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HIGHLIGHTS 

 

• Interactive segmentation based on colour similarity. 

• Boundary editing step is used to improve the accuracy of the results for complex 

images. 

• Works as a multi-label image segmentation algorithm. 

• Effectively detects the lithological boundaries of geological images. 

 

ABSTRACT 

 

Large volumes of images are collected by geoscientists using remote sensing platforms. 

Manual analysis of these images is a time consuming task and there is a need for fast and robust 

image interpretation tools. In particular the reliable mapping of lithological boundaries is a 

critical step for geological interpretation. In this contribution we developed an interactive 

image segmentation algorithm that harnesses the geologist’s input and exploits automated 

image analysis to provide a practical tool for lithology boundary detection, using photographic 

images of rock surfaces.  

 

In the proposed method, the user is expected to draw rough markings to indicate the locations 

of different geological units in the image. Image segmentation is performed by segmenting 
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regions based on their homogeneity in colour. This results in a high density of segmented 

regions which are then iteratively merged based on the colour of different geological units and 

the user input. Finally, a post-processing step allows the user to edit the boundaries.    

 

An experiment was conducted using photographic rock surface images collected by a UAV 

and a handheld digital camera.  The proposed technique was applied to detect lithology 

boundaries.  It was found that the proposed method reduced the interpretation time by a factor 

of four relative to manual segmentation, while achieving more than 96% similarity in boundary 

detection. As a result the proposed method has the potential to provide practical support for 

interpreting large volume of complex geological images. 
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1. INTRODUCTION 

 

In recent years image acquisition from aircraft and Unmanned Aerial Vehicles (UAVs) have 

attracted much attention for remote sensing applications (Harwin and Lucieer, 2012; Turner et 

al., 2012). UAVs have been enthusiastically adopted by the geoscience community due to their 

capacity to capture high resolution data remotely and quickly (Bemis et al., 2014; Vollgger and 

Cruden, 2016). This makes the mapping of exposed rock surfaces for structures, stratigraphy 

and lithology possible even for locations with limited access. However, UAVs generate large 

volumes of images, and manual analysis of the captured images is time consuming, warranting 

the use of automated analysis to provide fast and reproducible results. 

 

Geological mapping using digital photography and remote sensing has been an active area of 

study, and automated and semi-automated analysis techniques have been applied in various 

studies (Ferrero et al., 2009, 2011; Kottenstette, 2005; Seers and Hodgetts, 2016; Vasuki et al., 

2014). For lithology mapping, there have been a number of studies that used spectral and other 
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remotely sensed data to map lithology over large geographical regions.  Yu et al. (2012) used 

machine learning based pattern recognition and image analysis techniques to classify 

lithological units from multi-spectral satellite images and potential field geophysics data while 

Abdul-Qadir (2013) used a maximum-likelihood classification method to classify Landsat 

images. Perez et al (2012) applied a support vector machine to classify lithology using texture 

features extracted by Gabor filters. Cracknell and Reading (2013) compared the performance 

of five machine learning approaches (namely random forests, support vector machines, k-

nearest neighbours, naive Bayes and artificial neural networks) and their results showed that 

the use of random forests is a good choice for lithology classification.  

 

The above mentioned lithology mapping methods focus on characterising and predicting 

different lithology types using machine learning and classification methods. The study 

presented in this paper focuses on detecting detailed lithological boundaries from photographic 

images of rock surfaces using an image analysis approach. Figure 1 shows four photographic 

rock images used in this study together with their manually mapped lithology. Typical 

lithological boundaries are contacts between different stratigraphic units, the contact surfaces 

of an intrusive geological unit or fault lines separating different units. They are associated with 

discontinuities or changes in visual cues such as colour and texture, due to variations in the 

mineralogical assemblage in different geological units. Previously, several techniques were 

used to detect lithological boundaries from remotely sensed data including the rotation variant 

template matching algorithm (RTM) (Salati et al., 2011; van Ruitenbeek et al., 2008) and the 

Walsh transform (Maiti and Tiwari, 2005). In the RTM algorithm a user defined a template, 

which is a row of pixels containing the boundary information, is moved over the grey scale 

image. The statistical fit is calculated in each position of the image by rotating the template in 

user defined increments and the angle which has optimal fit is identified. This angle defines 

the strike of the boundary and the matched pixels are used to define the boundary zone. Salati 

et al (2011) applied the RTM algorithm to ASTER imagery to detect boundaries between 

evaporates, marly limestone and sandstone, while  Van Ruitenbeek et al (2008) used the RTM 

algorithm to identify mineral zones in the Pilbara block, Western Australia from hyperspectral 

imagery. Maiti and Tiwari, (2005) detected lithology boundaries from the German continental 

deep drilling project borehole well log data using the Walsh transform. Their method identified 

known lithological units from previous investigations of the study area together with some 

other finer structures and their presence was confirmed from the geological information. Taye 

(2011) detected lithology boundaries from aeromagnetic, ASTER, gamma ray and SRTM data 
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sets using two methods; an edge detection method (hyperspectral Laplace gradient filtering) 

and the RTM method. The results show that even though both methods detected the boundaries 

well, the RTM method performed better than the edge detection method. A pilot study done by 

Ngcofe and Minnaar (2012) shows that even though the automated technique detects some of 

the boundaries well,  it produced over segmentation in some lithologies. Thus the outcome of 

their study indicated the use of expert input with automated segmentation was necessary to 

achieve accurate results. In our approach we have chosen to adopt a similar philosophy of using 

expert input in conjunction with automated segmentation to identify different rock units in 

photographic images. 

 



5 
 

 



6 
 

Figure 1. Left Columns: Original high resolution rock images. Right column: Lithological 

boundaries obtained by manual analysis, the different lithological units are shown in the legend.  

 

1.1 Image Segmentation 

Automated image segmentation techniques have been used to segment natural images (Martin 

et al., 2004; Ning et al., 2010), medical images (Grau et al., 2004) and even images from Mars 

(Gong and Liu, 2012; Song and Shan, 2008). The study by Vantaram and Saber (2012) provides 

an extensive survey of recent colour image segmentation algorithms. Colour image 

segmentation algorithms typically use attributes from various colour spaces, for example RGB, 

LAB, HSV, and LUV (Mignotte, 2008) for segmentation. Other than colour, texture is also an 

important visual cue for region segmentation (Jones, 1994; Liu and Wang, 2006). A number of 

studies have used both colour and texture features for image segmentation (Chen et al., 2005; 

Martin et al., 2004).  

 

There are numerous automated image segmentation techniques  available including superpixel 

(Achanta et al., 2012; Liu et al., 2011), mean-shift (Cheng, 1995; Comaniciu and Meer, 2002) 

and watershed algorithms (Vincent and Soille, 1991), where neighbouring pixels with 

homogeneous visual cues are merged to generate segments.  However, the outcomes of these 

algorithms often result in over-segmented regions in complex natural scenes as visual cues in 

a single object are often not homogeneous. For images of complex natural scenes it is 

challenging to develop an automated algorithm that can produce an output perceptually 

equivalent to human analysis. One of the main reasons for this is that an object that needs to be 

identified as a single segment may not have a homogeneous appearance in terms of colour 

and/or texture in complex scenes. Thus, some degree of user input is needed to improve the 

segmentation outcome. Moga and Gabbouj (1998) proposed a marker based watershed 

algorithm and showed that their interactive method effectively reduces the over segmentation 

problem found in an automated watershed method. Interactive image segmentation has been 

proposed and used by many researchers (Boykov and Jolly, 2001; Chen et al., 2011; Dhara and 

Chanda, 2011; Jung et al., 2014; Li et al., 2004; Ning et al., 2010; Noma et al., 2012; 

Panagiotakis et al., 2013; Peng et al., 2011; Protiere and Sapiro, 2007; Vezhnevets and 

Konouchine, 2004; Zhou and Liu, 2012). In these methods, users need to roughly indicate the 

location of object and background using strokes/curves or bounding boxes. These markers 

(strokes/curves) give useful information about the user’s intention. Thus the rest of the image 

is effectively segmented to satisfy the user’s preference. In their study, Noma et al (2012) 
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showed that misclassification in segmentation output may be solved by placing more markers. 

 

Interactive graph cuts (IGC) (Boykov and Jolly, 2001) is a well-known interactive 

segmentation algorithm, it represents an image using a graph, where the image pixels are 

represented by nodes of the graph and the edges represent the relationship between adjacent 

pixels. The min-cut/max-flow algorithm is used to find the globally optimum solution for 

segmentation. Rother et al (2004) proposed a GrabCut algorithm where the user draws a 

rectangle around the object region and the colour and edge information are used to segment the 

image. A graph cut algorithm is then used to find the boundary of the object and this boundary 

is further refined by using alpha matting. The above mentioned methods use pixel-based 

operations to interactively segment the image but there are other approaches which apply 

region-based operations. They use an automated image segmentation algorithm which typically 

generates over segmented regions, and these regions are then merged based on user input. Ning 

et al. (2010) developed a maximal similarity region merging method (MSRM), which merges 

adjacent regions based on local maximum colour similarity. Their algorithm first merges the 

background regions marked by the user, and then grows the background region by calculating 

the similarity between it and adjacent regions based on their colour histograms. In a second 

stage, it merges all the unmarked regions with their adjacent regions if they have maximal 

similarity over all other adjacent regions. This algorithm has been modified to detect multiple 

similar colour objects (Chen et al., 2011; Dhara and Chanda, 2011). Jian et al. (2013) extended 

the MSRM algorithm to segment medical images and they used texture and grey-level 

similarity to merge the adjacent regions. Graph based approaches have also been proposed for 

interactively merging initial regions (Noma et al., 2012; Panagiotakis et al., 2013; Peng et al., 

2011). Peng et al. (2011) used a localised graph cut algorithm, where in each iteration only the 

regions adjacent to the user marked regions are processed. Noma et al. (2012) developed a 

graph based algorithm which merges the initial regions based on colour and spatial information. 

Long et al (2013) proposed a graph based algorithm, where initial regions are used to build the 

graph nodes and the min-cut/max-flow algorithm is used to find the merging solution.  

 

The interactive algorithms developed by previous studies provide satisfactory results with most 

natural images. However none of the methods have been applied to rock or lithology mapping. 

Most interactive methods do not allow the user to interactively edit the boundaries after 

producing the results. Rock surface images often have very subtle colour changes near the 

boundary of different geological units which makes it difficult for even interactive algorithms 
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to detect the boundaries correctly. However, accurate tracing of lithology boundaries is 

important for geological mapping, with significant impact in the interpretations generated for 

oil and mineral exploration by way of example. Thus, it becomes necessary to allow interactive 

correction of the analysis results during post-processing stage to produce results which are of 

practical use to geologist.  

 

This paper presents an Interactive Lithological Boundary Detection (ILBD) method to detect 

the lithological boundaries of complex geological images. Section 2 of this paper explains the 

ILBD method in detail and Section 3 presents the outcome of several experiments performed 

using the ILBD method. In our trial dataset an expert geologist, who visited the study area, 

manually interpreted the lithological boundaries and the results were used to validate the 

performance of the proposed algorithm. The time taken for both manual and interactive 

methods were also calculated for comparison and we compare our method with some other 

interactive methods. 

 

2. THE PROPOSED ILBD METHOD 

 

2.1 The Proposed Image Segmentation Workflow 

 

 
Figure 2. The workflow used to interpret lithological units using the ILBD method, illustrated 

with a sample area from Figure 1A. 

 

Figure 2 outlines the stages taken using the ILBD method towards finding highly detailed 

region boundaries which are suitable for lithology mapping. Firstly, the method requires 

manual input in the form of user drawn markers to guide the multi-label image segmentation 

between the multiple objects present in a single image.  The proposed ILBD method then 
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consists of three sequential steps. In the first step, the image is segmented using a superpixel 

algorithm (Achanta et al., 2012) to form initial regions. Superpixel algorithms group similar 

image pixels into small patches, this reduces the complexity of subsequent segmentation tasks. 

These superpixels are then merged with neighbouring superpixels based on their colour 

similarity. This step optimises the number of regions for further processing while ensuring the 

preservation of the fine details of region boundaries.   The next step is a region growing and 

merging process that separates the regions specified by the user marked lines. This step uses 

colour similarity and the user inputs to group the segmented regions from the first step into 

different lithological units. Finally, a post-processing step (boundary editing step) allows the 

user to interactively edit the boundaries of the objects defined by the ILBD method. 

 

2.2 Data 

For this experiment, four digital photographs of rock surface images were used. Two of those 

photographs (Figure 1a and Figure 1b) are from Piccaninny Point on the east coast of Tasmania, 

Australia. These photographs were captured using an UAV at an altitude of 30-40m using a 

Canon 550D DSLR camera resulting in images of approximately 1 cm resolution (Lucieer et 

al., 2011). For comparison, two additional photographs were captured from the ground with a 

Canon S90 handheld digital camera of intrusive exposures from coastal outcrops on the coast 

of Maine, USA. 

 

2.3 User Input 

The user is asked to roughly indicate small portions of regions to segment by drawing lines 

over appropriate areas in the image. These markers help guide the image segmentation process. 

For maximum segmentation accuracy most of the key features should be covered by these 

markers (Jung et al., 2014; Ning et al., 2010). The ILBD method is developed as a multi-label 

segmentation algorithm, thus the user is required to mark connected object/background regions 

using one continuous line and unconnected objects/background regions need to be marked with 

separate lines. Figure 3 shows an example rock surface image, where a user mapped the 

boundaries of biotite-hornblende granodiorite dyke relative to the surrounding metasediment.  

A green coloured marker indicates the regions associated with granodiorite dyke, and blue 

markers are used to represent the surrounding metasediment.  Note that multiple lines are drawn 

using same coloured markers to represent separate regions that are not connected. 
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Figure 3. User input. Note that that in this image the different colours of the markers indicate 

two types of regions to separate- the biotite-hornblende granodiorite dyke marked by green 

lines and the background metasediments marked by blue. 

 

2.4 Initial Segmentation 

 

Pixel-based segmentation: Our image segmentation method first performs a pixel-based 

segmentation to generate initial segments. The initial segmentation process can employ any of 

the low-level segmentation methods (Achanta et al., 2012; Cheng, 1995; Liu et al., 2011; 

Vincent and Soille, 1991), but generating these initial segments such that they preserve the 

integrity of visual homogeneity within each segment is important as this will affect the 

detection of detailed boundaries of regions at the later stages of the analysis. Our experiments 

with complex geological images showed that the Simple Linear Iterative Clustering (SLIC) 

superpixel algorithm (Achanta et al., 2012) grouped the image pixels effectively to generate 

initial segments, where their boundaries reflect the lithology boundaries. An example initial 
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segmentation output is shown in Figure 5a. 

 

The SLIC superpixel algorithm (Achanta et al., 2012) is based on k-means clustering acting on 

image pixels in the CIELAB colour space. CIELAB is a perceptual colour space where a colour 

is represented by its lightness, L, its green-red/magenta opponent value, a and its yellow-blue 

opponent value b, as shown in figure 4 (Kovesi, 2015).  This algorithm is initialised with cluster 

centres arranged in a regular grid. After that, each pixel in the image is grouped with its nearest 

cluster centre within a region, where the distance is defined in terms of colour difference in 

CIELAB space and the spatial distance. The cluster centres are then adjusted to the mean vector 

of the corresponding cluster. Finally, those pixels not connected to any cluster centres are 

grouped with their nearest regions (superpixels). In this study a MATLAB implementation of 

the SLIC superpixel algorithm is used (Kovesi, 2013). For the convenience of algorithm 

development, we call all the regions which are assigned with a lithological unit as marked 

region M and the remaining regions are labelled as non-marked region N. To separate different 

lithological units, the initial regions, that are connected by the same continuous user drawn line 

are labelled with a same object name (M1, M2, ….., Mm, where m is the total number of 

lithological regions which need to be separated).   

 

Optimising the Initial Segmentation Output: The SLIC superpixel algorithm will always 

produce a fixed (user specified) number of superpixels because it is essentially a k-means 

process. At this stage the image will be significantly over segmented. To reduce the number of 

regions we apply a preliminary region merging process, where initial superpixels are merged 

with their neighbouring superpixels if there is high colour similarity between them. Reducing 

the number of initial segments minimises the computational cost for the subsequent marker 

based region growing processes described in Section 2.5. 

 

The region merging process is based on the colour similarity, which is calculated by the colour 

difference between adjacent superpixels. The colour difference between adjacent superpixels 

is defined as the Euclidean distance between the median CIELAB colour values of each 

superpixel. A smaller value of colour distance between two regions represents a higher 

similarity between those regions. Note that the images and the results are presented in RGB in 

this paper for visualisation.  
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Figure 4. CIELAB colour map. 

 

The colour distance between regions R and Q is defined as follows, 

ρ (R,Q) =    �(𝑅𝑅𝐿𝐿 − 𝑄𝑄𝐿𝐿)2 + (𝑅𝑅𝑎𝑎 − 𝑄𝑄𝑎𝑎)2 + (𝑅𝑅𝑏𝑏 − 𝑄𝑄𝑏𝑏)2                                                      (1) 

 

Where R and Q are adjacent regions, RL, Ra, Rb are the median colour values for the L, a and 

b components of region R and QL, Qa, Qb are the median colour values for the L, a and b 

components for region Q.  

 

In this step, each initial region is merged with its adjacent region having the minimum colour 

distance among all its adjacent pairs, provided that those two adjacent regions are not marked 
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by the user as two different regions.  

 

Let for a region Q, the set of its adjacent regions SQ = {Ai} i = 1,2.....n.  

Q and Aj are defined as minimum colour distance pairs if they satisfy the following condition,  

 

ρ (Q, Aj) = min(ρ (Q, Ai)) i = 1,2..,..,n                                                                                         (2) 

 

Where Aj is one of the adjacent regions of Q. 
 

This process reduces the number of regions in the subsequent step. While this process can be 

applied in multiple iterations to further reduce the number of regions, the resulting regions are 

to be used as input to the subsequent region growing process, which integrates regions based 

on markers provided by the user.  Thus, it is important to balance reducing the number of 

regions with preserving the integrity of homogeneity in each region which can affect fine 

details of region boundaries. We empirically determined that two iterations for this merging 

step produces a good balance that satisfies these requirements (Figure 5b).  This optimisation 

step is particularly useful for complex images such as geological images, where the initial 

segmentation algorithm groups the image into a large number of small regions as shown in 

Figure 5a. In this example, 10341 initial regions are reduced to 2135 regions after the 

optimisation step. The segmented regions from the optimisation step are labelled individually 

and are used in the subsequent region growing process.  

 

 
Figure 5. (a) Initial regions (super pixels) generated by the SLIC superpixel algorithm applied 

to the image previously shown in Figure 1.  (b) Regions generated as a result of the optimization 
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step, which merged some of the initial regions in (a). 

 

2.5 Marker-based Object Segmentation for Lithology Boundary Detection 

 

Our initial segmentation produces image regions where pixels in each regions have similar 

colour characteristics.  The aim of the marker based region growing process is to group those 

regions into lithological units which have been marked by the user with a specific aim to find 

their boundaries.  To detect the boundaries of different lithological units, all of the segmented 

regions should be assigned with the correct label of the lithological unit.  

 

Previously two-step strategies have been effectively used for image segmentation. Ning et al., 

(2010) proposed a method which merges all the initial regions belonging to the background to 

isolate the object from the image. In the first step, to grow the background region, their method 

merges each user marked background region with one of its non-marked adjacent regions that 

has maximum colour similarity. Then in the second step all the remaining regions are merged 

with their adjacent regions based on colour similarity. This process is iteratively performed to 

extract the object from the image. We also use a two-step algorithm for image segmentation. 

In the first step, region growing is iteratively applied to the initially marked ‘seed’ regions. In 

the second step, a region merging algorithm, similar to the optimising initial segmentation 

output step (described in 2.4) is used to merge the regions iteratively until all the lithological 

boundaries are detected.  

 

2.5.1 Region Growing from Seed regions 

For each region P (P ∈ M), its set of adjacent regions SP = {Bi} i = 1,2, ,...k are identified. Then, 

for each Bi, if it is not a marked region (i.e Bi  ∈ N), its set of adjacent regions 𝑆𝑆𝐵𝐵𝑖𝑖  = �𝑆𝑆𝑗𝑗
𝐵𝐵𝑖𝑖� j = 

1,2,,...r  are formed. It is obvious that P ∈ 𝑆𝑆𝐵𝐵𝑖𝑖 . The colour distance between region Bi and all its 

adjacent regions  𝑆𝑆𝐵𝐵𝑖𝑖, that is ρ (Bi, 𝑆𝑆𝑗𝑗
𝐵𝐵𝑖𝑖) are calculated using Equation (1) described in section 

2.4. If P and Bi satisfy Equation (2), then there is a high probability that the non-marked region 

Bi belongs to the same object region P. Thus, Bi is merged with P and assigned to the same 

label as region P. If region Bi has a minimum colour distance with any region other than P, then 

Bi and P will not be merged. This step is performed iteratively. After each iteration, the labels 

of the regions are adjusted accordingly and the set of M (marked regions) and N (non-marked 
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regions) updated. This process stops when the set of marked regions M stops changing. The 

region growing step of our ILBD method is summarised as below,  

 

Algorithm 1. Region growing step 

Input: Labelled regions from pre-processing step 

1. For each region P ∈ M, compute its adjacent regions SP = {Bi} i = 1,2,...k 

2. For each Bi  ∈ N, compute its adjacent regions 𝑆𝑆𝐵𝐵𝑖𝑖  = �𝑆𝑆𝑗𝑗
𝐵𝐵𝑖𝑖� j = 1,2, 3,...r.  Noting that P 

∈ 𝑆𝑆𝐵𝐵𝑖𝑖 

3. Calculate the colour distance between region Bi and 𝑆𝑆𝐵𝐵𝑖𝑖  using equation (1) and if 

P and Bi satisfy equation (2), then merge Bi with P 

4. Update the labels of merged regions and N accordingly 

5. If the regions in M no longer changes end this process;  

otherwise go back to (1-1). 

 

After this region growing step, some of the non-marked regions will be merged with marked 

regions. However, there may be some remaining non-marked regions that are surrounded by a 

marked region as shown in Figure 6a. These regions are merged with their surrounding marked 

region and the labels are updated accordingly. Nevertheless, after this region growing step, 

there may still be non-marked regions remaining as shown in Figure 6b. These regions are not 

merged by the region growing algorithm since they have higher colour similarity with other 

non-marked regions than their similarity with the marked regions.  

 

 
Figure 6. (a) Results after region growing before filling the enclosed regions (b) Results after 

region growing (c) Final segmentation  

 

2.5.2 Region merging algorithm 
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All the remaining non-marked regions can be merged with their adjacent regions that have the 

maximum similarity (minimum colour distance) out of all the adjacent pairs as proposed in 

MSRM (Ning et al., 2010). However, this process forces each region to merge with at least one 

of its adjacent regions and this may result in merging of regions with low similarity. In order 

to avoid this, a threshold λ is introduced in our method. Nonetheless, to preserve the lithological 

boundaries, all the non-marked regions should be merged with one of the marked regions. Thus, 

this step is repeated iteratively until all the non-marked regions are merged with a marked 

region.  

 

The threshold λ is defined as λ = µ.T, where µ is a user defined threshold which is the 

percentage of adjacent regions which need to be merged in each iteration and T is the total 

number of adjacent pairs. The value of λ will vary in each iteration as regions are being merged 

and the total number of adjacent regions changes. A typical value for µ that we have found 

useful is around 20%. 

 

For a region R, let the set of its adjacent regions be SR = {Ai} i = 1,2,...n . The region R is merged 

with Aj ∈ SR, if all of the following conditions are satisfied: (a) the colour distance between R 

and Aj , defined as ρ (R, Aj), is the lowest among the colour distances between R and all of its 

adjacent pairs in SR; (b) their colour distance score is among the top λ values; and (c) R and Aj 

do not belong to two different user marked regions (i.e if R ∈ Mp then Aj ∉ Mk (k ≠ p) , where 

Mp and Mk are marked by the user as two different objects). This algorithm is shown below,    

 

Algorithm 2.  Merging step 

Input: output from region growing step, threshold µ which is a user defined percentage 

1. For each region R in the image, identify its adjacent regions SR = {Ai} i = 1,2, 3,...n 

2. For each region R in the image, calculate the colour distance between region R 

and Ai using equation (1) and find the pair with minimum colour distance using 

equation (2) 

3. Sort the colour distance scores in ascending order 

4. Calculate λ = µT (T is the total number of adjacent region pairs) 

5. Get the top λ colour distance scores from the sorted scores. Merge these adjacent 

pairs if they have not been marked as different regions by the user. 
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6. Update the labels of merged regions and N. 

7. If N is empty then end this step; otherwise go back to (2-1). 

 

After this region merging stage the image will be separated into a number of regions, equal to 

the number of regions defined by the initial markings made by the user. Different values for µ 

were tested for various images and the analysis showed µ = 0.2 (20%) gave the best 

performance for most of the images used in this paper. The final results obtained after these 

steps are shown in Figure 6c.  

 

2.6 Boundary editing 

 

The output of the image segmentation algorithm may vary depending on the level of coverage 

of user marked lines that were used to represent the distribution of different lithological units, 

as well as the level of colour homogeneity within the units.  Thus, for our system to be used as 

a practical tool for geologists, it is important that the boundaries can be easily edited in a post 

processing step. A Graphical User Interface has been designed to allow interactive post-editing 

of the region boundaries. To edit the object boundary, the user needs to roughly sketch the 

correction. This is done by selecting the region that needs to be changed by pressing the left 

mouse button and dragging the mouse pointer through the areas that need to be added to the 

selected region. Then, the boundary editing algorithm modifies the segmentation based on the 

user drawn sketches using the original superpixel image segmentation output which represents 

the most primitive regions used in our segmentation algorithm. The user can view the edited 

results and continue this process until they achieve a satisfactory result (Figure 7).  
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Figure 7. (a) User input (yellow) used to edit the boundary. (b) Lithological boundaries 

obtained after boundary editing. 

 

Implementation: The proposed method was implemented in a MATLAB environment, and a 

desktop with Windows 7 64 bit, Intel core i7, 3.4 GHz CPU and 32 GB RAM was used to run 

this algorithm.  

 

3. EXPERIMENTAL RESULTS 

 

Experiments were conducted to demonstrate the effectiveness of our ILBD method for 

lithology mapping of two UAV collected images shown in Figure 1. The aim was to map 

different lithology units present in those images.  These images were also manually mapped by 

an expert geologist, and used to evaluate the results of our method.  In addition, we compared 

the performance of the proposed method with other well-known methods, namely MSRM 

(Ning et al., 2010), DG (Noma et al., 2012) and IGC (Boykov and Jolly, 2001) using natural 

scene images to test the applicability of the ILBD method to non-geological images.  

 

3.1. Manual Interpretation  

ArcMap 10.2.1 and ArcCatalog were used to generate a digital map by non-automatic methods 

(see Figure 1). A standard geological digitising protocol was followed, whereby three separate 

digital vector files (SHAPE_FILES) were created in ArcCatalog to delineate the boundary of 

the map area, the different lithological contacts and the geological units present in the outcrop. 

These were then opened in ArcMap for digitisation. The map boundary and the different 

lithological contacts were traced using the Editing Tool, generating a series of line vectors. 

Polygons were subsequently constructed from the traces of the lithological boundaries and 

defined as appropriate geological units.  

 

3.2. Quantitative Performance Measure 

For quantitative analysis of the performance of ILBD method, the accuracy of the boundary is 

calculated (Jung et al., 2014). Accuracy is a measure of correctly classified pixels.  

 

3.3 Lithology mapping using proposed method 
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Figure 8. Left column: Initial super pixels and user markings, different colours are used to mark 

different lithological units. Right column: Lithological boundaries detected by the ILBD 

method without the boundary editing step. In Figure 8(a) and (b) the biotite-hornblende 

granodiorite dyke is marked by green lines, mathinna group metasediments marked by blue, 

felsic aplite dike marked by black, cherty units marked by yellow, granodiorite marked by 

cyan, the water area marked by magenta, and the mixture of granodiorite and metasediments 

marked by red lines. In Figure 8(c) xenoliths are marked by blue, quartzo-feldspathic veins 

marked by yellow, clast-bearing rhyolitic dike marked by magenta, and granulite marked by 

green lines. In Figure 8(d) quartzo-feldspathic veins are marked by yellow, plagioclase-phyric 

basalt marked by blue, granulite marked by green lines, and the water is marked by magenta 

lines. 

 

Figure 8 shows the initial segments of the four geological images used in this study, together 

with the user markings.  The time taken by the proposed algorithm to produce the results shown 

in Figure 8 (a), (b), (c) and (d) are 263 sec, 78 sec, 287 sec and 263 sec respectively. The total 

time taken to produce the results shown in Figure 8 was recorded. This included the time taken 

to place user markers and process the image using the ILBD method. The same user edited the 

boundaries using the interactive boundary editing method and the total time was determined, 

including the time taken to place boundary markers. Please note that different users may need 

different amount of time to place the initial markers and boundary markers. Figure 9 shows the 

final boundary edited result. For visual comparison of the results, the outline of the object 

boundaries detected by the ILBD method is overlaid on top of the manually interpreted image. 

The total time taken by manual and interactive mapping is shown in Table 1 and the accuracy 

of results are reported as a percentage of correctly classified pixels. The results presented in 

Table 1 demonstrate that with the boundary editing step the ILBD method reduced the time 

taken for interpretation by more than the factor of four when compared to manual interpretation 

while achieving more than 90% accuracy. The accuracy increased to more than 96% when the 

boundary editing step was used.  
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Figure 9. Left column: Lithological boundaries obtained after boundary editing. Right column: 

Lithological boundaries obtained by the ILBD method overlaid on top of the manual 

interpretation, where different colours indicate different types of rock. For explanation of the 

different rock types please refer to the legend in Figure 1. 

 

Table 1. Performance of the proposed algorithm for lithological boundary detection in the two 

example images. 

 ILBD without boundary editing ILBD with boundary editing Manual 

 Accuracy Time Accuracy Time Time 

Figure 9a 95.5% 8 min 97.9% 11 min 95 min 

Figure 9b 90.8% 5 min 96.5% 11 min 70 min 

Figure 9c 95.1% 10 min 96.2% 14 min 90 min 

Figure 9d 98% 6 min 98.6% 8 min 35 min 

 

3.4. Comparison with other methods 

 

The proposed segmentation algorithm is specifically developed to map the lithological 

boundaries from geological images. However, the proposed method outperforms state-of-the-

art methods when segmenting non-geological images as well. Experiments were performed 

and the results are compared with interactive image segmentation algorithms namely MSRM 

(Ning et al., 2010), DG (Noma et al., 2012) and IGC (Boykov and Jolly, 2001). For the MSRM 

and DG methods the source codes published by their respective authors were used and for IGC 

we used the implementation of McGuinness and O’Connor, (2008). For each image tested, the 

same input markers were used for all of the algorithms. For the DG method we used its default 

initial segmentation method, the watershed transform proposed by Vincent and Soille, (1991) 

and its post-processing step. MSRM and IGC are single object extraction algorithms thus we 

did not use it with the rock surface images in section 3.4.1. 

 

3.4.1 Experiments with rock surface images 

In this section we compare the ILBD algorithm with another multi label segmentation 

algorithm DG (Noma et al., 2012). The DG algorithm was used to extract different lithological 

units from the rock surface images used in this paper with the input markers shown in Figure 

8. The boundaries detected by the DG algorithm are shown in Figure 10 and it achieved 
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accuracy of 78.5%, 91%, 94.1% and 67.8% for Figure 10 (a),(b),(c) and (d) respectively. The 

proposed ILBD algorithm achieved higher accuracy for all the images with the boundary 

editing step. DG performed slightly better than the proposed algorithm for Figure 1b when the 

boundary editing step of ILBD is not used. However once the boundary editing step was 

applied the ILBD algorithm achieved 96.5% accuracy for that image. 

 

 
Figure 10. Lithological boundaries detected by DG using the user inputs shown in Figure 8. 

 

3.4.2 Experiments with non-geological images 

 

Images from the Berkeley database (Martin et al., 2001), Grabcut database (Rother et al., 2004), 

MSRM database (Ning et al., 2010) and the Microsoft Research database   were used to analyse 

the performance of the proposed algorithm. The mean-shift algorithm (Comaniciu and Meer, 

2002), implemented in the EDISON system was used as the initial segmentation algorithm for 

the proposed method and for MSRM. Since IGC, DG and MSRM do not have a boundary 

editing step, for fairness we did not use the boundary editing step of the ILBD method in these 
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segmentations.  

 

Figure 11 shows the segmentation results from the four algorithms. Visually these figures 

demonstrate the effectiveness of the proposed method in comparison to the others.  To quantify 

the performance of algorithms the segmentation results were compared with ground truth 

images. For the first two images in Figure 11, the ground truth was not provided by the database 

thus we manually traced it and for the remaining four images the ground truth provided by the 

database is used. Table 2 shows the results of the quantitative analysis.  
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Figure 11. Comparison of segmentation results. First column: Initial segmentations and user 

input where the green line indicates the object of interest and blue indicates the background. 

Columns two to five: Object regions extracted by IGC, DG, MSRM and ILBD (without 

boundary editing step) respectively. 
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Table 2. Quantitative results (Accuracy). 

Image flower twodogs kangaroo bool woman people mean 
        

size 
(height*width) 216 X 229 295 X 335 321 X  481 450 X 520 481 X 321 320 x 240  

Initial region 250 196 204 223 252 318  
        

MSRM 98.54 98.87 97.23 99.25 99.26 98.48 98.60 
DG 59.48 93.41 83.01 94.08 70.24 72.37 78.76 
IGC 87.99 33.87 75.60 92.51 26.04 87.53 67.26 

ILBD 98.71 99.17 98.11 99.31 99.26 99.57 99.02 
 

The proposed algorithm (ILBD) achieved a higher accuracy than all the other segmentation 

methods for all the images – achieving an average accuracy over 99%. The MSRM performed 

better than the IGC and DG algorithms, but our ILBD method performed slightly better than 

the MSRM method. In the MSRM method, only the marked background regions are expanded 

firstly to extract the object from the image unlike the ILBD algorithm, where it expands all the 

marked regions with their adjacent regions if they have maximum similarity. Another main 

difference between the MSRM and ILBD methods is, in the region merging process, the 

MSRM algorithm forces all the non-marked regions to merge with one of their adjacent 

regions, but our ILBD method merges the adjacent regions only if their similarity is above the 

threshold. These differences may have contributed to the better performance of the ILBD 

method. 

 

It is not possible to directly compare the time when analysing the performances of the 

algorithms, since the ILBD algorithm and MSRM are developed in MATLAB while DG is 

implemented in Java and IGC in C++. The average time taken (without the time taken for user 

input) to produce the results (Figure 11) by the ILBD method is 8 seconds, while the MATLAB 

based MSRM algorithm took an average of 18 seconds.  

 

4. DISCUSSION 

 

4.1. Limitations of proposed method 

 

The ILBD algorithm produces promising results for outcrop images captured at two different 
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resolutions (Figure 9) but has the following limitations. 

  

• The ILBD algorithm relies on the user’s expertise in separating complex objects within 

images. A discussion on the potential biases and variability in mapping these 

lithological boundaries by a geologist is beyond the scope of this paper, nevertheless, 

the performance of the ILBD algorithm relies on the user’s ability to sketch the marker 

lines over the areas, that capture the feature diversity in the lithological unit being 

mapped.  

 

• Areas of shadow or regions that are occluded by vegetation or hidden under water will 

always be difficult to correctly classify. This is illustrated by the image in Figure 9c, 

where the algorithm failed to classify the boundary of granulite which is covered by 

grass. In Figure 9d, water is present but the user chose to label this as water rather than 

interpret the lithology beneath the water. 

 

• In addition, our experiment showed that the results of the proposed ILBD algorithm 

depends heavily on the initial segments. If the initial segmentation groups some 

background and object pixels as the same region, the algorithm may fail to detect the 

boundary correctly, producing a misclassification that cannot be corrected by the 

boundary editing step. Thus the choice of the initial segmentation algorithm plays a 

critical role. In one of the experimental images, shown in figure 8c, the initial SLIC 

super pixels did not adhere to the lithological boundary well in some areas of the image. 

This is shown in the example area highlighted in Figure 12, where a portion of the clast-

bearing rhyolitic dike is grouped together with quartzo-feldspathic veins by the SLIC 

algorithm. Changing the parameters of this algorithm did not solve the problem. This 

may be addressed by using some other initial low level segmentation. 
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Figure 12. An example where the initial segments (SLIC superpixels) did not adhere to the 

boundary well.  

 

4.2. Future Development 

 

Further development of our ILBD method should involve: (1) Automated setting of parameters, 

especially for the colour similarity threshold for region merging. It is intended to apply adaptive 

thresholding for this purpose where the spatial variations in illumination are taken into account 

when deciding the threshold (Bradley and Roth, 2007).  This thresholding method has been 

successfully applied to medical image segmentation (Saikumar et al., 2012; Stephanakis and 

Anastassopoulos, 2006). (2) Incorporation of texture along with colour for the region merging 

process, as texture is an important distinguishing characteristic for many rock types.  This could 

be achieved by adapting the work of Chen et al., (2005), which uses colour and texture features 

for image segmentation. (3) Development of a platform, where photographic images can be 

integrated with other data types, such as radiometrics, thermal infrared, multi- or hyper- 

spectral data.  Previous studies showed that lithology units can be characterised and classified 

by machine learning algorithms applied to spectral images (Yu et al., 2012).  (4) Applying this 
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method to three dimensional (3D) point clouds to detect lithological boundaries in 3D. This 

could be achieved by adapting the work of previous studies which have successfully detected 

the geological structures (faults, joints and bedding) from 3D surface models (Lato and Vöge, 

2012; Riquelme et al., 2014; Slob et al., 2005; Vasuki et al., 2014).   

 

5. CONCLUSION  

 

This paper presents an interactive image segmentation method specifically developed to map 

the lithological boundaries of complex geological images, the Interactive Lithological 

Boundary Detection method; ILBD. The proposed method uses an initial over segmented 

image in conjunction with user inputs to find detailed boundaries of multiple lithological units 

from images of exposed rock surfaces. The ILBD method also provides an important post-

processing boundary editing step to ensure the practical use of it by end-users. Our 

experimental results show that the ILBD method successfully separates lithologies in visually 

complex rock surface images. It generates outputs that are almost equivalent to that from 

manual mapping with more than 96% similarity, but in four times less time than that taken 

using standard digitising mapping methods.  We also demonstrated that the proposed method 

outperforms three well known algorithms in segmenting natural images.   

 

Our proposed lithology boundary mapping method, based on image analysis, offers an effective 

complementary approach to machine learning based lithology unit classification methods.  
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