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a b s t r a c t

Here we present a novel computational signal processing approach for comparing two signals of equal
length and sampling rate, suitable for application across widely varying areas within the geosciences. By
performing a continuous wavelet transform (CWT) followed by Spearman's rank correlation coefficient
analysis, a graphical depiction of links between periodicities present in the two signals is generated via
two or three dimensional images. In comparison with alternate approaches, e.g., wavelet coherence, this
technique is simpler to implement and provides far clearer visual identification of the inter-series
relationships. In particular, we report on a Matlabs code which executes this technique, and examples
are given which demonstrate the programme application with artificially generated signals of known
periodicity characteristics as well as with acquired geochemical and meteorological datasets.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Given the significant increase in computational power over the
last decades, signal processing techniques such as wavelet analysis
have become common place in their application within the
geosciences. In particular, wavelets are applied, via a process of
convolution, to reveal information on periodicities present in data
series, and their stability as a function of time, in contrast to
Fourier transforms, which only probe frequency characteristics
(Welch, 1967; Harris, 1978). The exception here is with the Short
Fourier Transform (e.g., spectrogram), which is applied to reveal
spectral frequency variations with time (Oppenheim et al., 1999).
Whereas, a continuous wavelet transform (CWT) operates over a
continuous range of scales, providing potentially more detailed
information than the discretely sampled discrete wavelet or Short
Fourier Transform (Torrence and Compo, 1998; Oppenheim et al.,
1999). Hence, wavelets are more suited to investigation of tran-
sient or unstable periodic phenomena.

Oscillatory behaviour is widely manifest in datasets acquired
from across the geo and environmental sciences, for example
concerning the 11-year sunspot cycle (e.g. Hoyt and Schatten,
1997; Frohlich and Lean, 2004), the El Niño Southern Oscillation
(Torrence and Compo, 1998) and the North Atlantic Oscillation
(NAO) (Hurrell, 1995). These phenomena can change significantly

in strength and period as a function of time and are an integral
part of climate variability (e.g. Hurrell et al., 2003; Lockwood,
2012; Philander, 1990). Oscillations are also present over much
shorter timescales of seconds to hours, for example within
geochemical datasets concerning volcanic degassing (Tamburello
et al., 2012). The links between fluctuations present in environ-
mental data series can wax and wane dramatically, providing a
motivation for the application of wavelet analysis. Here we present
a straightforward and new approach to investigating the correla-
tion between oscillations present in two or more environmental
datasets; this technique is based on CWT analysis using Matlabs

and the Matlab Wavelet Toolboxs followed by Spearman's rank
correlation coefficient analysis.

2. Technique overview

The Matlabs function (available in the auxiliary materials) was
written in Matlabs 2010b and has been tested on the 2008a,
2011b and 2013a versions, with correct operation demonstrated in
each case. The programme uses the CWT function (part of the
Matlab Wavelet Toolboxs) for two separate signals. These signals
should be normalised prior to processing by this code, however,
the code performance is independent of the applied normalisation
technique. This is followed by linear correlation (using Spearman's
rank correlation coefficient, which accounts for non-linearity and
variable amplitude of the wavelet coefficients), to generate a visual
representation of the links between the coefficients generated by
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the wavelet transforms (e.g. Figs. 1b, 3d, 4, 5a, b). For the examples
illustrated in this paper the Morlet wavelet was applied as the
mother wavelet (Morlet et al., 1982; Grinstead et al., 2004)

Ψ 0ðηÞ ¼ π�1=4eiω0ηe�η2=2:

where Ψ 0ðηÞ is the wavelet function, η is a non-dimensional
parameter representing a time component and ω0 refers to the
wavelets' non-dimensional frequency. This particular class of
wavelet is implemented here, given its similarity to naturally
occurring oscillations manifest in data series spanning the geos-
ciences (e.g. Torrence and Compo, 1998). This said, the code could
also use non-complex alternates, e.g., Gaussian wavelets from the
Matlab Wavelet Toolboxs if these are judged more suitable for the
application in question. Indeed, the Matlab Wavelet Toolboxs

provides a comprehensive overview and visualisation of available
mother wavelets. In general, wavelet analysis works best with
selection of a mother wavelet which closely resembles the target

oscillation. The CWT itself is defined as (e.g. Grinstead et al.,
2004)

WnðsÞ ¼
ffiffiffiffiffi
δt
s

r
∑
N

n0 ¼ 1
xn0Ψ n ðn0 �nÞδt

s

� �
;

where δt is a uniform time-step, xn is the subject signal, WnðsÞ
represents the changing wavelet scale on the left-hand-side and
similarly as s on the right-hand-side, n is the complex conjugate, N
is the maximum scale, and n is the points of the time series,
(Morlet et al., 1982; Colestock, 1993; Grinstead et al., 2004). The
result is the conjugation of the scaled selected wavelet with the
subject signal and outputs, which demonstrates the stability and
power of any periodic features which match the scaled wavelet.
We refer to the extensive literature for more in-depth descriptions
of the CWT (e.g. Morlet et al., 1982; Daubechies, 1990; Colestock,
1993; Huang et al., 1998; Torrence and Compo, 1998).

Fig. 1. An example application of the code on synthetic signals showing: (a) the signals themselves (two sinusoids of period 125 s with noise added); (b) the correlation
image generated by the code, with the 1:1 line marked in white, indicating where mutual oscillations are present; (c) and (d) Welch's power spectral densities of the two
series, which show the dominant oscillation at 125 s in each case.
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The next step is to correlate the output of the CWT at each scale
ðWniÞ using Spearman's Rank (rs) correlation coefficient
(Spearman, 1904; Zar, 1972)

rsðWniÞ ¼ 1� 6∑d2i ðWniÞ
nðn2� 1Þ ;

where d2i is the ranked difference between the outputs of each
CWT. The code, therefore, determines the degree of match
between oscillations present in the two different signals over a
broad scale range. This is particularly useful where signals are
highly variable or ‘noisy’ and where links are difficult to discern
from comparison of the individual standard wavelet transforms.
Likewise, this provides clearer scope for visual identification of

links between the series than alternates such as wavelet coherence
(e.g., Grinstead et al., 2004; Cannata et al., 2013) by virtue of
generating a single plot whose axes are the scales of the compared
datasets, rather than two discrete plots of scales vs. time. This
approach also requires less computational power, in addition to
the primary benefits of the technique, namely: simplicity of
operation and ease in interpretation. This is a code and display
approach, which to the authors' knowledge, has not previously
been applied or documented in the literature, with the exception
of a brief overview given in Pering et al. (2014).

3. The Matlabs function

In summary, the Matlab function ‘corrplot.m’ is displayed
below, including only those elements related to the production
and extraction of data. The full code is available online in the
supplementary materials. The code requires a number of inputs:
signals x and y (e.g., the data series which are to be compared,
which must be of identical sampling frequency and length);
wavelet type (e.g., the class of mother wavelet, for example ‘morl’
for Morlet); scales (e.g., the maximum scale for the CWT – the
default setting is to run the CWT in steps of 1, from 1 up to this
value); and finally, the sampling rate of the dataset in Hertz (Hz).
The dominant oscillation(s) in each of the input series are also
determined as part of the code, using Welch's power spectral
density (PSD) method (Welch, 1967), as an additional means of
identifying similarities in the series. Furthermore, an automatic
code-interruption error message is incorporated to avoid analysis
above the Nyquist criterion (Nyquist, 2002).

function [a,b]¼corrplot( x,y,wavelet,scales,fs )
if scales4((length(x)/2))

error(‘Scales above Nyquist limit’)
end

% Wavelet TransformFig. 2. A sample correlation image for perfect correlation over all scales.

Fig. 3. Three plots auto-generated by the code: (a) correlation coefficients along the diagonal 1:1 line extracted from the correlation image in Fig. 1b, showing the scales at
which correlation is manifested; the wavelet coefficient time series corresponding to scales of maximum (b) and minimum (c) correlation coefficients in (a). The latter plots
allow the user to investigate temporal lags between the series, in this case confirming that the two series have a mutual in phase oscillation at 125 s.
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cwt1¼cwt(x/max(x),1:scales,wavelet);
cwt2¼cwt(y/max(y),1:scales,wavelet);

% Shift the data
cwt1¼ctranspose(cwt1); cwt2¼ctranspose(cwt2);

% Correlate the data
a¼corr(cwt1,cwt2,‘type’,‘Spearman’);

% Extract the “best-fit” line
b¼diag(a);

% Extract max and min correlation location
[max_corr,loc_max_corr]¼max(b)
[min_corr,loc_min_corr]¼min(b)
[M1,N1]¼ ind2sub(size(b),loc_max_corr);
[M2,N2]¼ ind2sub(size(b),loc_min_corr);

% Individual coefficients at max and min location
wave_coeff1_max¼cwt1(:,M1); wave_coeff1_min¼cwt1(:,M2);
wave_coeff2_max¼cwt2(:,M1); wave_coeff2_min¼cwt2(:,M2);

% Power spectral densities
[b1,freq1]¼pwelch(x/max(x),scales,0,scales,fs);
[b2,freq1]¼pwelch(y/max(y),scales,0,scales,fs);

% Xcorr lag plot
cwt1¼ctranspose(cwt1);
cwt2¼ctranspose(cwt2);

for ls¼1:scales;
s1¼cwt1(ls,:);

s2¼cwt2(ls,:);
maxlags¼scales/2;
lag_corr¼xcorr(s1,s2,maxlags, ‘coeff’);
c(ls,:)¼horzcat(lag_corr);

end
c¼ctranspose(c);

The code generates the following outputs: of which, the first,
fourth and sixth can be exported to the Matlabs workspace

(i) a correlation image with colour scale;
(ii) power spectral densities of signals ‘x’ and ‘y’;
(iii) a 3D visualisation of the correlation image;
(iv) correlation coefficients along the 1:1 line in the

correlation image;
(v) plots of the wavelet coefficients, which correspond to the

points of maximum positive and negative correlations, along
with 1:1 line; and

(vi) a plot with colour scale showing the correlation coefficients of
the wavelet coefficients at each individual scale, over a
defined range of lags.

4. Example applications

Firstly, we present an example application of the code on a pair
of synthetic signals to illustrate this approach for establishing the
presence of common periodicities. Fig. 1a shows these signals: two
sinusoids of period 125 s, with noise added, using a normally
distributed random number generator. The generated 2D correla-
tion image (Fig. 1b) shows a clear positive correlation between
E75 and 150 s, with a peak value 40.8, and the dominant series
frequencies are further manifest in the Welch's PSD curves in
Fig. 1c and d showing a clear peak at 125 s (0.008 Hz) in each case.
The correlation plot also demonstrates that there are no other
sources of significant correlation on any other timescales. For
reference, a correlation image showing perfect correlations across
all scales is presented in Fig 2. Probability values for observed
correlations can be easily estimated using in-built Matlabs algo-
rithms e.g., see Kendall (1970), Best and Roberts (1975), Ramsey
(1989), and references therein for additional information.

The 1:1 line is included in Figs. 1b and 2 to highlight the region
in which one would expect relationships to occur e.g., where
periods are common to both series. Fig. 3a shows the coefficient
profile along this line, auto-generated by ‘corrplot.m’ from the
correlation image (Fig. 1b): revealing the scales at which correla-
tion is manifested in this case. It is then for the user to investigate
the cause of such links, e.g., through analysis of whether the series
are in or out of phase or shifted in phase relative to one another. To
expedite this, the code also extracts the wavelet coefficient time
series for the scales along the 1:1 line which present the strongest
points of maximum and minimum correlation; these outputs are
shown in Fig. 3b and c, respectively, for our sample synthetic data.
In this case, the in-phase nature of the two 125 s period sinusoids
is clearly manifested in Fig. 3a. For series which are out of phase,
the lag could be determined by visual inspection of these two
wavelet coefficient time series. As an additional aid, the code
outputs the cross-correlation coefficient at each wavelet coeffi-
cient scale over the maximum possible range of lags. The code
produces an image (e.g., Fig. 4) which clearly indicates the
maximum or minimum lag between the series at each scale. This
is of particular use when the signals are not perfectly in phase or
antiphase. This capability of the code is illustrated on a cosinusoidal
(s1) and sinusoidal (s2) signal (Fig. 4a), both generated with the same

Fig. 4. An example application of the code on: (a) cosinusoidal (s1) and sinusoidal
(s2) signals, with matching period of 90 s and added random noise. In (b) the last
auto-generated plot by the code shows the correlation coefficients at the given lag
value and wavelet coefficient scale. The latter plot is of particular use for
determining lags, in addition to those in Fig. 3, and also when signals are not in
perfect phase or antiphase.
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frequency (90 s) and amplitude, and with added random noise. The
possible lags can be identified in Fig. 4b, the spacing between which
clearly correspond to the known signals’ frequency value. These
particular functions are of particular use for investigating the links
and lags between oscillations and periodicity in natural contexts,
where raw signals can demonstrate considerable temporal variability.

We also applied the ‘corrplot.m’ code to measurements of tem-
peratures and relative humidity collected hourly from the Department
of Geography, University of Sheffield automatic weather station during
June, July and August 2013. The raw data are presented in Fig. 5a and
the resulting correlation image is shown in Fig. 5b, facilitating
straightforward identification of the links present between the two

data series. As expected, strong relationships are present at periods
4200 h (e.g., 48 days), with peak correlation values at E600–800 h
(e.g., E25–33 days). This demonstrates that our technique clearly
resolves the inter-series links related to synoptic meteorological
changes occurring on timescales of weeks. Furthermore, a strong link,
of rs¼�0.94 at E24 h is evident, capturing the relationships between
changes in temperature and humidity over the diurnal cycle.

For comparison, the continuous wavelet transform plots of these
two series are presented in Fig. 5c and d. The cross wavelet
coherence and the cross wavelet spectrum are also shown in
Fig. 5e and f, respectively, as generated from the Matlabs wavelet
coherence function ‘wcoher’. Relative to visual inter-comparison of

Fig. 5. An example application of our code on temperature and relative humidity measurements, acquired hourly at the automatic weather station of the Department of
Geography, at the University of Sheffield, showing: (a) the raw data; (b) the correlation plot, revealing positive correlation on scales 4200 h indicative of synoptic
meteorological trends and negative correlation on scales of a day in line with diurnal changes; (c) and (d) continuous wavelet transforms for the two series and (e) and (f) the
cross wavelet coherence and cross wavelet spectrum plots for the data, indicating that the approach presented here provides more intuitive and straightforward visual
identification of the inter-series links, than available from these alternatives.
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the wavelet plots, or inspection of either of the other two technique
outputs, the correlation plot (Fig. 5b) provides scope for far clearer
and more intuitive visualisation of the inter-series links, e.g., illus-
trating the key benefit of the approach over alternates.

Finally, we present the application of our code on volcanic gas
signals: Hydrogen Sulphide (H2S) and Carbon Monoxide (CO)
concentration time series, acquired using a ‘Multi-GAS’ sensor
(Shinohara, 2005; Aiuppa et al., 2005) placed in the plume of the
North East Crater of Mount Etna (Sicily, Italy). Fig. 6a shows the
correlation image generated. The most significant features are
positive links between the datasets at E300–400 s, E500–700 s,
and at 4900 s. These are similar to the periodicities in sulphur
dioxide SO2 emission rates reported by Tamburello et al. (2012)
indicating that a variety of volcanic gases fluctuate rapidly in their
fluxes, with similar periodicity characteristics. In addition, several
weak negative correlation areas also appear at E100–300 s,
E400–500 s, and E700–900 s, revealing points worthy of further
investigation. This technique is particularly useful on data such as
these as links between the series are resolvable, even where
sensors might have differing response characteristics (Aiuppa et al.,
2005). In Fig. 6b, this correlation image is displayed in 3D.

5. Summary and conclusions

Here, we have presented a new use of CWT analysis combined
with correlation to determine the similarity between oscillations
present in two separate signals. This paper reports on a straightfor-
ward to implement Matlabs code, which executes this approach,
providing a more readily interpretable visualisation of these links than
available from existing alternate techniques, and the coupled capacity
to resolve connections between noisy and transient signals. A number
of example applications have been presented, via the analysis of
synthetic signals and those acquired from various disciplines within
the geosciences, which demonstrate the above benefits.
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