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Automatic identification of watercourses in flat and

engineered landscapes by computing the skeleton of a

LiDAR point cloud

Tom Broersena, Ravi Petersa,∗, Hugo Ledouxa

a3D geoinformation, Delft University of Technology,
Julianalaan 134, 2628BX Delft, The Netherlands

Abstract

Drainage networks play a crucial role in protecting land against floods.
It is therefore important to have an accurate map of the watercourses that
form the drainage network. Previous work on the automatic identification of
watercourses was typically based on grids, focused on natural landscapes, and
used mostly the slope and curvature of the terrain. We focus in this paper
on areas that are characterised by low-lying, flat, and engineered landscapes;
these are characteristic to the Netherlands for instance. We propose a new
methodology to identify watercourses automatically from elevation data, it
uses solely a raw classified LiDAR point cloud as input. We show that by
computing twice a skeleton of the point cloud — once in 2D and once in 3D
— and that by using the properties of the skeletons we can identify most
of the watercourses. We have implemented our methodology and tested it
for three different soil types around Utrecht, the Netherlands. We were able
to detect 98% of the watercourses for one soil type, and around 75% for
the worst case, when we compared to a reference dataset that was obtained
semi-automatically.
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Figure 1: A typical landscape in the Netherlands, for a region around Utrecht. (a)
Watercourses identified in red over an aerial image. (b) Elevation obtained from aerial
laser scanning.

1. Introduction

Several areas around the world, such as the Netherlands, are characterised
by low lying, flat, and engineered agricultural lands. As shown in Figure 1a,
the drainage network of these areas—which is artificial—consists of connected
linear features such as channels, culverts, and reshaped gullies (Bailly et al.,
2011); we refer to these hereafter as “watercourses”. These form a network
that transits water from the fields into larger canals (Bouldin et al., 2004).
Typically, these areas have very little variation in elevation, see in Figure 1b
how the elevation varies only by around 1.4m over the area (0.5km2). Be-
cause engineered lands are sensitive to flooding (Parry et al., 2007), it is of
the utmost importance to have an up-to-date and accurate model of the wa-
tercourses (Cavalli et al., 2013). Such a model will consist of the planimetric
geometry of the watercourses (their centreline), their connectivity, but also
of other characteristics such as the width and the shape of the banks (which
is useful to calculate the storage capacity). This information can help us
design measures to avoid floods (Cazorzi et al., 2013), and can play an im-
portant role in designing drainage channels and pumping stations (Malano
and Hofwegen, 1999).

In this paper, we investigate how the network of watercourses in flat and
engineered landscapes can be automatically identified. Currently, such net-
works are typically identified with a semi-automatic methodology using Li-
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DAR point clouds, aerial imagery and field surveys. This is labour-intensive,
and subjective (Gandolfi and Bischetti, 1997). The vast majority of methods
and algorithms developed in interdisciplinary studies have not been designed
for our case, but for natural landscapes. These usually assume that the slope
along a watercourse is always positive (Costa-Cabral and Burges, 1994; Lo-
hani and Mason, 2001), or that the curvature of the terrain is higher than
a certain threshold (Meisels et al., 1995; Brzank et al., 2005; Passalacqua
et al., 2010). Furthermore, when LiDAR datasets are used, usually a derived
product of the original dataset is used as input, e.g. a 5mX5m gridded digital
elevation model (DEM) seems standard. This is an inherent problem since
they contain missing data where the water is located (due to the absorption
of LiDAR signals by water), and because the conversion to grids inevitably
implies a certain decrease of accuracy, due to the interpolation process and
the resampling (Gold and Edwards, 1992; Fisher, 1997; Brzank et al., 2008).
Furthermore, as can be seen in Section 4, a 5m resolution DEM is not useful
for our case because typically watercourses can be less than 1m wide, and
several ones can be closer than 5m to each other. We further describe in
Section 2 the few methodologies that have been designed for our case.

We present in Section 3 an automatic identification methodology that
uses only a raw LiDAR dataset as input. The only requirement is that
the elevation samples must be classified (into ground, water, buildings, and
vegetation); algorithms for such classifications are readily available, see for
instance Tóvári and Pfeifer (2005). We use two complementary skeleton-
based methods — one in 2D and one in 3D — to extract the centrelines of
the watercourses. The 2D method makes use of the absence of LiDAR points
on water surfaces and constructs the alpha-shape of the LiDAR samples
projected to the xy plane, then computes a 2D skeleton for the resulting
polygons to obtain the centrelines. For watercourses that are dry and/or
covered by canopy, we directly compute a 3D skeleton of the LiDAR points
to identify concave profiles in the landscape and extract centrelines. We have
implemented our methodology and we report in Section 4 on experiments in
which we compare the results of our automatic methods with an existing
watercourse dataset that was obtained in a semi-automatic manner. Our
three study areas are located in rural areas around the city of Utrecht in the
Netherlands, and differ in their type of subsoil (clay, peat, and sand). By
combining both the 2D and 3D methods, we have been able to identify over
95% of the watercourses in the peat and clay areas, and around 75% in the
sand area.
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2. Related work

Bailly et al. (2008) identifies narrow watercourses in agricultural areas
with slopes using LiDAR by analysing the profile at defined locations per-
pendicular to field boundaries, and choosing a threshold for the curvatures
(those above the threshold are ditches). They achieved ditch omissions of
around 50%, and ditch commissions of around 15%. They attribute the poor
performance to insufficient sampling of LiDAR points (around 10 points/m2),
and to vegetation coverage along the ditches. Their method only works if
the boundaries of fields are given as input, and may not perform well for
watercourses which are largely filled with water.

Passalacqua et al. (2012) argue that watercourses can typically be char-
acterised by positive curvature, and by high values of flow accumulation.
Their method was designed specifically for flat and engineered landscapes.
They successfully extracted the network using a 3m DEM for the low-relief
human-impacted landscape of an area along a basin in the USA. However,
their study area has elevation differences of up to 60m, and therefore seems to
be less flat than the area we use for our study (see Figure 1b and Section 4).
Since their method is freely available in the package GeoNet (Sangireddy
et al., 2016), we have tested it for our area. Figure 2 shows that it performs
poorly for our peat area (many errors of omission and commission), although
it performed slightly better for the clay area. It struggles in places with very
low relief since there is little surface curvature, and thus picks the slightest
change.

Cazorzi et al. (2013) extracts local low-relief features from a 1m DEM,
and extract the network by labelling peak values based on a threshold value
that is taken as the standard deviation of the local relief. Their results
proved to be more reliable than their outdated cartography-based reference
data, and a median distance of reference points to the extracted watercourse
network was registered to be about 1m. The usage of a threshold on the
local relief can have implications on the ability of the method to identify
watercourses of different forms, and as stated above, is less suitable for low-
relief watercourses.

Cho et al. (2011) detect stream channels in very low-relief landscapes,
based on local minima and maxima in elevation values from a 1m DEM, but
comment that the method requires significant training and computation.

Possel et al. (2010) try to detect very wide (100m) buried channels in an
area in the Netherlands from a 2m DEM with a maximum likelihood classifier

4



0 100 200 m

Identified water courses
Missed water courses

(a) Error of omission

0 100 200 m

Reference water courses
Erroneously identified water courses

(b) Error of commission

Figure 2: Identification of watercourses by Passalacqua et al. (2012) (with GeoNet soft-
ware) for an area with peat soil near Utrecht in the Netherlands. The dataset is com-
pared to a reference dataset provided by the HDSR (background aerial photo courtesy of
www.pdok.nl).

based on slope, curvature and relative elevation.
Höfle et al. (2009) extract the edges of a water body by modelling the lo-

cations of laser shot dropouts along with the surface roughness, after which
potential water regions are detected by using a region growing algorithm.
Toscano et al. (2014) proposes a similar method that requires less pre-processing,
but the method uses a DEM. The original LiDAR samples are converted
(pixels having no LiDAR signal get a low value) and then an analysis of the
height histogram allows them to identify low area (which should be water).
We believe that histogram analysis will not suffice for smaller water bodies
such as ours, since these do not generate high enough peaks in the elevation
data. Both Höfle et al. (2009) and Toscano et al. (2014) are unable to classify
dry watercourses or those completed covered by canopy.

3. Our methodology based on the 2D and 3D skeletons

We propose two skeleton-based approaches to automatically identify wa-
tercourses from a classified aerial LiDAR point cloud. The first one (see
Figure 3a) uses the alpha-shape (also commonly called “concave hull”) of
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1. Ground +
vegetation points
projected to the
ground plane.

3. Construct water
polygons from voids
between simplified
ground polygons.

2. alpha-shapes of
points. Use vegetation
polygons to fill holes.

3. Voronoi diagram
from points on
densified water
boundary.

4. Select VD edges
inside water polygon,
prune and simplify to
find the centrelines.

centrelines

(a) Workflow to obtain watercourses from the 2D skeleton.

1. Ground points. 2. 3D skeleton of the
ground points.

3. Segmentation of 3D
skeleton in sheets.

4. Triangulate exterior
sheets and select lower
envelope to find the
centrelines.

exterior
sheet

centreline

(b) Workflow to obtain watercourses from the 3D skeleton.

Figure 3: Our workflows that summarise how we extract the watercourses using 2D and
3D skeletons on a LiDAR point cloud.
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ground and vegetation points to compute water polygons from which the
centrelines are derived using a 2D skeleton. The second one (see Figure 3b)
computes centrelines as the lower envelope of the 3D skeleton of ground
points and aims at identifying concave profiles, which means it can also iden-
tify dry watercourses and watercourses covered partly by canopy. Both 2D
and 3D skeletons are used because they allow us to make use of different
characteristics of the input point clouds, as further explained below.

Since the 2D method uses mostly a series of known algorithms and stan-
dard GIS operations, we shortly describe it in Section 3.1. We focus in
Section 3.2 on the 3D skeleton-based method because it is most novel. Fur-
thermore, since both methods have complementary strengths, we also de-
scribe how to integrate them into a unified and more robust approach that
yields better overall results. For both methods we assume, as is the case in
the Netherlands, to have a point cloud available that is classified into at least
1) ground points, 2) building points, 3) water points and 4) other points (e.g.
vegetation).

3.1. Computing centrelines using the 2D skeleton

We take advantage of a key property of red laser-based LiDAR datasets
above open water bodies: it is almost completely absorbed, only LiDAR
signals emitted at or near nadir are reflected strong enough to be detected
by the sensor. The few LiDAR measurements which did reflect on the water
bodies can be filtered out (Höfle et al., 2009). As input for this method we use
two sets of points: 1) ground points (which includes the building points to fill
the voids in the ground class where buildings are), 2) vegetation points. What
remains is a dataset with separate disconnected groups of ground points, with
voids in between these groups representing the waterbodies (see Figure 4).
These groups of ground points are then converted into multiple disconnected
ground polygons using alpha-shapes (see Edelsbrunner et al. (1983)); the
alpha parameter was manually chosen based on the density of the LiDAR
dataset.

We also consider vegetation points. Generally these should be omitted
since they might cover waterbodies. However, there may also be vegetation
that is so dense that it prevents LiDAR pulses from reaching the ground sur-
face below. This results in holes —we call these vegetation artefacts— in the
ground polygons as illustrated in Figure 5a. This is undesirable, since the
alpha-shape method is based on the assumption that all voids in the point
cloud are watercourses, which they are not in this case. To fix these artefacts,
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(a) Displayed is a 3m uniformly
spaced subset of LiDAR points, but
alpha-shape was computed for the full
set of points. Aerial photo as back-
drop.

0 25 50 m

 Interior polygons
 Ground surface

(b) The majority of the watercourses
are represented by the space between
these alpha shapes, while some are in-
terior polygons of the alpha shapes.

Figure 4: The alpha-shape of LiDAR points classified as ground.

we use vegetation polygons that are computed from the alpha shape of the
vegetation points. We consider holes in the ground polygons that are fully
covered by vegetation polygons to be vegetation artefacts and subsequently
remove them. The resulting ground polygons are then free of vegetation
artefacts. Polygons representing the watercourses can now be obtained by
taking the inverse of the ground polygons (see step 3 in Figure 3a). Remain-
ing irregularities in the water polygons are removed using a “buffer-debuffer
operation” to fill tiny holes, followed by a Douglas-Peucker line simplifica-
tion (Douglas and Peucker, 1973) to smooth the boundary (see Figure 6a).

Finally, we compute the Voronoi diagram (VD) of the boundaries of the
water polygons. We do this by first discretising the polygon boundaries (e.g.
with point every 1m). Then we compute the VD of the resulting set of points,
as illustrated in Figure 7; notice that we do not compute the VD of line
segments (Held, 2001). The 2D skeleton is a subset of this VD, it is defined
as the set of edges in the VD of the polygon that completely reside in the
polygon’s interior, which is conceptually similar to the algorithm described
in Gold and Snoeyink (2001).

When using the VD of a polygon boundary to compute the 2D skeleton, a
number of unwanted branches are generated next to the desired centrelines;
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(a) The alpha shapes of the vegetation
points cover the vegetation artefacts.

(b) A clean dataset of ground surface
alpha shapes is formed by removing
the vegetation artefacts.

Figure 5: Vegetation artefacts are removed by detecting vegetation polygons that are
completely surrounded by ground.

(a) Watercourses are regularized us-
ing buffer-debuffering and Douglas-
Peucker line simplification.

(b) centrelines are regularised using prun-
ing.

Figure 6: Regularisation of polygon boundaries and skeleton results for the 2D skeleton
based method.
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Figure 7: The VD of a set of densified boundary points is used to compute the 2D skeleton
(black) of a water polygon (blue), in between two river banks (red and green). The 2D
skeleton is defined as all edges of the VD which are completely within the water polygons.

this is a normal property of the skeleton. These unwanted branches are
defined as any edge incident to a vertex of degree 3 and one of degree 1. We
automatically prune these unwanted branches by setting a threshold on the
branch length (Figure 6b).

3.2. Computing centrelines using the 3D skeleton

Whereas the 2D skeleton method is based on the absorption of the red
LiDAR signal by water surfaces, the 3D skeleton method is based on the
three-dimensional morphology of the landscape to identify watercourses and
allows us to identify watercourses that are dry or covered by canopy.

Our 3D skeleton approach is based on the Medial Axis Transform that was
originally introduced by Blum (1967); the MAT — called 3D skeleton in the
remainder of this text — models the space between surfaces as a collection
of medial balls. Each medial ball is tangent to the surface at two or more
points and the centres of the medial balls form a medial skeletal structure
of the object (see Figure 8a). Similar to the 2D skeleton there are branches
structured in a hierarchy, but in the 3D skeleton these are surfaces that we
call medial sheets (see Figure 8b). The 3D skeleton of a typical watercourse
results in three medial sheets: one exterior (above ground), and two interior
(under ground). The exterior medial sheet of a watercourse thus forms a
‘centre plane’ that contains the centreline of the watercourse. We define the
centreline of a watercourse as the projection to the xy-plane of the lower
envelope of its exterior medial sheet (see also Figure 3b).

For the computation of the 3D skeleton we use the shrinking ball algo-
rithm of Ma et al. (2012), extended with the denoising heuristics from Peters
and Ledoux (2016). We compute the 3D skeleton for all points that are clas-
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Exterior skeleton
Interior skeleton
Ground Surface

(a) Cross section of a watercourse.
The 3D skeleton is obtained by re-
constructing medial balls that touch
the ground surface in two points.

Skeleton points
Ground points

(b) Perspective view of the 3D skele-
ton of simple watercourses.

Figure 8: Profile view of 3D skeleton of the terrain

Figure 9: Each medial ball touches the surface in two points (p1 and p2). The medial

bisector ~b is defined as the bisector of the vectors from the center c to p1 and p2.

sified as ground. The result is a point approximation (i.e. a point cloud) of
the 3D skeleton. Next, we perform a segmentation of the point cloud into
distinct medial sheets using a region-growing segmentation algorithm, con-
ceptually similar to the one described in Rabbani et al. (2006), but instead
of the angular difference in normals we use the angular difference in medial
bisector. The medial bisector (as defined in Figure 9) is very suitable to
distinguish between different medial sheet because it is by definition locally
similar within the same sheet, but different where two sheets intersect (see
Siddiqi and Pizer (2008) for more details). An added benefit of this ap-
proach is that outliers in the 3D skeleton point cloud can be omitted, since
they are not part of any medial sheets and are therefore not assigned to a
segment. Figure 10 shows the segmentation result for a LiDAR dataset of
watercourses. Observe that each watercourse is delineated by a medial sheet.
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(a) Perspective view of skeleton and
ground points.

(b) Plan view of exterior skeleton
sheets.

Figure 10: Segmentation of 3D skeleton sheets. Each distinct sheet was assigned a random
colour. The surface points are coloured by elevation (yellow = low; blue = high).

Prior to deriving the 2D centreline representation of each sheet, we triangu-
late the medial sheets using the ball pivoting algorithm from Bernardini et al.
(1999). A centreline of the water surface can then be derived by selecting the
lower edge segments on the boundary of the triangulated sheet (see also step
4 in Figure 3b). We identify these by walking around the boundary edges of
the triangulation (i.e. those edges that are only incident to one triangle), and
then selecting the edges whose two endpoints are below (i.e. having a lower
z coordinate) the opposite vertex in the triangle to which that edge belongs.
We finally obtain a 2D representation of the resulting polyline simply by
omitting the z-coordinates.

3.3. Combined approach

In Section 4 we show that the 2D and 3D skeleton methods have different
strength. We are able to combine the strengths of both methods using a few
common GIS operations. First we buffer the resulting centrelines from both
methods. If we then dissolve these buffers, one polygon remains for every
watercourse. Finally, the centrelines of these polygons are generated using
the 2D skeleton again (see Figure 11).
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Merged centreline
2D centreline
3D centreline

Figure 11: The centreline generated by the 2D and 3D skeleton methods are combined
by merging the centrelines, subsequently buffering them, and lastly by generating a new
centreline using the 2D skeleton centreline extraction method.

4. Experiments & results

We have implemented the methods described in the previous section using
a combination of existing tools and our own programs. The 2D skeleton
method was implemented using primarily QGIS1 and LAStools2. For the 3D
skeleton method, we have used primarily our own software implementations3,
with the exception of the ball pivoting algorithm for which we used Meshlab4.

4.1. Study area & experiments

Our study areas are all 3x3 km and are situated around the city of Utrecht,
the Netherlands (see Figure 12). This area consists for the most part of flat
(elevation typically ranges between -2 m to +6 m) and engineered landscapes
(see Figure 13). We have selected three different types of environments with
different characteristics that can be classified according to their subsoils; clay,
peat, and sand:

Clay: little vegetation and fairly wide watercourses with a very clear concave
profile.

1QGIS: http://www.qgis.org.
2LAStools: https://rapidlasso.com/lastools/.
3partially open source at https://github.com/tudelft3d/masbcpp
4MeshLab: http://meshlab.sourceforge.net.
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Peat

Clay

0 m 200 m

0 m 200 m 0 m 200 m

Sand

Figure 12: The three study areas we use in our experiments.

Peat: little vegetation and very wide watercourses with a less clear concave
profile.

Sand: a lot of vegetation and narrow watercourses with a clear concave profile.

More detailed information on the study areas can be found in Table 1.
The publicly available AHN35 aerial LiDAR point cloud data was used,

which is the most current version of the national elevation dataset of the
Netherlands, it has a point density of around 10 points per square meter. For
validation purposes, we have used an existing centreline dataset, which was
obtained with a semi-automatic method, from HDSR (Hoogheemraadschap
De Stichtse Rijnlanden, i.e. the water board responsible for water manage-
ment in our study areas).

For the experiments, first we applied our two skeleton-based approach
separately on all three study areas. Then we combined the results using the
method described in Section 3.3. The generated datasets of watercourses were
compared to the HDSR dataset of watercourses, i.e. our reference dataset.
We use the following error metrics (see Lillesand et al. (2008)):

• Positional accuracy : Refers to the extent to which the actual position

5www.ahn.nl
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Figure 13: Terrain elevation of the study areas. Interpolated from ground points. No data
pixels are white.

15



Table 1: Details on study areas. The specified location in EPSG:28992 is the lower left
coordinate of the area (they are all 3x3 km in size). The percentage of vegetation coverage
is based on the relative number of vegetation points in the point cloud. The percentage of
water coverage is computed by taking the total surface area of all water polygons in the
HDSR reference dataset and dividing it by the total surface area of the study area.

Area

Characteristic Clay Peat Sand

Location (EPSG:28992) (120279 (116785 (147565
, 440768) , 457391) , 446180)

Location (city / village) Cabauw Zegveld Langbroek
Vegetation coverage (%) 5 8 47
Water coverage (%) 9 14 5
Elevation range (cm) -250/+300 -250/+150 +150/+600

of the watercourses is correctly indicated. It can be estimated by cal-
culating the average positional deviation for multiple watercourses in
the generated dataset with respect to the reference dataset.

• Error of omission: The percentage of watercourses in the reference
dataset that are not in the generated dataset.

• Error of commission: The percentage of watercourses in the generated
dataset that are not in the reference dataset.

To compute the error metrics we have uniformly discretised the centre-
lines into points, and then identified for these points what is the shortest
Euclidean distance to the centreline in the reference dataset. By aggregating
and averaging these point distances per centreline, an estimate is obtained of
the generated dataset’s positional accuracy. To obtain the mapping accura-
cies we use threshold distances, e.g. if a threshold distance of 2 m is set, and
the distance between a point on the generated centreline and the reference
centreline is larger than this distance, then this point counts as an error of
commission. Similarly, points can be selected on the generated centreline to
find the error of omission. The metrics are computed by taking the number
of points omitted or committed, relative to the total number of points.
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Table 2: This table lists the metrics which were computed for the centrelines generated
by the 2D skeleton, the 3D skeleton, and the combined approach, for clay, peat and sand
areas.

dataset

Error metric Clay Peat Sand

Positional accuracy (m) 2D skeleton 0.5 0.7 0.6
3D skeleton 0.6 0.8 0.8
Combined 0.6 0.7 0.9

Error of omission (%) 2D skeleton 5 5 58
3D skeleton 4 15 26
Combined 2 3 24

Error of commission (%) 2D skeleton 1 2 4
3D skeleton 8 8 17
Combined 8 8 17

Notice that our evaluation method is comparable to the one proposed by
Heipke et al. (1997). The main difference is that Heipke et al. (1997) use a
buffer to match line features between the reference and the generated data
instead of the shortest distance between the points on the line features. A
benefit of our approach is that it can do partial matching, i.e. a parts of the
same line feature are matched separately, whereas Heipke et al. (1997) match
only the complete line features. We believe this is an advantage espically
in the case where the topology of the networks of the reference and the
generated datasets are different, which is very likely since they are generated
using different methods.

4.2. Results

The outcome of our experiments, for all combinations of methods and
study areas, are shown in Table 2 and summarised below.

Both our skeleton-based methods perform very well for the clay area with
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only 5% of watercourses missing (error of omission) and a low error of com-
mission. As we explain in Section 3.1, our 2D skeleton method works based
on the assumption that water surfaces can be detected from the point cloud
because water typically is the only surface type that does not reflect red laser.
The 3D skeleton method on the other hand works based on the assumption
of concavity, i.e. watercourses often have significant surface curvature at the
water banks. It is therefore not surprising that both methods perform well
on the clay area that has significant concavity and wide watercourse surfaces
with little vegetation covering it.

For the peat area, the 2D skeleton performed nearly equally well, since
water surfaces are even wider and again there is little vegetation covering
these surfaces. However, the watercourses display less clear concave pro-
files, since relative water levels are higher here (thus many watercourses have
only very small banks), which impedes the effectiveness of the 3D skeleton.
Although the 3D skeleton performs less for this area, it still manages to iden-
tify some of the watercourses which were not identified by the 2D skeleton
method. This is indicated by the fact that the combined 2D+3D skeleton
method identifies roughly 97% of the watercourses, which is more than the
2D skeleton method identified by itself.

The sand area clearly stands out in Table 2 since the errors for both
methods are significantly worse than for the two other areas. Especially the
2D skeleton method does a poor job at identifying the watercourses with a
58% error of omission. The main problems here are: (1) the fact that water is
not well visible in this landscape, (2) water surfaces are often narrower than
1m, and (3) many patches of forest are present. The 3D skeleton is much
more effective with only 26% error of omission, but it also struggles with the
identification of the narrower watercourses that are naturally also represented
with relatively few points in the point cloud. The combined method for the
sand area raises the commission error only marginally to 24%, indicating that
the 3D skeleton method identified almost all of the watercourses identified
by the 2D skeleton, and is clearly the better performing method for this area.

5. Discussion

Our 2D- and 3D-skeleton methods both have different strengths and limi-
tations. Summarising, we can say that the 2D skeleton method is particularly
efficient with open water watercourses of sufficient width. The (lack of) sur-
face curvature does not affect its effectiveness. And it is characterised by
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Figure 14: Remarkable cases in the results of our experiments.

a low error of commission. Its limitations are watercourses with a width
of less than 1 m (i.e. depending on the parameters used while creating the
alpha-shapes, which itself depends on the density of the LiDAR point cloud;
for a denser point cloud, this parameter could be lowered significantly), the
presence of large patches of vegetation that cover water bodies (due to the
cleaning method of vegetation artefacts), and voids in the LiDAR point cloud
that are not the result of waterbodies. The former also means that the 2D
skeleton method is ineffective in case of low water levels at time of LiDAR
measurements. Thus, the 2D skeleton method is particularly suited for use
in areas where water levels are high and water is a predominant feature of
the landscape. The 3D skeleton on the other hand does not depend on the
presence of water or voids in general, and is effective as long as the canopy is
not too dense and allows the LiDAR signal to pass through. The limitations
of the 3D skeleton are its dependence on surface curvature (high water lev-
els may obfuscate this) an its tendency to find concavities in the landscape
where one would not immediately expect a watercourse, e.g. levees or piles
of earth or dirt (see Figure 14a).

The 3D skeleton method is therefore mostly suited for areas with wa-
tercourses that have a low water level, clearly concave profiles and may be
covered with large patches of vegetation.

Our approach to combine the results of both the skeleton-based method
is effective because it always decreases the commission and omission errors.
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Only the error of commission never improves since watercourses are never
discarded by our current combination approach.

Finally, we note that the reference dataset that we used is not a perfect
ground truth: we discovered many errors and this should be considered when
evaluating the error metrics, Multiple situations were encountered where
a watercourse was present in the reference dataset, which was clearly not
present in the point cloud data and the resulting generated datasets. The
opposite happened especially in the sand area where our 3D skeleton method
in particular identified a large number of watercourses that are not present
in the reference dataset, but which based on shape and size clearly were valid
watercourses. These watercourses are hard to identify, since they are cov-
ered by forest, thus this likely indicates an incompleteness of the reference
dataset. While the 3D skeleton shows an error of commission of over 17% for
the sand area, we estimate that at least half of these are not actually errors,
but rather watercourses that were missing in the reference dataset, and do
exist in reality (see Figure 14b). We also noticed some erroneous results due
to deficiencies of the point cloud, such as shadowing effects. In case of the 2D
skeleton method this may lead to the creation of voids that are not water-
courses, but would still be identified as such. This is especially the case near
buildings (see Figure 14c). As a last remark we note that especially the 2D
skeleton method very much depends on a correct classification of the point
cloud into the necessary classes (ground, vegetation, buildings and water).

6. Conclusions and future work

With omission rates of only 2%, for one soil type, we have successfully
demonstrated that we are able to automatically derive centrelines for wa-
tercourse from classified aerial point clouds in the Netherlands. While the
effectiveness of our 2D+3D skeleton-based approach depends on various prop-
erties of the landscape (such as vegetation coverage and curvature), the same
can be said of current approaches, as we have noticed from the authorita-
tive reference dataset (obtained using a semi-manual approach) that we used
to validate our results. Furthermore, by combining the results of both 2D
and 3D skeletons we are able to compensate for this to some degree. By
using highly accurate raw point cloud data as input, we are able to identify
very narrow watercourses of less than 1m wide, whereas existing automated
methods from literature are typically limited to the cell size of a grid (often
5mX5m). Thus, the strengths of our skeleton-based approach are that it is
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automatic, effective, that is it able take full advantage of a raw point cloud
dataset (instead of using a derivative), and it is feasible to implement.

There are a number of things we believe deserve further research. First,
and most interestingly, the computation of additional watercourse properties
such as the width and shape of the banks, and the water storage capacity.
We believe that especially our novel 3D skeleton method has great potential
here, since it has a well-defined link to the watercourse banks, and also defines
a volume through its medial balls (which fill the watercourse). Second, to
examine how our methods performs on an area with significant relief. And
finally, to make our methodology work with larger areas, since in this work
we have only looked at relatively small study areas. We are at this moment
limited by the main memory of a computer, but it should be trivial to scale
the computation of the 2D skeleton using a tiling scheme. Futhermore, Peters
and Ledoux (2016) showed that also the 3D skeleton can be constructed for
billions of points using a tiling scheme.
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