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Abstract

Global trade is mainly supported by maritime transport, which generates

important pollution problems. Thus, effective surveillance and intervention

means are necessary to ensure proper response to environmental emergen-

cies. Synthetic Aperture Radar (SAR) has been established as a useful tool

for detecting hydrocarbon spillages on the oceans surface. Several Decision

Support Systems have been based on this technology. This paper presents an

automatic oil spill detection system based on SAR data which was developed

on the basis of confirmed spillages and it was adapted to an important inter-

national shipping route off the Galician coast (northwest Iberian Peninsula).

Email addresses: davidmeraperez@gmail.com (David Mera), manel.cotos@usc.es
(José M. Cotos), jose.varela.pet@usc.es (José Varela-Pet), pablogr@unex.es (Pablo
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The system was supported by an adaptive segmentation process based on

wind data as well as a shape oriented characterization algorithm. Moreover,

two classifiers were developed and compared. Thus, image testing revealed

up to 95.1% candidate labeling accuracy. Shared-memory parallel program-

ming techniques were used to develop algorithms in order to improve above

a 25% of the system processing time.

Keywords:

Decision Support System, Oil spills, SAR, Adaptive threshold, Shape

characterization

1. Introduction1

Oceans are essential both for life and for every society’s economy. Inter-2

national trade is mainly supported by maritime transport which represents3

around 80% of global trade by volume and over 70% by value [1]. This in-4

tensive traffic along Exclusive Economic Zones (EEZ) of countries generates5

important pollution problems such as oil spills. Contrary to what is mainly6

accepted, only 7% of oil spills come from catastrophes like tanker and oil7

platform accidents. Half of the total oil pollution can be attributed to oper-8

ational discharges from vessels (usually, the cleaning of ship bilges) [2].9

Oil spills affect coasts and marine life generating ecological as well as10

economic losses. Thus, surveillance agencies should have adequate Decision11

Support Systems (DSSs) to manage intervention means as well as to ensure12

proper response to environmental emergencies.13
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Radar has proved to be a useful tool for detecting hydrocarbon spillages.14

This technology consists in an active detection system assembled in a plat-15

form which basically sends microwave beams to the surface. Beams are re-16

flected and backscattered from the surface so part of the energy is collected17

again by the radar antenna. The intensity of the signal received by the an-18

tenna is measured and recorded for later use in the image construction of19

the studied area. Due to their backscattering specular behavior, oil spills20

appear as regions with less brightness in radar images, just like other natural21

phenomena [3] such as low wind, grease ice and upwelling.22

Traditionally, ships and aircrafts equipped with specific tools, like radar23

systems, have been widely used as surveillance means. Their disadvantages,24

such as local coverage, high cost and dependency on meteorological conditions25

make them a limited solution.26

Radar devices aboard satellites improve coverage, reduce cost and provide27

day and night imaging capability regardless of weather conditions. Due to28

radar fundamentals [4], unfeasible antenna dimensions would be necessary29

to get useful resolutions. This handicap is solved by using a special type30

of radar called Synthetic Aperture Radar (SAR). Its operational principle is31

based on collecting several measurements of the same target location from32

different points during the satellite pass. This process simulates an antenna33

aperture equivalent to the distance between the first and last measured point,34

and can produce image resolutions of a few meters.35

Traditionally, SAR images have been analyzed by human operators. Ba-36

3



sically, they localize dark areas and try to distinguish natural phenomena,37

called look-alikes, from hydrocarbons. Literature describes many efforts to38

develop automated and semi-automated DSSs which avoid depending on the39

operator’s experience and improve the system’s accuracy as well as its pro-40

cessing time. A concise state-of-the-art is offered by Brekke and Solberg [5]41

and Topouzelis [6]. Apart from pre-processing steps, most documented oil42

spill detection systems have 3 common phases:43

• Dark spot segmentation: since backscattering is lower in oil spills than44

in clean areas, several threshold techniques based on simple [7] as well45

as adaptive thresholding [8] [9] have been widely used. Also, other46

techniques have been traditionally applied such as Artificial Neural47

Networks (ANN) [10] [11] [12], methods based on textures [13] [14] and48

techniques focused on edge detection [15] [16].49

• Feature extraction: though there are some research works focused50

on finding a valuable set of characteristics to describe the segmented51

spots [17] [18], there are not systematic studies about characteristics52

and their influence on the classification phase.53

• Spot classification: relevant literature describes many options and tech-54

niques to develop classifiers which analyze candidate characteristics to55

distinguish look-alikes from oil spills. ANNs [9] [11] [12] as well as56

statistical classifiers [19] [8] [20] [7] are some of the approaches most57

largely used.58
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A reliable detection procedure is the basis for a complete surveillance sys-59

tem since its outputs can be used to forecast the spillage’s evolution [21] [22]60

and to backtrack it to find its source.61

Regarding the study location, Galicia, located in the northwest of the62

Iberian Peninsula, is a region whose economy and way of life are closely re-63

lated to the ocean. Due to its geographic location, Galicia bears an intensive64

maritime traffic and it has suffered important oil tanker catastrophes such65

as Urquiola in 1976, Aegean Sea in 1992 and Prestige in 2002. Besides these66

fairly infrequent events, oil spills derived from routine maintenance opera-67

tions are regularly discovered. Specifically, most of them are located around68

the Finisterre Traffic Separation Scheme (FTSS), shown in Figure 1, which69

is used to regulate the maritime traffic.70

Spanish Maritime Safety and Rescue Agency (SASEMAR) is the public71

authority responsible for monitoring the Spain EEZ including the Galician72

coast. SASEMAR’s surveillance procedures are based on flight missions as73

well as limited SAR detection reports supplied by European Maritime Safety74

Agency (EMSA) via an agreement with the Spanish government. According75

to the 2012 SASEMAR report, 146 oil spills were detected by flight missions,76

whereas 102 were revealed by satellite reports.77

In this paper, we describe an automatic oil spill detection system based on78

SAR imaging which makes the best of a previously published oil spill segmen-79

tation algorithm (refered to here as the “previous paper” [23]). The present80

work shows several improvements which were done to the segmentation pro-81
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cess and describes the remaining system phases, including the development82

and comparison of two classifiers. We encourage readers to read the previous83

paper for a deeper context.84

2. Datasets85

A database with 47 Advanced Synthetic Aperture Radar (ASAR) prod-86

ucts from the Envisat was used to develop the detection system. Main prod-87

uct characteristics are shown in Table 1. Specifically, the Wide Swath Mode88

(WSM) product was selected for oil spill detection because it provides large89

coverage and enough resolution for finding small-medium spillages. Further-90

more, the ocean backscatter is expected to be above the noise floor under91

most conditions [24].92

Table 1: Main characteristics of the dataset products.
Satellite Sensor Mode Angle range Band Polarization Coverage Resolution
Envisat ASAR Width Swath 15◦ − 45◦ C-Band Vertical-Vertical 405 km 150 m (75 m resampled)

Database ASAR images cover the Galician coast from 2007 to 2011 and93

most of them are centered on the FTSS, which is the core of the Region Of94

Interest (ROI). This collection was obtained by way of an agreement with95

the European Space Agency (ESA). Images can be split into two subsets: on96

the one hand, data from 2007 to 2008 contain oil spill candidates located by97

EMSA experts. These candidates were labeled with a pollution probability98

(low, medium, high). On the other hand, images from 2009 to 2011 have99

confirmed oil spills detected by SASEMAR aircrafts missions.100
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Figure 1: ROI which contains the FTSS. Black dots symbolize spillages of the database.

A subset of images captured in 2011 was saved for testing purposes, while101

the remainder were used to develop the oil spill detection system.102

3. Methodology103

The described oil spill detection system comprises three main phases:104

initially, a segmentation process highlights all the pollution candidates over105

the image background; after that, a characterization process is applied to106

calculate a set of characteristics for each segmented candidate; finally, a107

classification process analyzes every set to classify the associated candidate108

either as an oil spill or a false positive (look-alike). Moreover, both pre-109

processing and post-processing steps are carried out. On the one hand, the110

pre-processing step is used to tailor the dataset for detection algorithms. On111

the other hand, a post-processing process is applied to system outputs in112

order to improve the shape of detected oil spills. A detail of these processes113
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is shown next.114

3.1. Segmentation115

The segmentation process is based on a previously published Adaptive116

Threshold (AT) algorithm [23], which exposed the relationship between SAR117

image intensity values and both wind intensity and satellite Incidence Angles118

(IAs). Wind data were estimated by the CMOD5 model [25], which is a119

C-band geophysical model function. It relates the radar backscatter from120

roughened sea surface to wind speed and direction.121

One thousand six hundred and fifty-two pixels were carefully sampled122

from the oil spill dataset to get measurements affected by different IAs and123

different wind speeds. Thus, both IA and wind speed values were collected for124

every sampled pixel. The resulting dataset was clustered according to both125

values and an intensity upper value was calculated for each clustered subset.126

The current version of the segmentation process is more conservative than127

the previous one and it calculates the upper value within every subset as the128

mean intensity plus the double of the standard deviation. After applying a129

regression analysis to calculate upper values, a combination of two functions130

was selected to establish an AT which takes into account both wind data131

and IA. This combination is comprised by a quartic function to deal with the132

smaller IAs and a negative exponential function for the bigger ones (Table 2).133

Finally, the current version of the segmentation algorithm has a shorter wind134

speed range than the previous one. We decided to gather together pixels with135
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wind speed values bigger than 7 m/s since only 8% of them had bigger values.136

Table 2: Coefficients and cutoff points for adaptive thresholding functions.
Wind
speed

Quartic function Cutoff
point

Negative expo-
nential function

<= 4m/s 6.3662 ∗ 10−6x4 − 0.00083671x3 + 0.041262x2 − 0.90719x+ 7.5353 37.8◦ 5.9169e−0.17881x

<= 5m/s 3.0874 ∗ 10−6x4 − 0.00043845x3 + 0.023424x2 − 0.55931x+ 5.0588 36.25◦ 6.6689e−0.17944x

<= 6m/s 2.1022 ∗ 10−6x4 − 0.00031131x3 + 0.017414x2 − 0.4365x+ 4.1503 36.82◦ 5.7770e−0.17217x

<= 7m/s 2.7742 ∗ 10−6x4 − 0.00039094x3 + 0.02086x2 − 0.50088x+ 4.5883 37.52◦ 5.4477e−0.16858x

> 7m/s 1.2416 ∗ 10−6x4 − 0.00019466x3 + 0.011604x2 − 0.31143x+ 3.182 36.8◦ 6.2053e−0.17101x

3.2. Characterization137

Previous studies have shown that oil spills can be clustered according to138

their shape [26]. Several factors, such as the ship course, meteorological con-139

ditions and the age of oil spills affect to the slick shape. According to the140

cited study the vast majority of oil spills are of linear shape, either straight141

or angular. Literature also shows studies which claim that the unique shapes142

of the oil spills can be used to discriminate spillages over look-alikes [27] [28].143

Consequently, a vector of characteristics, mainly based on shape, was used to144

characterize oil spill candidates. Furthermore, the vector was also filled with145

both physical and contextual characteristics. Initially, the vector, which is146

shown in Table 3, consisted of 21 components where 17 of them were related147

to shape. In order to reduce the vector dimensionality, a Principal Com-148

ponent Analysis (PCA) was applied to shape characteristics. Finally, five149

principal components were selected since they contained more than 90% of150

the shape information. Thus, the final established feature vector was com-151

posed by 9 components: five principal components related to the candidate152

shape, two physical characteristics, and two contextual characteristics.153
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Table 3: Initial vector of characteristics.
Type Name Description

Shape
APR Ratio between area(candidate) and perimeter(candidate)

Elongation Ratio between major and minor axis of the candidate.
MPR Ratio between major axis(candidate) and perimeter(candidate).

Rectangularity Ratio between area(candidate) and area(minimum.enclosing.rectangle).

Circularity Ratio between perimeter(candidate)2 and 4π ∗ area(candidate).
Thickness Number of erosions that are necessary to completely erode the candidate.

Hu’s moment invariants [29], ηij symbolizes normalized central moments.

φ1 (η20 + η02)

φ2 (η20 − η02) + 4η211
φ3 (η30 + 3η12)

2 + (3η21 − η03)
2

φ4 (η30 + η12)
2 + (η21 + η03)

2

φ5 (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2] + (3η21 − η03)(η21 +
η03)[3(η30 + η12)

2 − (η21 + η03)
2]

φ6 (η20 − η02)[(η30 − η12)
2 − (η21η03)

2] + 4η21(η30 + η12)(η21 + η03)

φ7 (3η21 − η30)(η00 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2] + (3η12 − η03)(η21 +
η03)[3(η30 + η12)

2 − (η21 + η03)
2]

Flusser and Suk affine moment invariants [30], ηij symbolizes normalized central moments.

I1 (η20η02 − η211)/η
4
00

I2 (−η230η
2
03 + 6η30η21η12η03 − 4η30η

3
12 − 4η321η03 + 3η221η

2
12)/η

10
00

I3 (η20η21η03 − η20η
2
12 − η11η30η03 + η11η21η12 + η02η30η12 − η02η

2
21)/ν

7
00

I4 (−η320η
2
03 + 6η220η11η12η03 − 3η220η02η

2
12 − 6η20η

2
11η21η03 − 6η20η

2
11η

2
12 +

12η20η11η02η21η12 − 3η20η
2
02η

2
21 + 2η311η30η03 + 6η311η21η12 − 6η211η02η30η12 −

6η211η02η
2
21 + 6η11η

2
02η30η21 − η302η

2
30)/η

11
00

Contextual
IA IA of the candidate centroid.
WM Mean of candidate wind speed.

Physical
IM Mean of candidate intensity.
IR Ratio between ‘IM’ and the intensity mean of clean pixels belonging to

the window centered at the candidate region.

3.3. Classification154

Segmented and characterized candidates must be classified in order to155

detect the spillages. A segmented candidate database was fixed to develop156

several classifiers. This database was made up of 155 look-alikes and 80 oil157

spills. Candidates were labeled using the EMSA and SASEMAR reports. At158

this point it is important to remark that some confirmed oil spills were broken159

during the segmentation process but they were dealt as different candidates160

by the classifiers. The database was split into three subsets: the biggest one,161

with 70% of elements, was saved for training purposes; the remainder was162

further split into two subsets with the same number of candidates, one of163
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them to evaluate the different classifier configurations and the other one to164

test the selected classifier.165

Developed classifiers, which are shown in the Section 4.1, prioritize the166

minimizing of false negatives to avoid environmental consequences even if the167

number of false positives is increased.168

3.4. Post-processing169

The aggressiveness of the detection process greatly influences the number170

of look-alikes but, as a consequence, fragmentation of oil spills often happens.171

Thus, a post-processing step, which is summarized in Figure 2.a, is applied172

in order to recover the original shape of the detected oil spills.173

The post-processing procedure analyzes each oil spill. For each slick, the174

bounding box is retrieved and extended. We have used a 3x3 matrix for175

extending it, where all the matrix cells have exactly the same shape and area176

than the original bounding box, and the center is focused on the slick. The177

established target window, symbolized by the matrix area, is used to retrieve178

a sub-image from the original SAR product (SARSI) as well as from the179

classified binary image (CSI). The noise of SARSI is reduced via a Gaussian180

filter. A threshold, which is established as the mean intensity minus the181

standard deviation, is applied to the filtered image. Pixels with intensity182

values lower than the threshold are selected, and a new binary image is183

obtained (TSAR). This new binary image as well as the sub-image from the184

classified binary image are analyzed through an iterative process: a dilation185
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operation is executed over the CSI and a bitwise conjunction operation is186

applied between both the dilated output (DCSI) and TSAR. After that, the187

bitwise conjunction operation result (CRDO) replaces the CSI as the dilation188

operation input. The process ends as soon as the result does not significantly189

differ from the one yielded by the previous iteration.190

The post-processing function does not reduce the original classified oil-191

spill since a per-element bitwise disjunction operation is applied between the192

original classified candidate and the output given by the shape improvement193

process. An example of the oil spill enhancement is shown in Figure 2.b.194

SARSI: SAR sub-image
TSAR: thresholding SAR sub-image
CSI: sub-image of the classified image
DCSI: dilated sub-image of the classified image
OUTPUT: output of the post-processing phase
CRDO: result of the bitwise conjuntion operation
DRDO: result of the bitwise disjuntion operation

{OUTPUT == CRDO}?

Post-processing algorithm

Selecting target window

Extracting SARSI

Copying CSI in DCSI

Copying CSI in OUTPUT

Extracting CSI

Generating TSAR

Filtering SARSI

Dilating DCSI

Applying bitwise conjuntion 
operation between TSAR and DCSI

Copying OUTPUT in DCSI

Adding DRDO to the OUTPUT LIST

Applying bitwise disjuntion
operation between OUTPUT and CSI

Yes

Yes

No

{Classified 
oil spills >0}?

No

Copying CRDO in OUTPUT

Acronym list

SAR image Classified image

{

Simple
threshold

Classified
image

Gaussian
Filter

Improved 
shape
image

a b

Figure 2: a) Post-processing algorithm steps. b) Example of the oil spill enhancement.
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4. Software prototype195

Previously shown algorithms were assembled into an operational proto-196

type supported by public licenses. The main goal was to provide the Galician197

surveillance authorities with a useful tool, since they do not possess their own198

automatic detection system.199

4.1. Classifiers200

Two classifiers were implemented and compared in order to state the201

classification process: on the one hand, a classifier based on ANN and, on202

the other hand, a classifier based on a decision tree. ANN [31] [32], as well203

as decision trees [33], have proved to be useful classifiers to develop expert204

systems focused on remote sensing data. Specific details of the classifiers are205

shown below.206

4.1.1. Artificial neural network207

In order to develop a classifier based on a Multilayer Perceptron (MLP)208

neural network, several network architectures using different learning rates209

and different momentum terms were tested. The selected architecture com-210

prised three layers. Concretely, the input layer contained 9 neurons to match211

components in the characteristic vectors, the hidden layer held 11 neurons,212

and finally, the output layer enclosed two neurons which symbolized each of213

the possible candidate classes.214

The number of intermediate layer neurons was set through empirical tests215

based on the ‘ad hoc’ rule that this number should not be higher than the216
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double of neurons of the input data [34]. Thus, the intermediate layer was217

tested with different number of neurons from 1 to 18. Finally, a layer with 11218

neurons was set since it achieved the best performance. After the empirical219

tests, a learning rate of 0.3 and a momentum factor of 0.9 were also selected.220

Moreover, The transfer function for each neuron was set as the weighted sum221

of all its inputs, and the hyperbolic tangent function was selected as the222

neuron activation function.223

The training set was used to configure the ANN weights, while the vali-224

dation set was used to test the ANN configuration and to prevent overfitting.225

Finally, the testing set allowed us to check the final configuration with an226

independent set and to confirm the ANN predictive power.227

4.1.2. Decision Trees228

The second implemented classifier was based on a decision tree supported229

by a Classification and Regression Tree (CART) algorithm [35]. Initially, the230

training subset was used to develop a decision tree with pure nodes. The Gini231

method [35] was applied to calculate the node impurity. Later, it was pruned232

using the validation subset and finally, the performance of the resulting de-233

cision tree was checked with the testing subset. One of the main advantages234

of the decision tree is its easy understanding and interpretation. Thus, the235

decision tree, which is shown in Figure 3, highlights essential characteris-236

tics used to classify candidates. Characteristics with gray background were237

removed from the decision tree during the pruning process. Furthermore,238
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Table 4 displays the linear composition of the principal component labeled239

as PCA3, which has proved to be relevant in the decision tree.240

Figure 3: Decision tree where highlighted branches symbolize essential characteristics.

Table 4: Linear combination of the principal component labeled as PCA3.
Name Value Name Value Name Value
APR 0.6160 φ1 -0.0735 I1 0.0373

Elongation -0.1469 φ2 -0.0683 I2 -0.1329
MPR 0.3499 φ3 -0.0237 I3 -0.1053

Rectangularity 0.2473 φ4 -0.0167 I4 -0.0020
Circularity 0.0457 φ5 -0.0049
Thickness 0.6099 φ6 0

φ7 -0.0151
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5. Results241

The fact that previously shown classifiers were developed and tested using242

the same datasets allows us to compare them from the accuracy point of view.243

Validation Test
Oil Spills Look-alikes Oil Spills Look-alikes Global efficiency

ANN 85.7% (12/14) 85.2% (23/27) 92.9% (13/14) 96.3% (26/27) 95.1%
Decision tree 92.9% (13/14) 85.2% (23/27) 92.9% (13/14) 92.6% (25/27) 92.6%

Table 5: Classification accuracy of Test and Validation subsets using developed classifiers.

Usually, testing subsets are reduced, since spillage database availability is244

limited and a balance between the number of oil spills and look-alikes should245

be met in order to achieve an appropriate development of classifiers. Despite246

Table 5 shows promising results, classifiers must also be tested over entire247

SAR images, which usually contain a much larger number of look-alikes.248

Classifier behaviors were directly tested over a subset of SAR images249

which was saved for that purpose. Figure 4 shows an example of the system250

execution. The top-left frame shows a composition of two images captured251

by Envisat where gray levels were tuned to improve visualization. Sub-image252

‘1’ was collected on November 14th, 2011 while sub-image ‘2’ was collected253

on March 28th, 2011. Readers are encouraged to check the evolution of the254

algorithms as described in the previous paper since the displayed composition255

was also shown there. Three oil spills were located in this composition and256

two of them are inside the ROI. The top-right frame shows the classification257

system output using the ANN classifier, while the bottom-left frame shows258

the output after applying the classifier based on the decision tree. Although259

16



both classifiers detect the three spillages, the ANN shows less look-alikes,260

which agrees to Table 5. Finally, the bottom right frame shows oil spill SAR261

sections and their system outputs. Image sections ‘a’ and ‘c’ show a common262

output since classifier results were identical in these regions. However, the263

classifier outputs were different in Section ’c’. The first output, from the left264

side, shows the ANN result, while the second one shows the decision tree265

output.266

Figure 4: Envisat ASAR image composition and classification system outputs using both
classifiers.
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5.1. Processing time267

Processing time is critical in DSSs focused on oil spill detection. Never-268

theless, it is left in the background by most previous studies. Following the269

experience acquired in the development of the segmentation process, system270

algorithms were developed using shared-memory parallel programming tech-271

niques in order to take advantage of contemporary multicore architectures.272

Specifically, the OpenMP API [36] was used to parallelize some code sections,273

such as the loops focused on the analysis of the image pixels.274

Both simple and improved parallelized algorithms were tested at a work-275

station (Core 2 Duo - 2.13 GHZ, 3 GB RAM) with images of 8,088 x 6,481276

pixels. Processing time is directly related to the number of segmented candi-277

dates. Table 6 shows several time measurements where the parallel improve-278

ment average is around 25%.279

Table 6: Processing time comparison between sequential and parallel system execution.
Processing time

SAR product Segmented pixels Oil spill candidates Sequential Parallel processing time Improvement
SAR-P11 210,064 670 62.16 sec. 45.33 sec. 27.07%
SAR-P22 36,366 108 24.4 sec. 18.57 sec. 23.89%
SAR-P33 27,211 65 20.89 sec. 15.29 sec. 26.81%

1ASA WSM 1PNDPA20070608 104715 000000732058 00452 27560 0360
2ASA WSM 1PNIPA20111014 105250 000000733107 00310 50324 4066
3ASA WSM 1PNIPA20110328 223900 000000733101 00030 47458 4070

6. Discussion280

There are several sources for oil spills and look-alikes. Fortunately, they281

are limited in the studied area. Regarding look-alikes, orography and mete-282

orological conditions mainly restrict them to low wind areas. The developed283
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system filters most of them in the segmentation phase due to the fact that284

AT is based on both wind speed and satellite IA. Regrettably, slicks are usu-285

ally eroded and even fragmented in the segmentation process, specially when286

they are partially located in low wind areas. This issue is mainly solved by287

the shape enhancement post-process.288

In relation to oil spills, there are neither oil platforms nor natural oil seeps289

in the Galician coast. Thus, maritime traffic is the main oil spill source.290

Since previous studies have shown than oil spill shape is related to its source,291

our classifiers mainly analyze the shape to distinguish oil spills from look-292

alikes. Reported classification accuracies are not easily compared, mainly293

because oil spill detection approaches are based on different datasets. The294

classifier accuracy of some previously published relevant classifiers are shown295

in Table 7. Although the results can not be directly compared, the developed296

system shows promising results since its accuracy is similar or even better297

than data shown in Table 7. Concretely, given that the system was developed298

to minimize false negatives, better results are accomplished in detecting oil299

spills.

Ref. Dataset composition Classifier Accuracy
[9] 71 oil spills, 68 look-alikes ANN - MLP 90% oil spills, 82% look-alikes
[11] 34 oil spills, 45 look-alikes ANN - MLP 87% oil spills, 91% look-alikes
[19] 71 oil spills, 6,980 look-

alikes
statistical classifier + rule-based
system

94% oil spills,99% Look-alikes

[8] 37 oil spills, 12,110 look-
alikes

statistical classifier + rule-based
system

78.4% oil spills,99.4% look-alikes

[20] 41 oil spills 12,245, look-
alikes

regularized statistical classifier +
automatic confidence estimation

92.07% oil spills (without confidence estima-
tion),89.7% look-alikes

[7]
11 oil spills, 6 look-alikes, 4
unknown

mahalanobis distance 82% oil spills, 100% look-alikes, 0% unknown
probabilistic model 90.9% oil spills, 67% look-alikes, 50% un-

known

Table 7: Other oil spill detection system accuracies

300
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Surprisingly, a simple decision tree classifier shows results similar to more301

complex classifiers. Probably, the reason is that look-alikes are mainly fil-302

tered in the segmentation phase. Thus, the classification process is simplified.303

Moreover, most remaining candidates can be classified using the IR compo-304

nent of the vector of characteristics, and only few of them require more305

information.306

From the processing time viewpoint, there are several techniques in the307

literature to accelerate the process, such as to analyze sub-images [11], to use308

skip factors [8], and to reduce the radiometric resolution [37] [12]. Neverthe-309

less, shared memory parallelization techniques have shown promising results310

since they allow the processing of high resolution SAR data in near real-time.311

7. Conclusions and ongoing work312

This paper has presented an expert system to find oil spills through SAR313

images. The system is based on algorithms adapted to Envisat ASAR data.314

Envisat is still in orbit but sadly, it is inoperative. However, the Sentinel-1 is315

the ESA space mission designed to take the place of the Envisat satellite and316

thereby assure the continuity of radar-based Earth observation services. The317

Sentinel-1 was recently launched on April 3th, 2014 and during the following318

months it will be fully operative. Thus, a future oil spill detection system319

based on Sentinel-1 data should be developed on the basis of the previously320

presented system.321

Despite the system accuracy shows a high rate, there is also a minimum322
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percentage of false positives as well as false negatives. To improve the algo-323

rithms we plan to extend the vector of characteristics with contextual data324

such as the proximity of potential sources. Concretely, ships detected from325

SAR images can be confronted with data provided by the ship automatic326

tracking system called Automatic Identification System (AIS). Moreover, this327

tracking information could be used to identify polluters.328
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