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Abstract 
 

Many aspects of modern research and other professional activities in the geosciences 

require advanced knowledge about mathematical physics models and scientific 

computation methods and tools. In-depth meaningful learning of such knowledge skills 

is a difficult cognitive process which involves developing strong background 

knowledge of physics, mathematics and scientific computation appropriately 

contextualized in the geosciences themes. In this paper we describe an interactive 

engagement teaching approach that is based on Modellus, a freely available computer 

software system allowing (1) mathematical modelling ranging from explorative to 

expressive modelling, (2) the introduction of scientific computation without requiring 

the development of a working knowledge of programming and (3) the simultaneous 

manipulation and analysis of several different model representations, namely, tables, 

graphs and animations with interactive objects having properties defined in a visible and 

modifiable mathematical model. As examples of application, with insights for the 

development of other activities in a wide range of geosciences courses, we discuss a set 

of interactive computational modelling activities for introductory meteorology we have 

implemented in undergraduate university courses. 

 

Keywords: Modelling; computational geosciences; interactive engagement; meaningful 

learning; physics; meteorology  

 

1. Introduction 

Physics and mathematics are fundamental subjects for the development of 

knowledge in geosciences and related industrial or technological fields. Their modern 

epistemologies, like those of geosciences, involve interactive modelling processes that 

balance different elements from theory, scientific computation and experimentation. 

However, the majority of current introductory physics and mathematics courses for the 

diverse areas of science do not always reflect this range of epistemological 

characteristics. For example, introductory physics courses at university level, even when 

equipped with modern technologies, usually involve expositive theoretical lectures and 

recipe experimental laboratories and problem solving classes which brush through a 

very large number of topics. In general, these courses are considered too difficult and 
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disappointing by many students and have low exam success rates. Also, for many 

students the acquired knowledge of physics and mathematics is fragmented and 

possesses numerous conceptual and reasoning weaknesses which persist after they pass 

their examinations (Halloun and Hestenes, 1985a, 1985b; McDermott, 1991). 

Furthermore, student expectations about physics often deteriorate after completing these 

courses (Redish et al., 1998). Similar learning problems with fundamental earth 

sciences concepts have also been documented (see, e.g., Libarkin and Anderson, 2005; 

Libarkin et al., 2005).  

Many research efforts have been able to show in a wide range of contexts that 

learning processes can be effectively enhanced when students are embedded in 

atmospheres with interactive engagement activities that approximately recreate the 

cognitive involvement of scientists in modelling research activities (see, e.g., Blum et 

al., 2007; Handelsman et al., 2005; Klosko et al., 2000; Kortz et al., 2008; McConnell et 

al., 2006; McDermott and Redish, 1999; Meltzer and Thornton, 2012). Contrary to 

traditional instruction approaches which end up reducing the learning processes to a rote 

accumulation of facts or rules, these research-based approaches have shown to be able 

to engage students in interactive and exploratory learning processes that are better suited 

to promote knowledge performance and to resolve cognitive conflicts with prior 

knowledge associated to common sense beliefs and incorrect scientific ideas. 

In many areas of the geosciences, professional modelling activities are often based 

on knowledge about advanced mathematical physics models which are rich in 

computational elements. In-depth acquisition of such knowledge involves cognitive 

processes which require the progressive development of a strong background in physics, 

mathematics and computer programming. At an introductory level, for example in the 

first two year cycle of university education, when such background is still forming, it is 

thus of interest to design research based geosciences curricula which integrate sets of 

relatively simple computational modelling activities involving computer software 

environments. In this paper we show how to use the computational modelling software 

Modellus to accomplish this goal. The examples we describe have been developed in 

the context of teaching activities we have implemented in introductory meteorology 

courses for first cycle undergraduate university students. These examples are illustrative 

and insightful of functionalities and potentialities which can be used to develop other 

computational modelling activities to teach mathematical physics models in a wide 

range of topics in geosciences courses. The objective is to give students the opportunity 

to improve their knowledge of physics, mathematics and scientific computation and 

simultaneously focus on the learning of the relevant geosciences concepts and 

processes. 

 

2. Teaching approach 

An effective application of Modellus in a geosciences classroom requires a carefully 

designed teaching strategy. In our field activities the courses are divided into three 

complementary components: lectures where the theoretical foundations were first 

introduced, paper and pencil problem-solving lessons, and the computational modelling 

classes based on Modellus. The goal is to create an interactive engagement environment 

based on approaches already shown to be highly effective to teach introductory physics 

in other contexts (see in particular, e.g., Beichner et al., 2007; Crouch et.al., 2007; 

Mazur, 1997; McDermott et al., 1996; McDermott and Shaffer, 2002; Neves et al., 

2011). 

To build this kind of environment students are organized in group teams of two or 

three. During each computational modelling class, the teams work on a set of activities, 
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all of which are to be completed using only Modellus as computer modelling tool. 

These activities are designed to be interactive and exploratory learning experiences 

structured around specific topics and aim to set up an atmosphere for meaningful 

learning (see, e.g., Mintzes et al., 2005) where students approximately work as scientists 

do in modelling research activities. In class the student teams are motivated to analyse, 

discuss and solve the proposed activity problems on their own using the physical, 

mathematical and computational modelling guidelines provided by the class 

documentation and software resources. Note that these activities are appropriately 

articulated with the complementary theoretical and paper and pencil problem solving 

classes. In addition, the teams are not left working alone but continuously helped during 

the exploration of the activities to ensure adequate working rhythm with appropriate 

conceptual, analytical and computational understanding. Whenever necessary, global 

class discussions are conducted to keep the pace, to introduce new themes, to clarify any 

doubts on concepts, reasoning or calculations common to several teams and for students 

work presentations. 

The supporting class documentation and software resources for the courses we have 

implemented included Modellus package examples and a set of activity PDF 

documents. For most of the class activities these PDF documents contained complete 

step-by-step instructions to build the Modellus mathematical models, animations, 

graphs and tables. However, some activities, including those for assessment, involved 

computational modelling problems with instructions having various challenging levels 

of incompleteness. 

 

3. Getting started with Modellus 

Modellus latest version is programmed in Java and is able to run in all operating 

systems. It is freely available and the installation instructions as well as the user manual 

can be found at the Modellus website1. The installation package includes many sample 

models and others are regularly added to the website which, in addition, contains 

several other supporting documents. In the rest of this section we briefly describe the 

most important elements of the graphical user interface and discuss the main steps to 

create a model with Modellus.  

Upon starting the Modellus window interface (Fig. 1) displays at the top the Menu 

bar containing 9 ribbons labelled Home, Independent Variable, Model, Parameters, 

Initial Conditions, Graph, Table, Objects and Notes. The Mathematical Model, Graph, 

Table and Notes windows can be expanded, minimized or moved within the Workspace 

area. The Animation Control bar lies at the bottom and contains, for example, a green 

Play and Pause button, a red Reset button and blue buttons for Replay, One step back 

and One step forward. Fig. 1 also shows the Home definition panel which allows the 

user to change aspects of the global interface appearance, such as the interface language 

and the way numbers are displayed, or to introduce background grids or images in the 

Workspace. The model set up includes the following steps:  

 

(1)  Write the mathematical expressions in the Mathematical Model window. This 

window works just like a calculator and allows the user to program functions, 

differential equations and numerical iterations with standard mathematical 

notation. Modellus has a set of pre-defined functions whose syntax is displayed 

upon clicking on the Help button of the Model panel (Fig. 2). 

 

                                                 
1 See the website page at http://modellus.fct.unl.pt. 
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(2)  Define the independent variable along with its interval domain and running 

numerical step in the Independent Variable ribbon. Note that it is not possible to 

define simultaneously more than one independent variable. 

 

(3)  Specify the parameters and initial conditions either directly in the Mathematical 

Model window or in the Parameters and Initial Conditions ribbons. 

 

(4)  Choose the representation options (Graph, Table or Animation). We emphasise 

that these different representations can be displayed simultaneously alongside the 

mathematical model, a fundamental advantage of Modellus to help building a full 

understanding of the underlying principles of a model.  

 

 The Graph ribbon allows the user to define which variables are attributed to 

the graph horizontal and vertical axis, adjust the corresponding scales or select 

graph line properties like colour and thickness.   

 The Table ribbon allows up to 8 column variable entries and the introduction 

of table data bars.   

 The Animation representation is constructed with the set of animation objects 

available in the Objects ribbon. The object is first selected from the object’s 

list (for example a Particle or Pen object) and then placed in the Animation 

area with a left mouse click. Whenever an animation object is created a new 

ribbon labelled Animate appears in the top Menu bar displaying the object 

definitions panel. The advantage of animation objects is that they are 

interactive. A simple example is to assign a mathematical model parameter to 

the Level Indicator and vary its value by sliding the Level Indicator bar.  

 

(5)  Perform the computation of the mathematical model over the independent 

variable domain. This is done by clicking on the green Play button at the bottom 

of the Modellus window (Fig. 1). The graph or animation is created as the 

simulation runs, while the progress indicator icon moves along the Animation 

Control bar. It can be paused at any time for observation and solution control. 

Changing the parameters at any stage during the simulation allows interactive 

exploration of the effects of such changes and encourages playing what-if-

analysis.  

 

It is important to note that the interactive explorative activities can be accomplished 

in two different ways. The first is by defining simultaneous Cases (Fig. 2) which can be 

visualised at the same time. This kind of action can be done with any type of model 

depending on a set of parameters. The parameters phase space exploration is defined a 

priori using the case column options in the Parameters ribbon. The second kind of 

interactive explorative action involves changing parameters while the model is running. 

This action can only be done with iterative models generating numerical solutions that 

are functions of the independent variable because such numerical solutions are up-dated 

in real time as successive iterations are calculated. In the next section, while discussing 

geosciences applications, we illustrate some examples of interactive explorative 

activities. 

 

4. Examples of application 

To put in evidence the capabilities Modellus has for improved teaching of physics 

models in geosciences contexts we consider two examples: (1) the blackbody radiation 
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laws, to illustrate the use of graphical representations and numerical integration, and (2) 

the gradient wind velocity law, to illustrate the use of animations. 

 

4.1 Blackbody radiation laws 

The laws for blackbody radiation are a standard introductory physics topic with 

numerous applications ranging from the study of energy transfer in the Earth’s 

atmosphere to stellar astrophysics. In this computational modelling activity we propose 

to students an interactive exploration of Planck’s law for the radiation power density 

function leading to Wien and Stefan-Boltzmann laws. 

The starting step (Fig. 3) is to write in the Modellus Mathematical Model window the 

radiation power density function B (λ) which is given by 

𝐵(𝜆) =  
2πℎ𝑐2

𝜆5 (e
𝑐ℎ

𝑘𝜆𝑇 − 1)
, 

where λ is the radiation wavelength, h is Planck’s constant, c is the speed of light, k is 

the Boltzmann constant and T is the temperature. 

The parameters h, c, k and T are defined in the Parameters ribbon (Fig. 3). The 

radiation wavelength is chosen to be the independent variable and the next step is to 

define in the Independent Variable ribbon the adequate domain interval for λ. This 

provides an opportunity for students to verify the range of values relevant for 

atmospheric radiation, in particular, the visible (solar) and infrared (terrestrial) radiation 

intervals. In the same ribbon students can also define the numerical step Δλ associated 

with λ. The following step is to represent B (λ) in graphical form. In figure 3 we show a 

Graph window with 3 different curves corresponding to 3 different temperature cases, 

namely, T = 300 K, T = 400 K and T = 500 K. Figure 3 also shows the Table window 

where the values used to draw these curves can be explicitly displayed in table form. 

One of the advantages of using numerical solutions is to give introductory level 

students the opportunity to deduce Wien and Stefan-Boltzmann laws without having to 

perform the corresponding analytic derivations which are beyond the learning scope of 

most introductory courses. To deduce Wien displacement law students start by selecting 

one of the graphs representing B (λ) for a certain value of the temperature T, for 

example, T = 400 K (Fig. 4). Selecting Tangent Lines in the Graph ribbon and using 

the mouse to move it along the graph, it is possible to visualize the tangent at every 

point along the curve and read in the abscissa’s axis the value of λ for which this 

tangent is horizontal. At this point λmax = 7.26×10-6 m, the radiation power density 

attains its maximum value B (λmax) = 1.31×108 W/m3. Students can then compute the 

product λmaxT and verify that the numerical result is approximately equal to the 

theoretical value of Wien’s constant, c W = 2.898×10-3 mK. Students can interactively 

check that the fit between the computed and the theoretical Wien constant is improved 

when a smaller numerical step Δλ is used, and also that Wien’s law is similarly obtained 

using another B (λ) curve for a different value of T. 

Finally, to deduce Stefan-Boltzmann law students use numerical integration to show 

that the power radiated per unit area E satisfies 

 

𝐸 = ∫ 𝐵(𝜆)d𝜆
+∞

0

=  𝜎𝑇4, 

 

where σ = 5.67×10-8 W/(m2K4) is the Stefan-Boltzmann constant. The integration is 

programmed in the Mathematical Model window using the instruction (Fig. 3) 
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𝐸 = last(𝐸) + 𝐵 × ∆𝜆 , 
 

with the initial condition E = 0. This is an application of the trapezoidal rule, a simple 

and useful numerical method for students just starting an introduction to scientific 

computation. The result of the integration can be visualized creating a Variable object 

ESB (Fig. 3) or plotting the graph of E as a function of λ. In figure 3 we show this graph 

as it is created by a Pen in the Animation area. The curve represents the accumulated 

area below B (λ) as λ runs through its domain and students can verify that it approaches 

a constant value approximately equal to the product σT 4. 

 

4.2 Gradient wind velocity 

The dynamics of atmospheric air is determined applying Newton’s laws to each air 

particle. One of the simplest solutions of the equations of motion can be obtained when 

we consider steady state circular horizontal and frictionless atmospheric flow. In the 

northern hemisphere the balance between the pressure gradient force, the Coriolis force 

and the centrifugal force is given, respectively for low pressure and high pressure 

systems, by  

 

− 𝑓𝑣 +  
1

𝜌
𝑔𝑟𝑎𝑑𝑝 −

𝑣  2

𝑅
 = 0                                                                                         (1) 

 

and 

 

𝑓𝑣 − 
1

𝜌
 𝑔𝑟𝑎𝑑𝑝 −

𝑣  2

𝑅
 = 0 ,                                                                                           (2) 

 

where v is the speed of the air particle, R is the curvature of the air particle trajectory, ρ 
is the air density, gradp is the magnitude of the pressure gradient and  f  is the Coriolis 

parameter defined as f = 2ωT sin(φ) with ωT denoting the Earth’s rotation angular 

velocity and φ the latitude angle. At large scale synoptic low and high pressure systems, 

the natural solution of Eq. 1 is  

 

𝑣 =
𝑅

2
(−𝑓 + √𝑓2 +

4𝑔𝑟𝑎𝑑𝑝

𝑅𝜌
)                                                                                   (3) 

    

and the natural solution of Eq. 2 is 

 

𝑣 =  
𝑅

2
 ( 𝑓 –√ 𝑓2 – 

4 𝑔𝑟𝑎𝑑𝑝

𝑅𝜌
).                                                                                 (4) 

 

The solutions given in Eq. 3 and Eq. 4 describe the gradient wind approximation in 

which the air blows parallel to the isobars leaving the high pressures on the right (Buy-

Ballot law). Note that here we only consider the simplest situation where the square root 

argument is positive and the analytical solutions are real. Moreover, limit values of the 

centrifugal force that lead to other wind solutions such as the geostrophic or the 

cyclostrophic approximations (Willoughby, 1990) are not addressed here.  A more 
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complete treatment of the gradient wind equation solutions can be found in Knox and 

Ohmann (2006).    

In this computational modelling activity we propose to students the computation and 

visualization of the gradient wind velocity. The first action is to select the Objects 

ribbon and create an Image object. This opens a new Animate ribbon panel (Fig. 5) 

where the user is asked to choose an image file and to adjust the scales of the horizontal 

and vertical coordinates to fit the Image in the workspace area. In this example the 

image chosen as background represents an idealized mean sea-level pressure 

distribution chart containing two schematic low pressure and high pressure systems 

(Fig. 6). The image frame, in latitude and longitude degrees, provides the scale. 

The first exercise consists of placing an air particle object on the low pressure system 

and to build an animation of the particle´s trajectory as a function of time. The initial 

position of the particle determines the radius of curvature R (distance from the low 

pressure centre) and the local magnitude of the pressure gradient (pressure difference 

between two adjacent isobars divided by the distance between them), which must be 

estimated beforehand based on the pressure distribution chart. 

The trajectory of an air particle can be described using polar coordinates r = R and θ 
= ω t, where ω = v/R is the gradient wind angular velocity. Students must first write in 

the Mathematical Model window the expressions for the velocity and coordinates x and 

y (Fig. 6). The next step is to introduce in the Parameters ribbon the estimated values of 

the air density ρ, the Coriolis parameter f, the value of the local pressure gradient 

magnitude gradp and the radius of curvature R of the trajectory. 

Students can now place a Particle object at a distance R from the centre of the low 

pressure system. In the Particle Animate panel (Fig. 5) it suffices to assign x as the 

Particle horizontal coordinate and y as its vertical coordinate, and to adjust the scale. 

Note that in order to obtain a good simulation an appropriate time step must be defined 

in the Independent Variable ribbon, in this case Δt = 1000 s (Fig. 6). Running the 

model shows the air particle describing a counter clockwise circular motion around the 

low pressure centre leaving higher pressures on the right. Finally, the value of the 

gradient wind speed can be visualized in the workspace using a Variable object (v) 

placed at the bottom of the figure. 

The second stage of the activity involves the computation and visualization of the air 

particle velocity and of the acceleration vectors corresponding to the Coriolis force 

(a⃗ Cor), the pressure gradient force (a⃗ p) and the centrifugal force (a⃗ c). Students must 

then add to the mathematical model the x and y components of these vectors (for 

example apx and apy), which in the low pressure system are respectively given by  

 

𝑣 = 𝑣 𝑢𝜃⃗⃗ ⃗⃗  , 𝑎 𝐶𝑜𝑟 = 𝑓𝑣 𝑢𝑟⃗⃗⃗⃗  , 𝑎 𝑝 = − 
𝑔𝑟𝑎𝑑𝑝

𝜌
𝑢𝑟⃗⃗⃗⃗  , 𝑎 𝑐 =

𝑣  2

𝑅
𝑢𝑟⃗⃗⃗⃗  , 

 

where 𝑢𝑟⃗⃗⃗⃗ = (𝑥, 𝑦)/𝑅 and 𝑢𝜃⃗⃗ ⃗⃗ = (−𝑦, 𝑥)/𝑅. Students can now create Vector objects to 

represent the velocity and the accelerations (Fig. 6). This is done in the Vector Animate 

ribbon (Fig. 5) assigning the x components to the Vectors horizontal coordinates and the 

y components to their vertical coordinates, and adjusting each one of the Vector scales 

for appropriate visualization. Next, students should attach the Vectors to the Particle 

(Figs. 5 and 6). Re-running the model, students can verify that the gradient wind 

velocity is always tangent to the circular trajectory and the accelerations are 

perpendicular to the gradient wind velocity, the pressure gradient acceleration pointing 

inward towards the low pressure centre and the Coriolis and the centrifugal 

accelerations pointing outward to the high pressures. To check the acceleration range of 
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magnitudes students can define these magnitudes in the Mathematical Model window 

and visualize them in the Animation using Variable objects (Fig. 6).  

Following the same steps students can easily construct a similar mathematical model 

and animation for the clockwise circular motion of an air particle around the high 

pressure system. An example of the class support documentation given to students to 

complete this exercise is given in the supplementary material. The support 

documentation is given in the form of an editable PDF file. It contains two parts: the 

first part consists of step-by-step instructions on how to implement the low pressure 

gradient wind model; the second part is an example of an incomplete activity where 

students are asked to change the mathematical equations and display the high pressure 

gradient wind animation. The solution of the incomplete activity is shown in Figure 6 

where we can see an air particle and the corresponding acceleration vectors moving 

around the high pressure. The analysis of the force-balance in both the low and high 

pressure systems is very instructive for students, since they verify themselves that the 

pressure gradient force and the Coriolis force change directions but the centrifugal force 

is always directed outward the curve. They can also check interactively that the wind 

velocity in the high pressure system is smaller due to the smaller pressure gradient 

force, that is, due to the larger isobar spacing.  

 

5. Discussion and Conclusions 

Over the years several computer modelling systems, for example, the Dynamical 

Modelling System (Ogborn and Wong, 1984), Stella (Richmond, 2004), Coach (Heck et 

al., 2009), EJS (Christian and Esquembre, 2007) and Modellus (Teodoro and Neves, 

2011), have been developed to introduce scientific computation without requiring the 

development of a working knowledge of programming. This is a problem which 

inevitably arises with professional programming languages such as Fortran (Chapman, 

2007), Pascal (Redish and Wilson, 1993), Java (Gould et al., 2007) or Python (Chabay 

and Sherwood, 2008), professional scientific computation software such as 

Mathematica or Matlab, or even with educational programming languages like Logo 

(Papert, 1980) or Boxer (diSessa, 2000).    

Among such computer modelling systems, Modellus has been proving particularly 

useful to teach introductory physics and mathematics (see, e.g., Neves et al., 2010, 

2011; Neves and Teodoro, 2010; Teodoro and Neves, 2011) because it allows 

explorative to expressive modelling (Bliss and Ogborn, 1989; Schwartz, 2007) 

involving the simultaneous manipulation and analysis of several different model 

representations, namely, tables, graphs and animations with interactive objects whose 

properties are defined in a visible and modifiable mathematical physics model. Using 

Modellus modelling environment, students can thus create and explore models and 

animations with a computer, and not just act as simple browsers of computer 

simulations. 

In this paper we have discussed how Modellus can be used to develop computational 

modelling activities within an interactive engagement teaching approach which 

introduce mathematical physics models of interest in geosciences contexts to students 

with only basic secondary level knowledge of physics and mathematics and no prior 

knowledge of scientific computation. As illustrative examples, with insights on 

Modellus functionalities and potentialities for computer-assisted teaching and learning, 

we have described activities about the blackbody radiation laws and the gradient wind 

dynamics. These, and other computational modelling activities, have been field tested in 

introductory meteorology courses we have implemented for first cycle undergraduate 

university students. As evidenced by the content analysis of student coursework and 
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evaluation tests, the computational modelling activities contributed successfully to 

identify and resolve many of the student difficulties in key physics, scientific 

computation and meteorology concepts and processes. For example, the easy-to-draw 

Planck radiation curves helped students to better associate temperature with radiation 

emission and the gradient wind circular motion animation with wind particle 

acceleration vectors helped them make a vivid image of wind circulation. And this was 

done by the students themselves which constituted an extra motivation for learning.     

To evaluate student’s opinions about Modellus and the interactive computational 

modelling activities we used as instrument the Likert scale questionnaire shown in Fig. 

7. The questionnaires were administered by us in class to all enrolled students at the end 

of the courses. Since 2009, in each academic year the introductory meteorology courses 

gathered an average of 50 students, all of which answered the questionnaire. As showed 

by the average results of Likert scale questionnaires (Fig. 7), the majority of students 

reacted very positively to the computational modelling activities with Modellus. The 

graph bars in Fig.7 show the distribution over the Likert scale of the average student 

opinion per questionnaire assertion. The data was taken from the 2011 edition of the 

course which involved 53 students. These results show that students considered the 

activities useful for the learning processes in meteorology and for their professional 

training as a whole. In addition, Modellus was considered helpful and user friendly. 

Finally, though less strongly, students reacted favourably to work in collaborative 

groups and using Modellus in other geosciences subjects with appropriate 

computational modelling activities.  
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Figures with Captions 

 

 
 

Figure 1: Modellus window interface showing (1) Home ribbon which can be changed 

selecting a different ribbon label, (2) Mathematical Model window, (3) Animation area, 

(4) Graph window, (5) Table window, (6) Notes window and (7) Animation Control 

bar.  
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Figure 2: Modellus Help page with instructions for building 4 different mathematical 

models, lists of pre-defined function and keyboard shortcuts, and an example involving 

different cases. 

 

  
 

Figure 3: Modellus blackbody radiation model showing Mathematical Model window 

with Planck’s radiation power density function B (λ) and its numerical integration over 

wavelength λ, denoted as lambda, leading to Stefan-Boltzmann law for E, power 

radiated per unit area. Also shown are Graph window with 3 curves for 3 different 

temperatures, T = 500 K (orange), T = 400 K (green) and T = 300 K (cyan), Table 

window and Animation with Pen showing graph of E as function of λ and Variable ESB 

displaying Stefan-Boltzmann limit σT 4 for T = 500 K. 
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Figure 4: Modellus graphical deduction of Wien displacement law using a tangent line 

to T = 400 K Planck density curve. To move tangent line along the curve select and 

hold down left mouse button or drag Independent Variable button in Animation Control 

bar. To select maximum in curve increase number displaying precision selecting at least 

5 decimal places in Home ribbon. Then use One step back or One step forward buttons 

and check values in Table window.  

 

 
 

Figure 5: Modellus Animate panels for Image, Particle and Velocity Vector Animation 

Objects. 
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Figure 6:  Modellus gradient wind velocity model showing Mathematical Model 

window with low pressure natural velocity solution, air particle position coordinates and 

Coriolis, pressure gradient and centrifugal accelerations. An idealized mean sea-level 

pressure distribution chart Image is used as background for air Particle counter 

clockwise circular motion around low pressure centre. Attached to Particle are gradient 

wind velocity (purple), Coriolis acceleration (blue), pressure gradient acceleration 

(green) and centrifugal acceleration (red) Vectors. Their magnitudes are shown below 

the Image chart in Variable objects. Model parameters are R = 400 km, ρ = 1.29 m-3, 

gradp = 0.001 Pa and, for latitude φ = 50 degrees North, f = 1.031E-4 s-1.  An air 

particle revolving around the high pressure is also shown as the solution of an 

incomplete activity given to students. The all activity is included in the PDF 

supplementary file given as an example of the class support documentation. 

 

 
 

Figure 7: Introductory meteorology student opinion questionnaire and results. For each 

questionnaire assertion Likert scale starts at -3 and ends at +3, -3 stating complete 

disagreement, +3 complete agreement and 0 no preferred opinion. Bar graph shows 

distribution over Likert scale of average student opinion per questionnaire assertion. 


