step, the float solution of the remaining real-valued parameters168

solved in the first step are updated using the fixed integer parameters,169

b̌ = b̂ − Qb̂âQ−1
ââ(â − ǎ) (7)170

This solution is referred to as the fixed baseline solution.171
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Figure 1: Position errors in East (dE), North (dN) and Up (dU) direction in meters for ambiguity

float solutions (top panel), ambiguity fixed solutions (bottom panel). Note the different scales in

the top and bottom panels.

2.3. Essence of correct integer estimation172

A very high positioning performance can only be guaranteed if the estimated173

integer ambiguities are correct. It is therefore very important to assess the proba-174

bility of correct integer estimation. This probability is called the success rate and175

only if it is very close to 1, it is possible to rely on the integer solution without176

further validation. In that case the integer ambiguity solution can be assumed to177
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be deterministic, and the VC-matrix of the fixed baseline solution is obtained by178

application of the propagation law of variances to Eq.(7):179

Qb̌b̌ = Qb̂b̂ − Qb̂âQ−1
ââQâb̂ (8)180

In general Qb̌b̌ << Qb̂b̂, since after successful ambiguity fixing the carrier-phase181

measurements start to act as very precise pseudorange measurements. Figure 1182

shows a scatterplot of the float and fixed position errors based on 10,000 solutions183

with single epoch, dual-frequency GPS for a short baseline; the success rate is184

equal to 1. It can be observed that the precision is improved with a factor 100, in185

agreement with the difference in code and carrier-phase measurement noise.186

However, incorrect integer ambiguity estimation may result in the opposite187

effect in terms of positioning accuracy: rather than a dramatic precision improve-188

ment, a wrong ambiguity solution can cause very large position errors, exceeding189

those of the float solution. This is illustrated in Figure 2, which shows a scatter-190

plot of horizontal float position errors for a case where the ambiguities are fixed191

correctly in only 93% of the cases. The corresponding fixed solutions are shown192

as either red or green dots: red if the ambiguities are fixed incorrectly, green if193

they are fixed correctly. It can be seen that in all cases where the ambiguities194

were fixed correctly, the position errors are very small. However, in case of un-195

successful integer estimation the corresponding position errors tend to be of the196

same size or even much larger than the corresponding float position errors. The197

figure shows only the horizontal positioning results, for the vertical component198

the errors can be as large as 8 meters in this example. This clearly shows that199

the fixed solution should only be used if the success rate is very high. Section 4200

presents the Ps-LAMBDA toolbox which allows to evaluate the success rate of201

integer estimation.202
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Figure 2: Scatterplot of horizontal position errors in meters for float solution (grey dots) and

corresponding fixed solution. In this case, 93% of the solutions were correctly fixed (green dots),

and 7% was wrongly fixed (red dots).

3. Admissible integer estimation203

As previously mentioned there are many ways of computing an integer ambi-204

guity vector ǎ from its real-valued counterpart â. To each such method belongs205

a different mapping I : Rn 7→ Z
n. Due to the discrete nature of Zn, the map I206

will not be one-to-one, but instead a many-to-one map. This implies that different207

real-valued ambiguity vectors will be mapped to the same integer vector. One can208

therefore assign a subset Pz ⊂ R
n to each integer vector z ∈ Zn:209

Pz = {x ∈ Rn | z = I(x)}, z ∈ Zn (9)210

The subset Pz contains all real-valued ambiguity vectors that will be mapped by211

I to the same integer vector z ∈ Zn. This subset is referred to as the pull-in region212

of z. It is the region in which all ambiguity float solutions are pulled to the same213

fixed ambiguity vector z.214

12



Using the pull-in regions, one can give an explicit expression for the corre-215

sponding integer ambiguity estimator. It reads216

ǎ =
∑

z∈Zn

zPz(â), Pz(â) =






1 if â ∈ Pz

0 otherwise.

(10)217

Since the pull-in regions define the integer estimator completely, one can define218

classes of integer estimators by imposing various conditions on the pull-in regions.219

One such class is referred to as the class of admissible integer estimators. This220

class was introduced in (Teunissen, 1999b) and it is defined as follows.221

222

Definition223

The integer estimator ǎ =
∑

z∈Zn zPz(â) is said to be admissible if224

(i)
⋃

z∈Zn

Pz = R
n

(ii) Int(Pz1
)
⋂

Int(Pz2
) = ∅, ∀z1, z2 ∈ Zn, z1 , z2

(iii) Pz = z + P0, ∀z ∈ Zn

225

This definition is motivated as follows. The first condition states that the pull-in226

regions should not leave any gaps and the second that they should not overlap.227

The absence of gaps is needed in order to be able to map any float solution â ∈ Rn
228

to Z
n, while the absence of overlaps is needed to guarantee that the float solution229

is mapped to just one integer vector. The third and last condition of the definition230

follows from the requirement that I(x + z) = I(x) + z,∀x ∈ Rn, z ∈ Zn. It states231

that when the float solution is perturbed by z ∈ Z
n, the corresponding integer232

solution is perturbed by the same amount. This property allows one to apply the233

integer remove-restore technique: I(â − z) + z = I(â).234
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Integer rounding, integer bootstrapping and integer least squares are all exam-235

ples of admissible integer estimation methods.236

3.1. Z-transformations237

It will be explained later that it may be useful to apply a so-called Z-transformation238

to the ambiguity parameters. A matrix is called a Z-transformation if it is one-to-239

one (i.e. invertible) and integer (Teunissen, 1995a). Such transformations leave240

the integer nature of the parameters in tact. If a certain integer estimator is Z-241

invariant it means that if the float solution is Z-transformed, the integer solution242

transforms accordingly. Hence:243

ž = ZT ǎ if ẑ = ZT â (11)244

A very useful Z-transformation is the decorrelating Z-transformation, (Teu-245

nissen, 1993, 1994, 1995a,b). It results in a more diagonal VC-matrix:246

Q ẑ ẑ = ZT QââZ (12)247

3.2. Integer rounding248

The simplest way to obtain an integer vector from the real-valued float solution249

is to round each of the entries of â to its nearest integer. The corresponding integer250

estimator reads251

ǎIR = ([â1], · · · , [ân])T (13)252

where [·] stands for rounding to the nearest integer.253

The pull-in regions for rounding are n-dimensional unit cubes centred at the254

integer grid points:255

Pz,IR = {x ∈ Rn |
∣
∣
∣cT

i (x − z)
∣
∣
∣ ≤ 1

2
, i = 1, . . . , n}, z ∈ Zn (14)256
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Figure 3: 2D Pull-in regions for integer rounding (IR) and 50,000 float solutions. Top: original

ambiguities â [cycles]; Bottom: Z-decorrelated ambiguities ẑ [cycles].

with ci the unit vector have a 1 as its ith entry and 0’s otherwise.257

In general, the rounding estimator is not Z-invariant, i.e. žIR , ZT ǎIR. Only258

if Z is a permutation matrix, and thus the transformation is a simple reordering259

of the ambiguities, the estimator is Z-invariant. Note that the pull-in regions of260

rounding remain unaffected by the Z-transformation.261

Figure 3 shows an example for a 2-dimensional (2D) ambiguity vector. 50,000262
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samples of float ambiguities for a given VC-matrix Qââ were simulated; these are263

shown as the red and green dots. The top panel shows the original float samples264

(before Z-decorrelation), and the pull-in region P0,IR, in which all the green sam-265

ples reside. Hence, for all those samples the 0-vector is obtained after rounding.266

The bottom panel shows the corresponding Z-decorrelated float ambiguity sam-267

ples, as well as the surrounding pull-in regions. In this case, many more float268

samples reside in P0,IR: 95% versus 23% before Z-decorrelation. This shows that269

the choice for the parameterization of the float ambiguity vector is very important270

in case of integer rounding.271

3.3. Integer bootstrapping272

The integer bootstrapping (IB) estimator still makes use of integer rounding,273

but it takes some of the correlation between the ambiguities into account. The IB274

estimator follows from a sequential least squares adjustment and it is computed as275

follows. If n ambiguities are available, one starts with the most precise ambiguity.276

Let the nth ambiguity be the most precise one, hence we start with rounding ân277

to the nearest integer. The remaining float ambiguities are corrected by virtue of278

their correlation with the last ambiguity. Then the last-but-one, but now corrected,279

real-valued ambiguity estimate is rounded to its nearest integer and all remaining280

(n− 2) ambiguities are then again corrected, but now by virtue of their correlation281

with this ambiguity. This process is continued until all ambiguities are considered.282
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Figure 4: 2D pull-in regions for integer bootstrapping (IB) and 50,000 float solutions. Top: original

ambiguities â [cycles]; Bottom: Z-decorrelated ambiguities ẑ [cycles].

The components of the bootstrapped estimator ǎIB are given as283

ǎn;IB = [ân]

ǎ j;IB = [â j|J] = [â j −
n∑

i= j+1

σâ jâi|Iσ
−2
âi|I

︸    ︷︷    ︸

li, j

(âi|I − ǎi;IB)],

∀ j = 1, . . . , n − 1

(15)284
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The short-hand notation âi|I stands for the ith ambiguity obtained through a con-285

ditioning on the previous I = {i + 1, . . . , n} sequentially rounded ambiguities.286

The real-valued sequential least squares solution can be obtained by means of287

the triangular decomposition of the variance-covariance matrix of the ambigui-288

ties: Qââ = LT DL, where L denotes a unit lower triangular matrix with entries li, j289

(see Eq.(15)) and D a diagonal matrix with the conditional variances σ2
âi|I

as its290

diagonal elements.291

The pull-in regions for integer bootstrapping are given as:292

Pz,IB = {x ∈ Rn |
∣
∣
∣cT

i L−T (x − z)
∣
∣
∣ ≤ 1

2
, i = 1, . . . , n}, z ∈ Zn (16)293

with ci the unit vector have a 1 as its ith entry and 0’s otherwise.294

Like rounding, bootstrapping suffers as well from a lack of Z-invariance, i.e.295

žIB , ZT ǎIB if ẑ = ZT â. From Eq.(15) can be seen that changing the order will296

already result in a different outcome with bootstrapping.297

Figure 4 shows a 2D example of the pull-in regions for integer bootstrapping,298

which in 2D are parallelograms. It can be clearly seen how bootstrapping is af-299

fected by the decorrelating Z-transformation. Here 96% of the Z-decorrelated300

float samples resides in P0,IB versus 29% of the original ambiguity samples.301

3.4. Integer least squares302

When solving the GNSS model of Eq.(3) in a least squares sense, but now with303

the additional constraint that the ambiguity parameters should be integer-valued,304

the integer estimator of the second step in the procedure becomes:305

ǎILS = arg min
z∈Zn
‖â − z‖2Qââ

(17)306
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Figure 5: 2D pull-in regions for integer least squares (ILS) and 50,000 float solutions. Top: origi-

nal ambiguities â [cylces]; Bottom: Z-decorrelated ambiguities ẑ [cylces].

with ‖ · ‖2
Q
= (·)T Q−1(·). The ILS pull-in region is defined by:307

Pz,ILS = {x ∈ Rn | |w| ≤ 1

2
‖u‖Qââ

, ∀u ∈ Zn} (18)308

with309

w =
uT Qââ

−1(x − z)

‖u‖Qââ

(19)310
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Table 2: Percentage of float solutions that is correctly fixed for the three integer estimation methods

(corresponding to Figures 3 to 5).

IR IB ILS

Original ambiguities â 23 29 97

Z-decorrelated ambiguities ẑ 95 96 97

the orthogonal projection of (x − z) onto the direction vector u. Hence, Pz,ILS is311

the intersection of banded subsets centered at z and having width ‖u‖Qââ
.312

In contrast to integer rounding and integer bootstrapping, the ILS estimator is313

Z-invariant: žILS = ZT ǎILS if ẑ = ZT â.314

Figure 5 shows an example of the 2D pull-in regions for integer least squares.315

For the original VC-matrix Qââ (top panel) the ILS pull-in region follows the dis-316

tribution of the float samples much better than in case of rounding and bootstrap-317

ping, compare with the corresponding Figures 3 and 4. Due to the Z-invariance318

the percentage of float samples in P0,ILS (the green dots) is 97% both for the orig-319

inal and Z-decorrelated ambiguities. The percentages for all three integer estima-320

tors are summarized in Table 2.321

An integer search is needed to determine ǎILS. The ILS procedure is effi-322

ciently mechanized in the LAMBDA (Least squares AMBiguity Decorrelation323

Adjustment) method. A key element of the LAMBDA method is the decorrelating324

Z-transformation, see Section 3.1, which results in largely reduced search times.325

For more information on the LAMBDA method and its wide-spread applications326

see e.g. (Teunissen, 1993, 1995b; Li and Teunissen, 2011; Chang et al., 2005;327

De Jonge and Tiberius, 1996; Hofmann-Wellenhof et al., 2001; Teunissen and328

Kleusberg, 1998; Leick, 2004; Strang and Borre, 1997; Misra and Enge, 2001).329
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4. Success Rate: definition and evaluation tool330

In Section 2.3 the essence of correct integer estimation was described. It is331

thus important to have means available to evaluate the ambiguity success rate,332

i.e., the probability of correct integer estimation, Ps. This success rate is equal to333

the probability that â resides in the correct pull-in region Pa with a the true but334

unknown ambiguity vector:335

Ps = P(ǎ = a) = P(â ∈ Pa) =

∫

Pa

fâ(x|a)dx (20)336

The probability density function (PDF) of the float ambiguities, fâ(x|a), is as-337

sumed to be the normal PDF with mean a:338

fâ(x|a) =
1

√
det(2πQââ)

exp{−1

2
(x − a)T Q−1

ââ(x − a)} (21)339

As the pull-in regions of the integer estimators are integer-translation invariant,340

the success rate can also be evaluated as:341

Ps =

∫

P0

fâ(x|0)dx (22)342

An illustration is given in Figure 6 for the ILS estimator: in the top panel the343

PDF of a 2D float ambiguity vector is shown, with the corresponding ILS pull-344

in regions underneath. The bottom panel shows the probability masses for each345

integer grid point, equal to the integral of the PDF over the corresponding pull-in346

regions. In this case, the success rate is equal to the probability mass at [0 0]T .347

From the definition (22) it follows that the success rate depends on the integer348

estimation method (IR, IB or ILS) as well as on the float ambiguity precision349

captured by VC-matrix Qââ. From Eq.(4) follows that:350

Qââ =
(

ATQ−1
yy A − ATQ−1

yy B(BTQ−1
yy B)−1BTQ−1

yy A
)−1

(23)351
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1  

ILS 
SRILS

2 

IB 
SRBoot 

3 

IR 
SRRound

1 

AP : simulation 
SR_ILS_ap_sim 

2 

AP : ADOP 
SR_ILS_ap_adop

3 (*) 

LB : IB exact 
SR_B_ex 

4 

LB : region 
SR_ILS_lb_region 

5 

LB : VC-matrix 
SR_ILS_lb_vc 

6 

UB : ADOP 
SR_ILS_ub_adop 

7 

UB : region 
SR_ILS_ub_region 

8 

UB : VC-matrix 
SR_ILS_ub_vc 

1 (*) 

EXACT 
SR_B_ex 

2 

UB : ADOP 
SR_ILS_ap_adop 

1 

AP : simulation 
SR_R_ap_sim 

2 

LB : VC-matrix 
SR_R_lb

3 (*) 

UB : IB exact 
SR_B_ex 

Figure 7: Ps-LAMBDA: overview of available methods and options in routine SuccessRate.

Default option is indicated with (*). Names of underlying routines are shown as well. AP =

approximation (blue), LB = lower bound (green), UB = upper bound (red).
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From this it can be seen that the following factors drive the ambiguity float preci-352

sion:353

• receiver-satellite geometry (depends on time and location, as well as on354

which GNSS is used)→ B,Qyy355

• measurement noise (depends on GNSS signal and receiver quality)→ Qyy356

• assumptions on atmospheric delays (depends on atmosphere models and/or357

between-receiver baseline length)→ B,Qyy358

• frequencies used (depends on GNSS and receiver)→ A359

• number of observation epochs→ B360

Note that the satellite geometry only affects Qyy if elevation-dependent weighting361

is applied to the observations. The influence of the atmosphere delays depends on362

whether the delays are estimated and thus included as unknown parameters in b,363

and what uncertainty is assigned to the corrections if applied.364

Since the success rate can be computed once the float ambiguity VC-matrix365

Qââ is known, it can be computed without the need for actual data. As such, the366

success rate can be used as a very important performance measure for:367

368

• planning purposes (design computations): what is the performance to be369

expected given a certain measurement set-up at a given time and location;370

371

• deciding whether or not to fix the ambiguities to the integer estimates dur-372

ing the actual data processing (in real-time or post-processing mode);373

374
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• research purposes, e.g. to study the impact of receiver noise characteristics,375

availability of more signals / satellites, baseline length, etcetera.376

377

As mentioned, the success rates also depend on the selected integer estimation378

method, since the pull-in region is different for IR, IB and ILS. In (Teunissen,379

1999a) it was proven that:380

P(ǎIR = a) ≤ P(ǎIB = a) ≤ P(ǎILS = a) (24)381

The ordering is thus the same as the ordering in terms of complexity, since IR382

is the simplest and ILS the most complex method. This means that if IR or IB383

provides a very sharp lower bound, a user could decide to use the simpler integer384

estimation method if their success rate is close to 1 and still obtain (close to)385

optimal performance.386

The success rate cannot be evaluated exactly in all cases due to the complex387

integration over the pull-in region. It is of course important to be able to have388

good approximations of the success rate in case exact evaluation is not feasible.389

A lower bound is an approximation of the success rate, which is guaranteed to be390

smaller than or equal to the actual success rate. As such it is particularly useful.391

However, if the lower bound is not tight, this may result in a unnecessarily high392

rejection rate as the success rate is deemed too low. An upper bound can be useful393

as well, especially in combination with a lower bound, since it then tells the user394

in which range the success rate will be. If the upper bound is below a user-defined395

threshold, one cannot expect ambiguity resolution to be successful. In addition,396

for IR and IB it may be useful to have an upper bound which is invariant for the397

class of admissible ambiguity transformations.398
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Different approximations and bounds were proposed in literature, an evalua-399

tion of some of the bounds was made in (Verhagen, 2005; Thomsen, 2000). All400

bounds and approximations are now implemented in a newly developed Matlab401

toolbox, called Ps-LAMBDA. Figure 7 gives an overview of the structure. The402

main routine is SuccessRate which needs as input:403

Qa the VC-matrix of the float ambiguities Qââ

method 1 = ILS [DEFAULT], 2 = IB, 3 = IR

option the approximation / bound to compute

(see Figure 7)

decor 1 = decorrelation [DEFAULT]

0 = no decorrelation

nsamp number of samples

only used for simulation-based approximation

404

405

The choice for decor is only relevant for IR and IB, since these estimators are406

not Z-invariant. Decorrelation is always applied for ILS to ensure computational407

efficiency.408

The toolbox also includes a Graphical User Interface which allows the user409

to select an input file which contains the VC-matrix Qââ and to compute all the410

desired bounds and approximations for different integer estimation methods si-411

multaneously.412

In the next section the bounds and approximations for each of the three esti-413

mators are presented. The performance of the bounds and approximations will be414

assessed for different GNSS models, where the different factors affecting the float415

ambiguity precision are varied as shown in Table 3. An exponential elevation-416

dependent weighting is applied (more noise is assumed for observations from417
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Table 3: Measurement scenarios used in Section 5 (standard deviations apply to zenith direction).

system GPS -

combined GPS+Galileo

times 49 different epochs

frequencies L5 - L1+L5 -

L1+L5+L2/E5b

standard deviations of code: 15 cm

undifferenced observations phase: 1 mm

VC-matrix scale factors 0.25 - 0.5 - 1 - 2 - 4

standard deviation of

ionosphere corrections 5 - 15 mm

low-elevation satellites) to the standard deviations of the observations and of the418

ionosphere corrections. The scale factors applied to the VC-matrix Qââ can ei-419

ther be interpreted as representing a different number of epochs, or a different420

measurement precision due to different receiver quality.421

5. Success Rate: bounds and approximations422

5.1. Approximation based Monte Carlo simulations423

The success rate of integer estimation can be approximated by means of Monte424

Carlo simulation. The procedure is as follows. It is assumed that the float solution425

is normally distributed â ∼ N(a,Qââ), and thus the distribution is symmetric about426

the mean a. Hence, we may shift the distribution over a and draw samples from427

the distribution N(0,Qââ).428
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Figure 8: Examples of simulation-based success rate as function of number of samples. Each

panel shows the results for a different GNSS model.

The first step is to use a random generator to generate n independent samples429

from the univariate standard normal distribution N(0, 1), and then collect these in430

a vector s. This vector is transformed by means of â = Gs, with G equal to the431

Cholesky factor of Qââ = GGT . The result is a sample â from N(0,Qââ), and432
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this sample is used as input for integer estimation. If the output of this estimator433

equals the null vector, then it is correct, otherwise it is incorrect. This process can434

be repeated an N number of times, and one can count how many times the null435

vector is obtained as a solution, say Ns times. The approximation of the success436

rate follows then as:437

Ps ≈
Ns

N
(25)438

In order to get good approximations, the number of samples N must be sufficiently439

large (Teunissen, 1998a). The disadvantage is that it may be very time-consuming440

to evaluate Eq.(25), especially in case of ILS, since for each sample an integer441

search is required.442

The concept of approximating the success rate based on simulations was al-443

ready applied in Sections 3.2-3.4, see Table 2.444

Figure 8 shows for four GNSS models how the approximation performs de-445

pending on the number of samples used (similar results were obtained for many446

other GNSS positioning models). It follows that at least 105 samples should be447

used to get a good approximation. At the same time it can be seen that using more448

samples generally only has a small effect, in the order of 10−3, especially in cases449

where the success rate is close to 1. With 106 samples the approximation will be450

very close to the true value. In the remainder of this contribution the simulation-451

based success rates will be compared to other bounds and approximations. The452

number of samples used is 106.453

Ps-LAMBDA allows to evaluate the simulation-based success rates for IR and454

ILS (option 1 in Figure 7), where the user may specify the number of samples to455

be used. The option is not available for IB, as its success rate can be evaluated456

exactly, as will be shown in Section 5.3.457
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5.2. Integer Rounding success rates458

The n-fold integral over the IR pull-in region defined in (14) is difficult to459

evaluate. Only if the VC-matrix Qââ is diagonal will the success rate become460

equal to the n-fold product of the univariate success rates. In (Teunissen, 1998b)461

it was shown that this also provides a lower bound in case Qââ is not diagonal:462

Ps,IR = P(ǎIR = a) ≥
n∏

i=1

(

2Φ(
1

2σâi

) − 1

)

(26)463

with Φ(x) the cumulative normal distribution function:464

Φ(x) =
1
√

2π

∫ x

−∞
exp{−1

2
t2}dt465

In Section 3.2 it was mentioned that IR is not Z-invariant. This holds for466

the IR success rates as well, since the pull-in regions are unaffected by a Z-467

transformation, while the distribution of the transformed ambiguities is changed468

to ẑ ∼ N(ZT a,Q ẑ ẑ). If IR is applied to the Z-decorrelated ambiguities, the success469

rate will increase due to the improved precision of the decorrelated ambiguities,470

i.e.471

P( žIR = z) ≥ P(ǎIR = a) (27)472

According to Eq.(24), IB will always result in a success rate higher than or473

equal to the IR success rate if the same parameterization of the float ambiguities474

is used. Hence, the IB success rate can be used as an upper bound for IR. In the475

next subsection it will be shown that the IB success rate can in fact be evaluated476

exactly.477

Figure 9 shows the lower bound and upper bound versus the actual IR success478

rates (all for the decorrelated ambiguities). It can be seen that the lower bound479

is very tight, whereas the upper bound based on the IB success rate is not as480
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Figure 9: IR success rates: upper bound based on IB (red) and lower bound based on diagonal

VC-matrix (green) versus the actual IR success rate for the models from Table 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IB success rate

A
D

O
P

−
b
a
s
e
d
 u

p
p
e
r 

b
o
u
n
d

Figure 10: IB success rates: ADOP-based upper bound versus the exact IB success rate for the

models from Table 3.

tight, thus indicating that integer bootstrapping may still significantly outperform481

integer rounding.482
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5.3. Integer Bootstrapping success rates483

In case of bootstrapping the success rate can be evaluated exactly using (Teu-484

nissen, 1998b):485

Ps,IB = P(ǎIB = a) =

n∏

i=1

(

2Φ(
1

2σâi|I

) − 1

)

(28)486

The IB success rate is not Z-invariant. Bootstrapping may perform close to op-487

timal if applied to the decorrelated ambiguities ẑ, (Teunissen, 1998b; Verhagen,488

2005), and as with rounding we have:489

P( žIB = z) ≥ P(ǎIB = a) (29)490

For bootstrapping we thus have an exact and easy-to-compute formula for the491

success rate. Still it can be useful to have an upper bound, which is Z-invariant,492

since if this upper bound is too small, it can be immediately concluded that neither493

bootstrapping, nor rounding, will be successful for any parameterization of the494

ambiguities. In Teunissen (2000) it was proven that such an upper bound is given495

by:496

Ps,IB ≤
(

2Φ(
1

2ADOP
) − 1

)n

(30)497

with ADOP being the Ambiguity Dilution of Precision given by:498

ADOP =
√

det(Qââ)
1
n (31)499

with units of cycles. The ADOP is a diagnostic that captures the main char-500

acteristics of the ambiguity precision. It was introduced in (Teunissen, 1997),501

described and analyzed in (Teunissen and Odijk, 1997; Odijk and Teunissen,502

2008) and is widely used, see the introduction of (Odijk and Teunissen, 2008).503

The ADOP is invariant for the class of admissible ambiguity transformation, i.e.504
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det(Qââ) = det(Q ẑ ẑ). When the ambiguities are completely decorrelated, the505

ADOP equals the geometric mean of the standard deviations of the ambiguities,506

hence it can be considered as a measure of the average ambiguity precision.507

Figure 10 shows that the upper bound is in these cases often significantly508

higher than the exact success rate P( žIB = z). Better bounding performance is509

obtained for lower dimensions n, which is due to the replacement of the n condi-510

tional standard deviations in Eq.(28) by a single value equal to ADOP.511

5.4. Integer Least Squares success rates512

Due to the complex geometry of the ILS pull-in region defined in Eq.(18),513

the multivariate integral in Eq.(22) can only be evaluated by using Monte Carlo514

simulation. In addition, several lower and upper bounds of the ILS success rate515

have been proposed. They will all be presented here.516

Bounds and approximations based on IB and ADOP517

Teunissen (1999a) proved that the ILS estimator is optimal, in the sense that it518

gives the maximum success rate. Furthermore, it was already mentioned that IB519

may perform close to optimal if applied to decorrelated ambiguities. Therefore the520

corresponding IB success rate can be used as a lower bound for the ILS success521

rate:522

Ps,ILS = P(ǎILS = a) ≥
n∏

i=1

(

2Φ(
1

2σẑi|I

) − 1

)

(32)523

The conditional standard deviations σẑi|I of the decorrelated ambiguities must be524

used (see Eq.(29)).525

Consequently, the invariant upper bound of the IB success rate from Eq.(30)526

may serve as an approximation of the ILS success rate.527
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Figure 11: ILS success rates: lower bound based on IB (green) and upper bound based on ADOP

(red) versus the actual ILS success rate for the models from Table 3.
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Figure 12: ILS success rates: ADOP-based approximation versus the actual ILS success rate for

the models from Table 3.

Furthermore, an upper bound for the ILS success rate based on the ADOP can528

be given as:529

Ps,ILS ≤ P

(

χ2(n, 0) ≤ cn

ADOP2

)

(33)530
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with531

cn =

(
n
2
Γ( n

2
)
) 2

n

π
532

This bound was introduced in Hassibi and Boyd (1998), while the proof was given533

in Teunissen (2000).534

Figure 11 shows how the IB success rate performs as a lower bound for ILS. In535

practice, the IB success rate is commonly used as the best known lower bound, and536

these results confirm that especially if the success rate is high, this is indeed the537

case. At the same time, it can be seen how ILS may still significantly outperform538

IB for lower success rates.539

Figure 11 shows that for these cases the ADOP-based upper bound often gives540

a too optimistic value compared to the actual success rate. As is shown later,541

however, the bounding performance improves for lower dimensions (cf. Figure542

17).543

A similar conclusion can be given for the ADOP-based approximation of the544

ILS success rate as shown in Figure 12. Only in some of these cases can it be545

used as a coarse approximation. The approximation improves in case of lower546

dimensions (cf. Figure 17).547

Bounds based on bounding the integration region548

In (Teunissen, 1998a) lower and upper bounds for the ILS success rate were549

obtained by bounding the integration region. Obviously, a lower bound is obtained550

if the integration region is chosen such that it is completely contained by the pull-551

in region, and an upper bound is obtained if the integration region is chosen such552

that it completely contains the pull-in region. The integration region can then be553

chosen such that the integral is easy-to-evaluate. In ibid the integration region for554
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Figure 13: Two examples of the ellipsoidal region (green) contained by the pull-in region P0,ILS

(different shape of pull-in regions is due to different VC-matrices Q ẑ ẑ).
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Figure 14: Integration region (red) containing P0,ILS and defined by the intersection of two banded
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the lower bound is chosen as an ellipsoidal region Ea ⊂ Pa,ILS. The probability555

P(â ∈ Ea) can be evaluated based on the χ2-distribution:556

Ps,ILS ≥ P(â ∈ Ea) = P

(

χ2(n, 0) ≤ 1

4
min

u∈Zn\{0}
‖u‖2Qââ

)

(34)557

The concept is illustrated in Figure 13 for two different pull-in regions, corre-558

sponding to different VC-matrices Q ẑ ẑ.559

The upper bound can thus be obtained by defining a region Ua ⊃ Pa,ILS. Given560

the definition of the ILS pull-in region Pa,ILS in Eq.(18), it follows that any finite561

intersection of p < n banded subsets defined by w of Eq.(19) will enclose Pa,ILS.562

The idea is illustrated in Figure 14 for the 2D case where Ua is chosen as the563
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intersection of two banded subsets. The probability P(â ∈ Ua), however, cannot564

be evaluated exactly either, but can be bounded from above to obtain (Teunissen,565

1998a):566

Ps,ILS ≤ P(â ∈ Ua) ≤
p∏

i=1

(

2Φ(
1

2σvi|I

) − 1

)

(35)567

with the conditional standard deviation σvi|I of vector v. These are equal to the568

square root of the diagonal elements of D from the LT DL-decomposition of Qvv569

with its elements given by:570

σviv j
=

uT
i Q−1

ââ
u j

‖ui‖Qââ
‖u j‖Qââ

, ui,u j ∈ Zn
571

where the ui, i = 1, . . . , p need to be linearly independent. How to evaluate this572

upper bound is described in (Teunissen, 1998a; Verhagen, 2005). Note that in the573

higher dimensional case many subsets are necessary to obtain a tight upper bound,574

and selection of the subset is rather complicated. In addition, it is computationally575

demanding, since the determination of the subset involves the evaluation of many576

integer candidates to be obtained with LAMBDA.577

Kondo (2003) presented a lower bound of the ILS success rate by replacing578

the conditional standard deviation σvi|I in Eq.(35) by the unconditional standard579

deviation σvi
. In Verhagen (2005) it was explained that this is only guaranteed to580

be a lower bound under certain conditions, which are difficult to fulfill.581

Figure 15 shows the lower and upper bound of the ILS success rate based on582

bounding the integration region. It can be seen that the upper bound performs583

reasonably well, whereas the lower bound is generally not tight at all - it will be584

close to zero unless the success rate is very close to 1. The bad performance can585

be explained based on the 2D example on the right-hand side of Figure 13: the586

ellipsoidal region may leave a large part of the ILS pull-in region uncovered. This587
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Figure 15: ILS success rates: lower and upper bounds based on bounding the integration region

versus the actual ILS success rate for the models from Table 3.

will be the case when there is a large variation in the variances σẑi ẑi
(making the588

ellipsoidal region elongated).589

Bounds based on bounding the VC-matrix590

It is also possible to obtain a lower and an upper bound by bounding the ac-591

tual VC-matrix from above and below by diagonal matrices, and then to compute592

the probability of correct integer estimation belonging to these diagonal matrices,593

(Teunissen, 1998a). The simplest way is to bound the actual VC-matrix with:594

λminIn ≤ Q ẑ ẑ ≤ λmaxIn (36)595

where λmin and λmax are the minimum and maximum eigenvalues of Q ẑ ẑ, and In is596

an identity matrix of order n. The ILS success rate bounds follow as:597

(

2Φ(
1

2
√
λmax

) − 1

)n

≤ Ps,ILS ≤
(

2Φ(
1

2
√
λmin

) − 1

)n

(37)598

Figure 16 shows the lower and upper bound of the ILS success rate based599

on bounding the VC-matrix. It can be seen that both bounds perform poorly.600
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Figure 16: ILS success rates: lower and upper bounds based on bounding the VC-matrix versus

the actual ILS success rate for the models from Table 3.

Similarly as with the ADOP-based approximation of the ILS success rate, this is601

especially true for large n due to the replacement of the n conditional standard602

deviations in Eq.(32) by the square root of the minimum or maximum eigenvalue,603

respectively.604

Examples with other models605

So far, the performance of the success rate bounds and approximations was606

analyzed based on the linearized DD GNSS model parameterized in terms of the607

baseline unknowns. However, it is also possible to use the observation equations608

(1) directly, and hence parameterize the DD model in terms of the satellite-receiver609

ranges. This model is referred to as the geometry-free model, and is used for610

example for integrity monitoring or as a first step in the data processing. Here, we611

will show an example based on a dual-frequency GNSS model for one satellite-612

receiver pair (i.e. one DD code and phase observation per frequency). The GPS613

L1 and L2 frequencies, see Table 1, have been considered. The undifferenced614
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Figure 17: ILS success rate bounds for 2-frequency geometry-free model with 2 ambiguities, f is

the scale factor applied to the VC-matrix (bottom panel shows same results, but only for smaller

f ).
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code and phase standard deviations were set to 15 cm and 1.5 mm, respectively.615

The float ambiguity VC-matrix (units are cycles2) obtained in this way is:616

Qââ =





1.2429 0.9683

0.9683 0.7547




(38)617

In addition, a scaling is applied to analyze the performance for different preci-618

sions:619

Qââ, f = f × Qââ (39)620

The ILS success rate approximations and bounds are shown in Figure 17 as a621

function of the scale factor f . The lower bound based on the exact IB success rate622

is very sharp. Interestingly, this also holds for the ADOP-based upper bound and623

approximation (the orange line is hardly visible, as it is plotted below the graph of624

the simulation-based success rate). In this case the bounds based on bounding the625

integration region are quite sharp if the success rate is high, but become less tight626

as the scale factor increases, and consequently the success rate decreases.627

In all results shown so far, the bounds based on bounding the VC-matrix Qââ628

are generally not tight at all. An example where also these bounds will work well629

is when all variances are equal to a certain value v and all the covariances equal to630

a value c, with v >> c:631

σ2
âiâi
= v, σâiâ j

= c, ∀i, j = 1, . . . , n; i , j (40)632

Figure 18 shows the bounds for an example with n = 2, v = 0.02 and c = 0.0005.633

Again the scaling according to Eq.(39) is applied.634

Which bounds or approximations to use?635

The results in this section show that the success rate bounds and approxima-636

tions differ in their performance. The simulation-based approximations of the IR637
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Figure 18: ILS success rate bounds based on bounding the (2 × 2) scaled VC-matrix with both

variances equal to 0.02, and covariance equal to 0.0005. The scale factor is equal to f .

and ILS success rates work well if enough samples are used. However, they may638

not be suitable for real-time applications as their computation time may be long.639

Computation time will also be an issue for real-time applications if the upper640

bound of the ILS success rate based on bounding the integration is considered.641

For design and research purposes, as well as for post-processing, computation642

time will not be an issue. All other bounds and approximations can be used in643

real-time.644

For the IR success rate, the lower bound was shown to perform well. For645

the ILS success rate, the lower bound based on the exact IB success rate, and646

the upper bound based on bounding the integration region generally perform very647

well for the GNSS models considered here. Furthermore, it was shown that the648

other bounds and approximations may work well for certain applications where649

the dimension is lower or the structure of the VC-matrix Qââ is different, see for650

example Figures 17 and 18.651
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6. Success rates with GPS, Galileo and Compass652

As an example on how the Ps-LAMBDA toolbox can be used to assess the (po-653

tential) performance of GNSS, a comparative study will be presented for different654

GNSSs. Such a study is useful to:655

• study the performance as obtained with the actual constellations for GPS656

and Compass;657

• investigate what the potential of Galileo is, both as a stand-alone system or658

combined with GPS. The full nominal Galileo constellation (as planned) is659

used.660

The current constellation of Galileo comprises only four satellites, and is therefore661

not considered in this study.662

Here, the ILS success rates are evaluated for 25 different times on 22-March-663

2012, 0:00 - 12:00 UTC, for a 35km baseline in Perth, Australia. The same as-664

sumptions for noise as in Table 3 are used for all signals. The standard deviation665

of the zenith ionosphere corrections is 15mm, zenith troposphere delays are esti-666

mated. The following signals, see Table 1, are considered:667

• GPS L1+L5;668

• Galileo L1+L5;669

• Compass B1+B2;670

• GPS+Galileo L1+L5/E5a.671
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Figure 19: Skyplots of GPS (left), Galileo (middle) and Compass (right) for Perth, Australia on

22-March-2012, 0:00 - 12:00 UTC. The plots show the azimuth [deg] and elevation [deg] of the

satellites; the dots correspond to the satellite positions at 6:00 UTC.
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Figure 20: Number of visible satellites in Perth, Australia on 22-March-2012, 0:00 - 12:00 UTC.
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Using almanac data for each of the GNSSs, satellite positions can be computed672

and the matrices A and B in model (3) can be constructed, as well as the corre-673

sponding VC-matrix Qyy. Figure 19 shows the skyplots for the three considered674

constellations. Note that during this time window three geostationary satellites675

and five Inclined Geo-Synchronous Orbit satellites of Compass were visible. The676

GPS and Galileo constellations comprise of 32 and 30 Medium Earth Orbiting677

satellites at inclinations of 55 and 56 degrees, respectively. This explains the dif-678

ferences in Figure 19. Figure 20 shows the number of visible satellites as function679

of time for each system.680

Figure 21 reports the following bounds and approximation of the ILS success681

rate: the lower bound based on IB, the upper bound based on bounding the in-682

tegration region, and the simulation-based approximation with 106 samples. The683

top and bottom panels show the single-epoch and four-epoch results, respectively.684

The single-epoch success rates are much lower (note the different scales in the685

bottom and top panels), and then the bounds are not as tight. However, when us-686

ing 4 epochs of observations the success rates will improve significantly and also687

the bounds become much sharper.688

These results can now be used to analyze and compare the performance of the689

different GNSSs.690

Satellite geometry and number of epochs691

In Section 4 an overview of the factors affecting the success rate was given.692

The results in Figure 21 clearly show some of these dependencies:693

• Receiver-satellite geometry: success rates are generally higher if more satel-694

lites are visible, compare e.g. the number of visible Galileo satellites as695
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function of time in Figure 20 with the 1-epoch success rates in Figure 21.696

However, even with the same number of visible satellites, the success rate697

may strongly fluctuate. See for example the results obtained for Compass:698

from 0:00 - 3:30 UTC six satellites are visible, but the 1-epoch success rate699

varies between 0.57 and 0.71. This is due to the dependence of the success700

rate on the receiver-satellite geometry, since all other factors affecting the701

success rate remain the same.702

• Number of observation epochs: more epochs will result in much improved703

success rates, as is clear by comparing the results from the top and bottom704

panels.705

The dependency on measurement noise is not explicitly analyzed here, but the706

effect will be similar as when changing the number of observation epochs.707

Choice of GNSS708

For this scenario, GPS and Galileo would give similar performance. At times709

where more Galileo satellites are visible, the success rates with Galileo tend to710

be higher, as expected. Combined GPS+Galileo brings a great potential, as it711

significantly outperforms the single GNSSs.712

The current Compass constellation provides on average 6 to 7 visible satellites713

at this location, which is generally lower than with the current GPS constellation.714

This causes the success rates to be lower on average. In addition, the receiver-715

satellite geometry contributes to the lower success rates as well, since for Compass716

the satellite visibility is restricted to a smaller portion of the sky, as can be seen in717

Figure 19; with GPS and Galileo the satellites from Eastern and Western directions718

at different elevations will contribute to a better geometry.719
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Figure 21: ILS success rates with GPS, Galileo, Compass or combined GPS+Galileo (from left to

right) for a 35km baseline in Perth, Australia on 22-March-2012, 0:00 - 12:00 UTC. Top: 1-epoch

model. Bottom: 4-epoch model.

Further analysis720

The example shown here could easily be extended to study for example the721

benefit of having more Compass satellites available in the future, the effect of722

using different signals (i.e. frequencies), or the effect of different baseline lengths.723
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7. Concluding remarks724

In this contribution the Matlab toolbox Ps-LAMBDA is presented, which al-725

lows a user to compute different bounds and approximations of the success rate726

of integer estimation. All bounds and approximations from Section 5 have been727

included in the software since it was shown that it will depend very much on the728

model at hand which bounds and approximations are sharpest. By default the tool729

will calculate the exact IB success rate for the decorrelated ambiguities, since for730

GNSS models this provides a sharp lower bound to the ILS success rate, and an731

upper bound for the IR success rate.732

We have focused here on GNSS models, but Ps-LAMBDA can be used for any733

integer estimation problem; the only input required is the variance-covariance ma-734

trix of the real-valued estimates of the integer parameters. As such, Ps-LAMBDA735

is a valuable tool for many applications that rely on the precise phase observa-736

tions from GNSS or other interferometric techniques. Firstly, Ps-LAMBDA can737

be used for research and design purposes as to decide on which system and sig-738

nals to use, to select the best time to take measurements, to know beforehand how739

many epochs of data will be required to ensure reliable ambiguity resolution, or740

to analyze whether successful ambiguity resolution for a given baseline length is741

feasible. Secondly, the tool can be used for deciding on acceptance of the integer742

ambiguity solution in real data processing.743

In the presence of unmodeled biases, such as multipath, the probability of744

correct integer estimation will be negatively affected. For studying the bias-745

robustness or -sensitivity of ambiguity resolution, it will be useful to analyze the746

impact of a given bias on the success rate. A future version of the Ps-LAMBDA747

will therefore include an option to evaluate the bias-affected success rates as well.748
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The Ps-LAMBDA toolbox is available upon request from the authors.749
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