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Abstract

Depressions (or pits) are low areas within a digital elevation model that are surrounded by higher terrain,
with no outlet to lower areas. Filling them so they are level, as fluid would fill them if the terrain were
impermeable, is often necessary in preprocessing DEMs. The depression-filling algorithm presented here—
called Priority-Flood—unifies and improves on the work of a number of previous authors who have published
similar algorithms. The algorithm operates by flooding DEMs inwards from their edges using a priority queue
to determine the next cell to be flooded. The resultant DEM has no depressions or digital dams: every
cell is guaranteed to drain. The algorithm is optimal for both integer and floating-point data, working in
O(n) and O(n log2 n) time, respectively. It is shown that by using a plain queue to fill depressions once they
have been found, an O(m log2 m) time-complexity can be achieved, where m does not exceed the number
of cells n. This is the lowest time complexity of any known floating-point depression-filling algorithm. In
testing, this improved variation of the algorithm performed up to 37% faster than the original. Additionally,
a parallel version of an older, but widely-used depression-filling algorithm required six parallel processors to
achieve a run-time on par with what the newer algorithm’s improved variation took on a single processor.
The Priority-Flood Algorithm is simple to understand and implement: the included pseudocode is only 20
lines and the included C++ reference implementation is under a hundred lines. The algorithm can work on
irregular meshes as well as 4-, 6-, 8-, and n-connected grids. It can also be adapted to label watersheds and
determine flow directions through either incremental elevation changes or depression carving. In the case of
incremental elevation changes, the algorithm includes safety checks not present in prior works.

Keywords: pit filling; terrain analysis; hydrology; drainage network; modeling; GIS

1. Background

A digital elevation model (DEM) is a representation of terrain elevations above some common base level,
usually stored as a rectangular array of floating-point or integer values. DEMs may be used to estimate a
region’s hydrologic and geomorphic properties, including soil moisture, terrain stability, erosive potential,
rainfall retention, and stream power. Many algorithms for extracting these properties require (1) that every
cell within a DEM must have a defined flow direction and (2) that by following flow directions from one cell
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to another, it is always possible to reach the edge of the DEM. These requirements are confounded by the
presence of depressions and flats within the DEM.

Depressions (also known as pits) are inwardly-draining regions of the DEM which have no outlet. Some-
times representative of natural terrain, they may also result from technical issues in the DEM’s collec-
tion and processing, such as from biased terrain reflectance or conversions from floating-point to integer
precision.[Nardi et al., 2008] A depression may be resolved either by breaching its wall (e.g. Martz and Garbrecht
[1998]), thus allowing it to drain to a nearby area of lower elevation, or by filling it.

DEMs have increased in resolution from thirty-plus meters in the recent past to the sub-meter resolutions
becoming available today. Increasing resolution has led to increased data sizes: current data sets are
on the order of gigabytes and increasing, with billions of data points. While computer processing and
memory performance have increased appreciably during this time, legacy equipment and algorithms suited
to manipulating smaller DEMs with coarser resolutions make processing these improved data sources costly,
if not impossible. Therefore, improved algorithms are needed.

This paper presents an algorithm to resolve depressions by unifying and extending the work of several
previous authors. Also presented are variants of this algorithm which can label watersheds and determine
flow directions.

The general definition of the depression-filling problem was stated by Planchon and Darboux [2002].
Given a DEM Z, its depression-filled counterpart W is defined by the following criteria:

1. Each cell of W is greater than or equal to its corresponding cell in Z.

2. For each cell c of W , there is a path that leads from c to the boundary by moving downwards by an
amount of at least ǫ between any two cells on the path, where ǫ may be zero. Such a path is referred
to as an ǫ-descending path.

3. W is the lowest surface allowed by properties (1) and (2).

If ǫ = 0, then the third criterion is easy to achieve; however, if ǫ 6= 0, then special precautions must be
taken, as described below.

The algorithm presented here is one of only two time-efficient algorithms for solving the depression-filling
problem. Special cases of this algorithm have been described many times. These cases, their relations, and
alternative algorithms are detailed below.

2. Alternative Algorithms

Arge et al. [2003] describes a specialized O(n log2 n) procedure to perform watershed labeling, determine
flow directions, and calculate flow accumulation on massive grids in situations where I/O must be minimized.
Although parts of this procedure share sufficient similarities with Priority-Flood to be considered related,
the combinations of algorithms used and the way in which they are specialized place it outside the scope of
this paper. It is expected that the algorithm by Arge will run slower than that described here due to the
greater overhead involved in explicit data management; however, this efficiency of memory may allow the
algorithm by Arge to run better in situations where memory is limited.

There is also a widely-used algorithm for 8-connected grids by Planchon and Darboux [2002]. The
algorithm works by flooding the entire DEM and then draining the edge cells. The entirety of the DEM is
then repeatedly scanned to find the border of the drained and undrained regions; undrained cells adjacent
to this border are then drained and increased in elevation by a small amount. The algorithm terminates
when all cells have been drained.

Planchon and Darboux [2002] present two different implementations of their algorithm. The first is
simple to implement, but inefficient, running in O(n1.5) time. The second implementation runs in O(n1.2)
time during testing, but is much more complex, using 48 constants to define an iterative scan from multiple
directions, a recursive upstream search with stack limiting to prevent overflows, and a quadruply-nested
loop. The algorithm’s design permits it to run in fixed memory. Unfortunately, the DEMs which require
this are typically so large as to make running the Planchon–Darboux algorithm onerous.
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Year Authors Operation Data Type Connectedness Time Complexity

1989 C. Ehlschlaeger Flow Directions,
Accumulation

Integer/Float* 8, Any O(n2)*

1991 Vincent & Soille Watershed Labels Integer Gridded, n-dim O(n)
1992 S. Beucher & F. Meyer Watershed Labels Integer 4, 6, 8 O(n)*
1994 F. Meyer Watershed Labels Integer* 8* O(n)*
1994 Soille & Gratin Filling Integer 4, 6, 8 O(n)*
2006 Wang & H. Liu Filling Floating* 8* O(n log2 n)

2009 Y.H. Liu, Zhang, & Xu Filling Floating* 8 O(n log2 k)†

2010 Metz, Mitasova, & Harmon Flow Directions Floating* 8* O(n log2 n)*
2011 Metz, Mitasova, & Harmon Flow Directions Floating* “Gridded” O(n log2 n)*
2011 N. Beucher & S. Beucher Watershed Labels Integer 4, 6, 8 O(n)*

2012 Magalhães et. al Filling, Flow Directions,
Accumulation

Integer 8* O(n)

2012 Gomes et. al Flow Directions, Accu-
mulation

Integer 8* O(n)

Table 1: Summary of previous Priority-Flood variants. The table lists claims the authors have made. The (*) symbol indicates
that the authors have not made a direct claim, so one has been inferred from their design choices. All the floating-point variants will
also work on integer data, though the specified time complexities are then suboptimal. †Liu et al. [2009] claim a O(8n log2 n) time
complexity, but implement an O(n log2 k) algorithm.

Fortunately, a fast, simple, and versatile alternative algorithm is available. Here, it is referred to as the
Priority-Flood Algorithm. Later, it will be shown that this alternative algorithm runs significantly faster
than that by Planchon and Darboux.

3. The Priority-Flood Algorithm

3.1. History

In its most general form, the Priority-Flood Algorithm works by inserting the edge cells of a DEM into a
priority-queue where they are ordered by increasing elevation. The cell with the lowest elevation is popped
from the queue and manipulated. Following this, each neighbor which has not already been considered
by the algorithm is manipulated and then added to the priority queue. The algorithm continues until the
priority queue is empty.

The Priority-Flood Algorithm may be applied to either integer or floating-point DEMs and is optimal
for both; the general algorithm is also indifferent as to the underlying connectedness of the DEM and works
equally well on 4-, 6-, or 8-connected grids, as well as meshes. As detailed below, special cases of the Priority-
Flood Algorithm have been independently described and improved by many authors. Table 1 summarizes
the work of these authors. The following is a historic overview of the Priority-Flood Algorithm followed
by a description of the algorithm, an important improvement, and details of some of the algorithm’s many
variants.

Ehlschlaeger [1989] was the first to suggest the Priority-Flood Algorithm, noting that

The most accurate method for determining watershed boundaries involves placing a person fa-
miliar with the nuances of contour maps at a drafting table to manually interpret drainage
basins.

He goes on to disparage the use of local 3 x 3 neighbourhoods in determining flow directions, pointing out
that a manual interpreter would instead utilize a high-level view of the general flow of water and the location
of drainage basins. His variation of the algorithm uses insertion sort and so has a sub-optimal average time
complexity of O(n2) or more. Of all the authors mentioned here, Ehlschlaeger is the only one to mention
modeling algorithms on human behavior.

Vincent and Soille [1991] describe an O(n) algorithm for labeling watersheds in integer digital images by
sorting all the pixels into an ascending order. The image is then flooded upwards from its lowest pixels. A
distance function is used to determine which cells form the boundaries between two watersheds.

Beucher and Meyer [1992] present a similar O(n) algorithm. Each local minima is assigned a unique
label. The terrain is then flooded upwards from its lowest points using a hierarchical queue, with the
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result being a DEM wherein all cells which ultimately drain to a given minima bear that minima’s la-
bel. Beucher and Meyer provide a thorough discussion of hierarchical queues work and examples of their
algorithm’s application to image analysis.

Meyer [1994] gives an overview of many existing methods to derive watershed boundaries. He identifies
plateaus and regions of equal elevation as being potentially problematic, but solves the problem by using
first-in, first-out (FIFO) queues. This is analogous to the total order priority queues discussed later in this
paper.

Soille and Gratin [1994] were the first authors to apply Priority-Flood specifically to depression filling.
Their O(n) algorithm is described using the mathematics of morphological filters for use on 4-, 6-, or 8-
connected grids with integer values. Their variation floods the DEM inwards from the edges and does not
consider local minima.

Wang and Liu [2006] describe the first floating-point variant of the Priority-Flood Algorithm, iden-
tifying the time complexity in such a situation as being O(n log2 n). They present a lucid comparison
of their algorithm versus older, less-efficient depression-filling algorithms by Jenson and Domingue [1988],
O’Callaghan and Mark [1984], and Marks et al. [1984].

Liu, Zhang, and Xu [2009] describe a variant of the algorithm byWang and Liu [2006]; whereasWang and Liu
[2006] use a cell’s presence in the priority queue as an indication of whether it should be processed, Liu et al.
[2009] recognize that for an 8-connected grid a two-dimensional boolean array offers a clearer correlation
between the pseudocode and an efficient implementation.

Liu et al. claim a time complexity of O(8n log2 n), but this is too high. Their implementation uses a
sorted dictionary (i.e. a map) which bins all cells of equal elevation. As a result, their algorithm actually
has a time of O(n log2 k), where k is the number of unique elevation levels, which may be less than n. As a
result of this implementation detail and the small sizes of their test DEMs, Liu et al. incorrectly conclude
that Priority-Flood is slower than the Planchon–Darboux Algorithm.

Metz et al. [2010] and Metz et al. [2011] describe a variant of the algorithm using a totally-ordered
priority queue (this will be explained below) to determine flow directions in watersheds. In the resulting
DEM, every cell has a defined D8 flow direction which is guaranteed to drain to the edge of the DEM.
Metz et al. evaluate their method against a “traditional sink filling method” and an impact reduction
approach by Lindsay and Creed [2005]; they find that their method yields flow accumulation streams which
are closer to GPS field control points than the traditional method for all tested DEMs at all tested resolutions.
Similarly, their algorithm out-performed the impact reduction approach in most cases. A detailed account
of the method by Metz et al. is given below.

Beucher and Beucher [2011] describe an algorithm similar to that of Beucher and Meyer [1992], but
extend it to finding watershed boundaries and image reconstructions. The authors point out that for 32-bit
integers a hierarchical queue may have to allocate impossibly large numbers of child queues. To counter this,
they present space-efficient implementations of hierarchical queues and methods of overcoming this kind of
over-allocation.

Magalhães et al. [2012] describe a Priority-Flood variant using hierarchical queues to achieve O(n) pro-
cessing on an integer data set, and note that some floating-point data can be discretized. The algorithm they
present is essentially the same as that described by Soille and Gratin [1994], but flow directions are gener-
ated in the manner of Metz et al. [2010] and Metz et al. [2011]. Although using integer data limits the scope
of their method, they claim it is a significant improvement over the floating-point algorithms presented by
Wang and Liu [2006] and Liu et al. [2009]. Gomes et al. [2012] extends the work of Magalhães et al. [2012]
to increase the efficiency of the Priority-Flood Algorithm in situations where memory access must be limited.

3.2. The Algorithm

Generalizing the work of these authors yields the Priority-Flood Algorithm as described by Alg. 1 and
Fig. 1. To initialize the algorithm, all of the edge cells of the DEM (e.g. cells A and I in Fig. 1a) are pushed
(i.e. added) onto a priority queue. The priority queue is ordered with cells of lower elevation having greater
priority, so that the cell with the lowest elevation in the queue is always the cell popped (i.e. removed from
the queue for processing) first.
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Final depression-filled DEMFigure 1: A conceptual cross-section of a DEM demonstrating
the Priority-Flood Algorithm. The algorithm is initialized in (a),
with all the edge cells having been pushed into a priority queue
from which the cell with the lowest elevation is popped. In (b)–
(e), cells are popped from the priority queue, marked as processed
(dark lines on the landscape), and their neighbors pushed. In (f),
cell C is the lowest cell which is guaranteed to drain, therefore its
neighbor D must be in a depression. To resolve the depression,
cell D is raised to the elevation of C before being pushed into
the priority queue. D’s old elevation is no longer needed, but is shown with a dotted line for clarity. In (g), E must also, by the same
logic, be in a depression; therefore, it is raised to the new elevation of D. This continues through (i). In (j), the final cells are popped,
though there is nothing to do. (k) shows the final elevations of the cells. Since the cells are raised as the algorithm progresses, no extra
work is necessary between (j) and (k); the algorithm is complete when the priority queue is empty.
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Algorithm 1 Priority-Flood: A generalization of the hierarchical-queue and priority-queue methods described by previous
authors. The algorithm is described using pictures in Fig. 1. Upon entry, (1) DEM contains the elevations of every cell
or the value NoData for cells not part of the DEM. (2) The value NoData is less than the elevation of any cell. At exit,
(1) DEM contains the elevations of every cell or the value NoData for cells not part of the DEM. (2) The elevations of DEM

are such that there are no digital dams and no undrainable depressions in the landscape, though there may be flats.

Require: DEM

1: Let Open be a priority queue
2: Let Closed have the same dimensions as DEM

3: Let Closed be initialized to false

4: for all c on the edges of DEM do

5: Push c onto Open with priority DEM (c)
6: Closed(c)← true

7: while Open is not empty do

8: c← pop(Open)
9: for all neighbors n of c do

10: if Closed(n) then repeat loop

11: DEM(n)← max(DEM(n),DEM(c))
12: Closed(n)← true

13: Push n onto Open with priority DEM (n)

Furthermore, all of the edge cells are marked as resolved in a special boolean array. By definition, edge
cells have an ǫ-descending path to the DEM’s edge and they are already at the correct elevation, so the
depression-filling criteria are preserved.

DEMs—especially gridded DEMs—may be used to represent irregularly-shaped patches of landscape.
These patches are akin to islands of data floating in a sea of cells which must be ignored. These ignorable
cells are denoted with a special NoData value which is assumed to be some extremely negative number.
Because this makes the NoData cells lower than any data cell, they have no impact on terrain flooding and
can be treated as normal data cells.

Next, cells are popped off of the priority queue. Each cell c which is popped is guaranteed to be the
lowest cell with an established drainage path to the edge of the DEM; therefore, if c is at the brink of a
depression (such as cell C is in Fig. 1e), then there can be no lower cell which will drain the depression.

As each cell c is popped from the priority queue, its neighbors are added to the priority queue, provided
they have not already been resolved. If an unresolved neighbor n is at a lower elevation than c (such as
cells D,E, F in Fig. 1), it is raised to the elevation of c before it is placed on the queue. In this way,
an ǫ-descending path is constructed for each cell, leading to the fulfillment of the second depression-filling
criterion. Because n is always brought up only to the elevation of the lowest cell which still drains to the
edge of the DEM, the third depression-filling criterion is fulfilled.

The algorithm terminates when the priority queue is empty (Fig. 1k).
Since all cells are given elevations greater or equal to their original values in the DEM, the first property

of the depression-filling criteria is fulfilled. Because all three criteria are fulfilled at each step, it follows that
the result of the Priority-Flood Algorithm is a solution to the depression-filling problem.

Because the algorithm does not rely on the structure or connectedness of the underlying DEM, it can be
applied to 4-, 6-, 8-, or, indeed, n-connected grids. The underlying grid need not even be rectangular—for
instance, it may be a mesh based on a Delaunay triangulation.

3.3. An Important Improvement

In the Priority-Flood Algorithm, cells are only raised when they are neighbors of the lowest cell which
drains to the edge of the DEM. However, if a cell c is raised, then it must have the same priority as the cell
which raised it (this cell having had the highest priority in the priority queue); therefore, there is no need to
push c onto the priority queue and incur the associated cost. Rather, c can be pushed onto a plain (first-in,
first-out) queue at cost O(1).
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Final depression-filled DEMFigure 2: A conceptual cross-section of a DEM demonstrating
the improved Priority-Flood Algorithm. Though similar to the
Priority-Flood Algorithm, its behavior differs when a depression
is encountered. Cells which are part of a depression are raised
to the elevation of the depression’s lowest outlet (guaranteed be-
cause of the priority queue). Cells within the depression will be
at the same elevation as the outlet cell, so they need not be placed
on the priority queue since they would immediately be popped
off again. Rather, they are placed in a plain queue. The algo-
rithm is complete when both queues are empty. For integer data,
this eliminates overhead; for floating-point data, this eliminates
O(log2 n) work per cell in the depression.

This improvement is described by Alg. 2 and Fig. 2. As before, the algorithm is initialized by pushing
all the edge cells of the DEM onto a priority queue (Fig. 2a). Cells are popped from this queue and their
neighbors pushed onto it (Fig. 2b–e). However, if a neighbor is lower than the cell which is pushing it, the
neighbor is raised to the elevation of that cell and added to a plain queue (Fig. 2f–i); if there are cells in
the plain queue, they are always popped before cells in the priority queue. The algorithm terminates when
there are no cells left in either queue (Fig. 2k).
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Algorithm 2 Improved Priority-Flood: This improvement to the Priority-Flood uses a plain queue to speed-up the
filling of depressions, once they are found. Upon entry, (1) DEM contains the elevations of every cell or the value NoData

for cells not part of the DEM. (2) The value NoData is less than the elevation of any cell. At exit, (1) DEM contains the
elevations of every cell or the value NoData for cells not part of the DEM. (2) The elevations of DEM are such that there are
no digital dams and no undrainable depressions in the landscape, though there may be flats.

Require: DEM

1: Let Open be a priority queue
2: Let Pit be a plain queue
3: Let Closed have the same dimensions as DEM

4: Let Closed be initialized to false

5: for all c on the edges of DEM do

6: Push c onto Open with priority DEM (c)
7: Closed(c)← true

8: while either Open or Pit is not empty do

9: if Pit is not empty then

10: c← pop(Pit)
11: else

12: c← pop(Open)

13: for all neighbors n of c do

14: if Closed(n) then repeat loop

15: Closed(n)← true

16: if DEM(n) ≤ DEM(c) then
17: DEM(n)← DEM(c)
18: Push n onto Pit

19: else

20: Push n onto Open with priority DEM (n)

4. Ordering

A subtlety of priority queues concerns how elements of equal priority are treated. If elements of equal
priority retain their order of insertion, then the priority queue may be said to be “stable” or to have a “total
order”. If elements of equal priority do not retain their order of insertion, then the priority queue has a
“strict weak ordering”: elements of equal priority are incomparable and may therefore be arranged in any
order.

Fortunately, for depression filling with ǫ = 0, it does not matter whether the priority queue has a total
order or a strict weak order, as both will produce the same results. However, if ǫ 6= 0, or if Priority-Flood
is used for watershed labeling or to determine flow directions directly, then the ordering is important and a
total order is the best choice.

A total order produces a predictable, reproducible result, while the results of using an underlying algo-
rithm with a strict weak order may only, in general, be reproduced by using that same algorithm. If ǫ 6= 0,
then a total ordering guarantees the third depression-filling criterion; furthermore, a total order guarantees
that each cell has a least-cost (i.e. shortest) path to its flooding source. This means that depressions are
able to drain from multiple outlets, provided the outlets are of equal elevation. If the priority queue uses a
strict weak ordering then it cannot make these guarantees.

In situations where a total order is necessary—e.g. ǫ 6= 0, watershed labeling, determining flow directions—
it is possible to make an algorithm with strict weak ordering produce a total order. To do so, each cell is
associated with two priorities (i.e. keys). The first is the cell’s elevation, as before; the second is an integer
which begins at zero and is incremented every time a cell is added to the priority queue. In the instance
that two cells have equal elevation, the secondary priorities are used to determine the ordering. This assures
that all cells are comparable and that cells of equal elevation emerge from the priority queue in the order
they were inserted.

8



Priority-Flood

Data Structure Insert DecreaseKey DeleteMin

Hierarchical Queue† O(1) — O(1)

Calendar Queue‡ O(1) — O(1)
1-Level Bucket O(1) O(1) O(C)

2-Level Bucket O(1) O(1) O(
√
C)

Radix Heap O(1)∗ O(1)∗ O(lgC)∗

Emde Boas O(lg lgN) O(lg lgN) O(lg lgN)

Binary Search Tree O(lgn) O(lgn) O(lg n)
Binomial Queue O(lgn) O(lgn) O(lg n)
Heap 2 lgn 2 lgn 2 lgn

Weak Heap lgn lgn lgn

Pairing Heap O(1) O(2
√

lg lgn) O(lg n)∗

Fibonacci Heap O(1) O(1)∗ O(lg n)∗

Relaxed Weak Queue O(1) O(1) O(lg n)

Table 2: Time complexities of priority queue operations for various underlying data structures—there are many other possibilities
which are not listed. The top section of the table assumes that all priorities are integers. In the table, C is the maximal edge weight,
N the maximum key, and n the number of nodes stored. Values marked with (∗) denote amortized costs. The function ‘lg’ stands for

‘log2’.
†As described by Beucher and Meyer [1992]. ‡As described by Brown [1988], among other authors. All other entries are drawn

from Edelkamp and Schrödl [2011].

5. Analysis

The essence of the Priority-Flood Algorithm is that a priority queue is initialized with some number
of seed cells. The DEM is then progressively flooded by repeatedly pushing the neighbors of the highest
priority cell into the priority queue. The improvemed Priority-Flood uses, in essence, a specialized priority
queue.

As Table 2 shows, there are many possible ways to manage a priority queue—and the list here is by no
means exhaustive, Knuth [1998] discusses many others in addition to presenting detailed analyses of some of
the underlying priority queue algorithms. Yet, according to Edelkamp and Schrödl [2011], such management
requires at most three functions. Insert pushes an element onto a priority queue, DecreaseKey deletes an
arbitrary element and reinserts it into a more appropriate place, and DeleteMin simultaneously accesses
and pops the element with the greatest priority. The time complexity of operations on the priority queue is
dependent on the time complexity of these operations.

For integer DEMs, it is evident that the priority queue should be based on one of the algorithms from
the upper portion of Table 2. The algorithms from the lower portion will also work, albeit sub-optimally.
In particular, hierarchical queues [Beucher and Meyer, 1992] are O(1) with extremely low overhead for all
operations; however, if there are many different elevation levels, the methods of Beucher and Beucher [2011]
will need to be applied. Calendar queues [Brown, 1988] have higher overhead, but this becomes negligible
for large problems and they are well suited to the monotonically-increasing priorities exhibited by Priority-
Flood. Calendar queues may be improved through delayed sorting [Rönngren et al., 1991; Steinman, 1994,
1996; Rönngren and Ayani, 1997], choosing or adaptively determining appropriately sized bins [Oh and Ahn,
1997, 1999; Tan and Thng, 2000; Hui and Thng, 2002; Siangsukone et al., 2003; Tang et al., 2005], reducing
resize operations [Goh and Thng, 2003, 2004], or leveraging statistical properties of the priority of newly-
inserted elements [Yan and Eidenbenz, 2006]. However, with the efficiency of the calendar queue comes
subtleties in programming and determining algorithmic correctness. Bucket sorts or radix heaps may be
simpler to implement while still retaining acceptable performance for most problems.

Regardless, since the priority queue operates in O(1) time for integer data, Priority-Flood will operate in
O(n) time, which is optimal. In special cases, floating-point DEMs may be quantized and treated as integer
DEMs. This may be the case when there are known resolution increments or if a floor function can be used
to make suitably small buckets. Alternatively, an “untidy priority queue” which rounds floating-point values
may be used; Yatziv et al. [2006] describe such a queue and show that the error introduced by using it can
be limited to the same order of magnitude as the errors introduced by spatial discretization, making them
“virtually insignificant”.

In the general case of floating-point DEMs, an O(log2 n) data structure must be used, such as one of
those listed in the bottom portion of Table 2. The time complexity of Priority-Flood in such a scenario is
O(n log2 n). This may be reduced to O(n log2 k) if the mapped queues method of Liu et al. [2009] is used.
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Figure 3: Comparison of the improved Priority-Flood (Alg. 2) and the unimproved Priority-Flood (Alg. 1) algorithm. Tests were
performed on 3m floating-point DEMs of 44 of Minnesota’s counties, a 72,500 km2 area covering approximately 33% of the state. It is
clear that counties with more depressions are processed faster.

However, time complexity alone does not tell the whole story: data structures have hidden overheads
which are not expressible in terms of time complexity. Luengo Hendriks [2010] performed extensive testing
on implementations of eleven different priority queue algorithms and found sometimes dramatic differences
in the time required to remove and then add an item to a filled queue. The algorithms also differed markedly
for operations which filled an empty queue or emptied a filled queue.

Based on these tests, Luengo Hendriks recommended the implicit heap as the best choice for a priority
queue: it used the least memory of all the algorithms tested and operated the fastest, though it does use a
strict weak ordering. Hierarchical heaps and ladder queues operated faster for very large data sets (greater
than 106 elements), but used significantly more memory.

For floating-point DEMs, the improved Priority-Flood above reduces both the time complexity—to
O(m log2 m), where m ≤ n—and run-time regardless of which underlying algorithm is used for the priority
queue. It may also decrease run-times even for integer data by avoiding the overhead associated with
maintaining a priority queue. If non-integer keys are used or guarantees regarding the internal structure of
the priority queue are absent, prudent design suggests that the improved algorithm be used.

For all variants of the Priority-Flood Algorithm, the spatial distribution and connectedness of depressions
in the DEM does not affect the algorithms’ time complexities.

6. Empirical Testing

An implementation of the improved Priority-Flood was tested against an implementation of the unim-
proved Priority-Flood; both implementations are included in the Supplemental Materials. The C++ STL
priority queue was chosen to simplify programming and the tests were conducted on floating-point DEMs
using a 64-bit Intel Xeon X5560 2.8GHz 8192kB cache processor and 24GB of RAM. The results are shown
in Fig. 3. LIDAR-based 3m DEMs of 44 counties in Minnesota were tested, comprising an area of ap-
proximately 72,500km2—one-third of the state—with approximately 111,111 cells per square kilometer for
a total of approximately 8 · 109 cells; the average county size was 1,741km2 (2 · 108 cells). The improved
Priority-Flood Algorithm out-performed the unimproved algorithm in every case. The average speed-up
over all the counties tested was 16.8%, while the median was 12.5%. The maximal speed-up was 37.2%.

Earlier, the Planchon–Darboux Algorithm was discussed. This algorithm continues to see usage despite
being slower than several Priority-Flood variants which have been developed both before and since. Notably,
Wallis et al. [2009] produced an MPI-based parallel implementation of the Planchon–Darboux Algorithm
for the TauDEM terrain analysis package and showed that it ran faster than a serial implementation for
DEMs of moderate to large size. To demonstrate that the Priority-Flood Algorithm can run faster than
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Figure 4: Comparison of the TauDEM parallel implementation [Wallis et al., 2009] of the Planchon–Darboux Algorithm versus the
improved Priority-Flood algorithm. While the Planchon–Darboux Algorithm was tested with varying numbers of processors, the
improved Priority-Flood was tested using only a single processor, resulting in the flat lines.

the Planchon–Darboux Algorithm and to clarify a previous comparison made by Liu et al. [2009], the two
algorithms are compared here.

Both algorithms were compiled with full optimizations. The parallel implementation of Planchon–
Darboux was run on varying numbers of processors while Priority-Flood was run on only a single processor.
The machine used for the testing was the same as described above; it had eight processors per node and two
dedicated nodes were used for parallel testing.

Due to long run-times, two test sites were chosen for comparing the speed of the improved Priority-
Flood algorithm against the TauDEM 5.0.6 parallel implementation of the Planchon–Darboux algorithm.
Test Site A was Minnesota’s Steele County and Test Site B was Minnesota’s Nicollet County. The two test
sites represent counties with an average (35%) and a large (61%) number of depressions, respectively. Thus,
the results of the test should not be biased by the choice of counties. The test sites were also representative
in terms of size. Test Site A was a 3m DEM of 10891x 13914 cells (152 · 106 total) and Test Site B was a
3m DEM of 24140x 13183 cells (318 · 106 total).

As shown in Fig. 4, the parallel implementation of the Planchon–Darboux Algorithm required six pro-
cessors in order to process Test Site A in the same time as the improved Priority-Flood algorithm did with
one processor. The speed difference was even more striking in the case of Test Site B, where 11 processors
were required.

7. Variants

7.1. Automatic Flat Resolution

Priority-Flood, as it has been described above, will produce mathematically-flat surfaces as a by-product
of filling depressions. Such surfaces confound attempts to determine flow directions and derivative hydrologic
properties. A feature of the Planchon–Darboux Algorithm is that it does not suffer this problem because it
produces surfaces for which each cell has a defined gradient from which flow directions can be determined.

As Alg. 3 demonstrates, Priority-Flood can be adapted to provide this functionality. To do so, depressions
are filled such that adjacent cells along paths running to outlets are not set to the same elevation, but, rather,
have some minimal elevation difference ǫ between themselves; that is, each cell is made to be a part of an
ǫ-descending path with ǫ > 0.

Although Alg. 3 is similar to Alg. 2, there are important differences. Line 1 requires that the priority
queue have a total order—as discussed in §4. This allows depressions to drain from multiple outlets. Line 28
produces the ǫ-descending path. The clause beginning on Line 9 maintains the total order by ensuring that
all cells of equal elevation which may border a depression are treated equally.

11
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Algorithm 3 Priority-Flood+ǫ: This variation of the Improved Priority-Flood ensures that all filled depressions have
surfaces with a height difference of at least ǫ between any two consecutive cells as one moves away from or towards the
depression’s outlet. To minimize disruption to the DEM, Lines 24 and 28 use the NextAfter function, as described in the
text on Page 12. The algorithm raises a flag if the modified DEM has been altered in a way which cannot be minimized. Upon
entry, (1) DEM contains the elevations of every cell or the value NoData for cells not part of the DEM. At exit, (1) DEM

contains the elevations of every cell or the value NoData for cells not part of the DEM. (2) The elevations of DEM are such
that there are no digital dams and every cell will drain to the edge of the DEM.

Require: DEM

1: Let Open be a priority queue with total order
2: Let Pit be a plain queue
3: Let Closed have the same dimensions as DEM

4: Let Closed be initialized to false

5: for all c on the edges of DEM do

6: Push c onto Open with priority DEM (c)
7: Closed(c)← true

8: while either Open or Pit is not empty do

9: if the top of Open = the top of Pit then

10: c← pop(Open)
11: PitTop← None

12: else if Pit is not empty then

13: c← pop(Pit)
14: if PitTop = None then

15: PitTop← DEM(c)

16: else

17: c← pop(Open)
18: PitTop← None

19: for all neighbors n of c do

20: if Closed(n) then repeat loop

21: Closed(n)← true

22: if DEM(n) = NoData then

23: Push n onto Pit

24: else if DEM(n) ≤ NextAfter(DEM(c),∞) then
25: if PitTop < DEM(n) and NextAfter(DEM(c),∞) ≥ DEM(n) then
26: A significant alteration of the DEM has occurred
27: The inside of the pit is now higher than the terrain surrounding it

28: DEM(n)← NextAfter(DEM(c),∞)
29: Push n onto Pit

30: else

31: Push n onto Open with priority DEM (n)

Ideally, ǫ is large enough to direct flow, but sufficiently small as to have no other effects on the DEM’s
hydrologic properties. However, to work with such small values is to expose the intricacies of floating-point
arithmetic. If too small an ǫ is used, then adding it to a cell may produce no change in its elevation; if
too great an ǫ is used, then large depressions may be converted into mesas rising above the surrounding
landscape.

Choice of an appropriate value for ǫ is neither straight-forward nor universal. Therefore, it is best to
use the NextAfter function defined by the C99 and POSIX standards, or a similar function. This function
increases or decreases a floating-point number by what is guaranteed to be the smallest possible increment
in the direction of a second number. While this is better than using an arbitrarily-defined ǫ, it is still not
possible to guarantee that Alg. 3 will behave correctly in situations where a DEM’s precision approaches
that of its storage data type.
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Figure 5: Demonstration of Priority-Flood+FlowDirs (Alg. 4). The dark shaded edge cells represent the border of a depression: their
flow directions are omitted. The depression has an outlet along its left-hand side and a lightly shaded sink cell to the right of its
center. The cells of each column—except for the sink, which is lower than any cell—have a relative elevation corresponding to the
black elevation profile.

Therefore, the variable PitTop is set (Line 15) whenever a new depression is encountered and reset
(Lines 11 and 18) after the depression has been resolved. If incrementing a cell causes it to rise above a cell
which was previously higher than the level of the pit’s outlet, as defined by PitTop, then Line 25 issues a
warning. The Planchon–Darboux Algorithm does not provide such a safety check.

An alternative approach to the algorithm just described would be to use Priority-Flood to fill the DEM’s
depressions and a secondary algorithm to resolve the flat surfaces which result. Barnes et al. [2013] provides
an O(n) algorithm for generating convergent flow patterns in such a situation. One could also impose flow
directions on the DEM directly using a variant of the Priority-Flood Algorithm described below.

7.2. Flow Directions

An alternative to using infinitesimal increments to direct flow is to calculate flow directions directly from
the DEM, as in Alg. 4. As in the other Priority-Flood Algorithms, the terrain is flooded inwards from
the edges; however, rather than altering cells’ elevations, this algorithm always causes the neighbors of the
lowest cell to point towards it before pushing them into the priority queue using their unaltered elevations
as their priorities. As a result, the algorithm climbs into depressions through their lowest outlet and takes
the path of steepest descent to the depressions’ minima. Depressions then drain towards their minima and
this path, as shown in Fig. 5. All depressions will drain to the edge of the DEM, but elevation information
within depressions is still utilized for determining flow directions. The algorithm works well with nested
depressions. Alg. 4 is, in effect, a depression-carving algorithm: rather than filling depressions, it drills
through their walls.

As noted by Metz et al. [2010], the flow directions determined by this algorithm yield regions of flow
accumulation which are located closer to actual rivers than methods which determine flow directions after
performing depression-filling.

7.3. Watershed Labeling

Watershed labeling applies a common label—such as an integer number—to all cells which drain to a
given outlet. The algorithm (Alg. 5) for this works in much the same way as the improved Priority-Flood
(Alg. 2). The DEM is flooded inwards from its edges with the lowest cell always being processed first.
Rather than filling cells in depressions, this algorithm merely prioritizes them to the level of their outlet.

Watershed outlets are identified as being unlabeled cells adjacent to a NoData cell. These cells are
given a unique label which then floods inwards to cover all the cells in the watershed.

Following execution, watershed boundaries may be identified by locating adjacent cells with differing
labels. To mark the border cells, consistently choose either the cell with the lower label, the cell with the
higher label, or both.
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Algorithm 4 Priority-Flood+FlowDirs: This variation of Priority-Flood is based on the work of Metz et al. [2011] and
determines flow directions for all cells. This is, in effect, a depression-carving operation. On 8-connected grids, non-diagonal
neighbors should be processed first on Line 13 as they have the greatest center-to-center slopes and therefore should take
priority. A plain queue cannot be used to speed this variation up because all the elevation information inside the depressions
is needed. Upon entry, (1) DEM contains the elevations of every cell or the value NoData for cells not part of the DEM.
At exit, (1) FlowDirs contains the flow direction of every cell or the value NoData for cells not part of the DEM. (2) All
cells which are part of the DEM have a defined flow direction.

Require: DEM, FlowDirs

1: Let Open be a priority queue with total order
2: Let Closed have the same dimensions as DEM

3: Let Closed be initialized to false

4: for all c on the edges of DEM do

5: Push c onto Open with priority DEM (c)
6: Closed(c)← true

7: if DEM(c) = NoData then

8: FlowDirs(c)← NoData

9: else

10: FlowDirs(c) points off of the DEM

11: while Open is not empty do

12: c← pop(Open)
13: for all neighbors n of c do ⊲ Non-diagonal neighbors first
14: if Closed(n) then repeat loop

15: if DEM(n) = NoData then

16: FlowDirs(n)← NoData

17: else

18: FlowDirs(n) points towards c

19: Closed(n)← true

20: Push n onto Open with priority DEM (n)

8. Coda

Special cases and variants of the Priority-Flood Algorithm have been described by many authors. This
paper generalizes this body of literature (Alg. 1) to work optimally on either integer or floating-point data
(§5), as well as on irregular meshes or 4-, 6-, 8-, or n-connected grids.

An improvement to the Priority-Flood priority queue (Alg. 2) has been described and tested. It runs
in O(m log2 m) time, where m ≤ n, on floating-point data and in O(n) time on integer data. By com-
parison, the Planchon–Darboux Algorithm has a time complexity of at least O(n1.2) and the generalized
Priority-Flood Algorithm has a time complexity of O(n log2 n) for floating-point DEMs and O(n) for integer
DEMs. Under testing, the new algorithm outperformed the generalized Priority-Flood Algorithm in all
cases. Improvements were often greater than 16% and were as high as 37%. In addition, a parallel imple-
mentation of the Planchon–Darboux Algorithm required upwards of six processors to match the improved
Priority-Flood’s speed with a single processor.

For its simplicity and speed, Priority-Flood is a good choice. It can fill depressions in such a way that
they are guaranteed to drain; it is explicable in 20 lines of pseudocode; and, as demonstrated by the C++

reference code (see Supplemental Materials), it can be implemented in fewer than a hundred lines of code.
The Priority-Flood algorithm is also versatile. It can be used to label watersheds (Alg. 5) as well as to

determine flow directions either by terrain increments (Alg. 3) or by carving depressions (Alg. 4).
The Supplemental Materials for this paper are available from the journal, as well as at github.com/r-barnes.

Many of the algorithms presented here are implemented in the RichDEM analysis package, available at
http://rbarnes.org/richdem or via email from the authors.
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Algorithm 5 Improved Priority-Flood+Watershed Labels: This variation of the Improved Priority-Flood follows
the work of Beucher and Meyer [1992] and Beucher and Beucher [2011]. It applies a common label to all cells draining to an
outlet. Line 21 should be interpreted as pushing a copy of the cell’s coordinates into Pit with the copy’s z-value set to c.z.
If simultaneous watershed labeling and depression-filling is desired, change the original z value of n to c.z before making the
copy. Upon entry, (1) DEM contains the elevations of every cell or the value NoData for cells not part of the DEM. At
exit, (1) Labels contains a label for every cell or the value NoData for cells not part of the DEM. (2) All cells which drain to
a common point at the edge of the DEM bear the same label.

Require: DEM, Labels
1: Let Open be a priority queue
2: Let Pit be a plain queue holding cells’ (x, y, z)
3: Let Labels have the same dimensions as DEM

4: Let Labels be initialized to candidate

5: label← 1
6: for all c on the edges of DEM do

7: Push c onto Open with priority DEM (c)
8: Labels(c)← queued

9: while either Open or Pit is not empty do

10: if Pit is not empty then

11: c← pop(Pit)
12: else

13: c← pop(Open)

14: if Labels(c) = queued and DEM(c) 6= NoData then

15: Labels(c)← label

16: Increment label
17: for all neighbors n of c do

18: if Labels(n) 6= candidate then repeat loop

19: Labels(n)← Labels(c)
20: if DEM(n) ≤ c.z then

21: Push n onto Pit with z = c.z

22: else

23: Push n onto Open with priority DEM (n)
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