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Abstract. The black oil model is widely used to describe multiphase porous media flow in the petroleum in-
dustry. The fully implicit method features strong stability and weak constraints on timestep sizes;
hence, it is commonly used in current mainstream commercial reservoir simulators. In this paper,
a Constrained Pressure Residual (CPR) preconditioner with an adaptive “setup phase” is developed
to improve the parallel efficiency of a petroleum reservoir simulation. Furthermore, we propose a
multi-color Gauss–Seidel (GS) algorithm for the algebraic multigrid method based on the coefficient
matrix of strong connections. Numerical experiments show that the proposed preconditioner can im-
prove the parallel performance for both OpenMP and Compute Unified Device Architecture (CUDA)
implements. Moreover, the proposed algorithm yields good parallel speedup as well as the same
convergence behavior as the corresponding single-thread algorithm. In particular, for a three-phase
benchmark problem (about 3.28 million degrees of freedom), the parallel speedup of the OpenMP
version is over 6.5 with 16 threads, and the CUDA version reaches more than 9.5.

Key words. Black oil model; fully implicit method; parallel computing; multi-color Gauss-Seidel smoother; multi-
stage preconditioners.
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1. Introduction. Research on petroleum reservoir simulation can be traced back to the
1950s. To describe and predict the transportation of hydrocarbons, various mathematical mod-
els have been established, such as the black oil model, compositional model, thermal recovery
model, and chemical flooding model [1–5]. The black oil model consists of multiple coupled
nonlinear partial differential equations (PDEs). It is a fundamental mathematical model to
describe the three-phase flow in petroleum reservoirs and is widely used in simulating primary
and secondary recovery.

After 70 years of development, there is a large body of research on the numerical methods of
the black oil model, including the Simultaneous Solution (SS) method [6], Fully Implicit Method
(FIM) [7], IMplicit Pressure Explicit Saturation (IMPES) method [8], and Adaptive Implicit
Method (AIM) [9]. Compared with other methods, FIM is commonly used in mainstream
commercial reservoir simulators because of its unconditional stability with respect to timestep
sizes. However, a coupled Jacobian linear algebraic system needs to be solved in each Newton
iteration step. Owing to the complexity of the practical engineering problem, such systems are
difficult to solve with traditional linear solvers. In the reservoir simulation, the solution time of
Jacobian systems easily occupies more than 80% of the whole simulation time. Therefore, how
to efficiently solve coupled Jacobian systems, especially on modern computers, is a problem
that still attracts a lot attention today.

Typically, linear solution methods can be divided into two phases, the “setup phase”
(SETUP) and the “solve phase” (SOLVE). These methods can usually be categorized as direct
methods [10] and iterative methods [11]. Compared with direct methods, iterative methods
have the advantages of low memory and computation complexity and potentially good paral-
lel scalability [12]. The linear algebraic systems arising from fully implicit petroleum reservoir
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simulation are usually solved by iterative methods. In particular, Krylov subspace methods [11]
(e.g., GMRES and BiCGstab) are frequently adopted. For ill-conditioned linear systems, the
preconditioning technique [13] is needed to accelerate the convergence of the iterative methods.
The preconditioners for reservoir simulation include: Incomplete LU (ILU) factorization [14],
Algebraic MultiGrid (AMG) [15,16], Constrained Pressure Residual (CPR) [17–20], and Multi-
Stage Preconditioner (MSP) [21–23]. The ILU method is relatively easy to implement, but as
the problem size increases, its convergence deteriorates. The advantages of the AMG method
are that it is easy to use and effective on elliptic problems. Owing to the asymmetry, hetero-
geneity, and nonlinear coupling feature of petroleum reservoir problems, the performance of
the AMG method also deteriorates. The CPR method combines the advantages of ILU and
AMG, and the MSP method is a generalization of CPR.

As multi-core and many-core architectures have become more popular, parallel computing
for petroleum reservoir simulation is now a subject of great interest. In recent years, there
has been some work on parallel algorithms for reservoir problems [24–34], and the references
therein. For example, [26] designed an OpenMP parallel algorithm with high efficiency and a
low memory cost for standard interpolation and coarse grid operator of AMG, under the frame-
work of Fast Auxiliary Space Preconditioning (FASP, http://www.multigrid.org/fasp/). [31,32]
developed a Method of Subspace Correction (MSC) based on [26] and realized a cost-effective
OpenMP parallel reservoir numerical simulation. [28] designed a GPU parallel algorithm based
on the METIS partition for the IMPES method. [33] studied the GPU parallel algorithm of
ILU and AMG based on a hybrid sparse storage format.

In this paper, we focus on the solution method for the linear algebraic systems arising from
the fully implicit discretization of the black oil model, aiming to improve the parallel efficiency
of the CPR preconditioner. The main contributions of this work are listed as follows:

• We propose an adaptive SETUP CPR preconditioner (denoted as ASCPR) to improve
the efficiency and parallel performance of the solver. A practical adaptive criterion is
proposed to judge whether a new SETUP is necessary. The technology can bring two
benefits: (1) The efficiency of the solver is improved because the number of SETUP calls
can be significantly reduced; (2) the parallel performance is improved because there are
many essentially sequential algorithms in the SETUP (i.e., the parallel speedup of these
algorithms is low).
• We propose an efficient parallel algorithm for the Gauss-Seidel (GS) relaxation in AMG

methods. Starting from the strong connections of coefficient matrix, we design an algo-
rithm for algebraic multi-color grouping. The algorithm has two desirable features: (1)
Not relying on the grid (completely transformed into algebraic behavior); (2) yielding
the same convergence behavior as the corresponding single-thread algorithm. Further-
more, we use an adjustable strength threshold to filter small matrix entries (enhancing
the sparseness) to improve the parallel performance of the algorithm.

The rest of the paper is organized as follows. Section 2 introduces the black oil model and its
fully implicit discrete systems. Section 3 reviews the CPR-type preconditioners. In Section 4,
an adaptive SETUP CPR preconditioner is proposed. In Section 5, the parallel implementation
of multi-color GS based on the coefficient matrix of strong connections is given. In Section 6,
numerical experiments are given. Section 7 provides the summary of the work of this paper.

2. Preliminaries.

2.1. The black oil model. This paper considers the following three-phase standard black
oil model of water, oil, or gas in porous media [1, 2, 4]. The mass conservation equations of
water, oil, and gas, respectively, are

http://www.multigrid.org/fasp/
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Here, Sα is the saturation of phase α (α = w, o, g represents the water phase, oil phase, and
gas phase, respectively), Bα is the volume coefficient of phase α, uα is the velocity of phase
α, φ is the porosity of the rock, Rso is the dissolved gas-oil ratio, and Qβ is the injection and
production rate of component β (β = W,O,G represents the water component, oil component,
and gas component, respectively) under the ground standard status.

Assume that the three-phase fluid flow in porous media satisfies Darcy’s law:

(2.4) uα = −κκrα
µα

(∇Pα − ραg∇z) , α = w, o, g,

where κ is the absolute permeability, κrα is the relative permeability of phase α, µα is the
viscosity coefficient of phase α, Pα is the pressure of phase α, ρα is the density of phase α, g is
the gravity acceleration, and z is the depth.

The unknown quantities Sα and Pα in Eqs. (2.1)–(2.4) also satisfy the following constitutive
relation:

• Saturation constraint equation:

(2.5) Sw + So + Sg = 1.

• Capillary pressure equations:

Pw = Po − Pcow,
Pg = Po − Pcgo,

(2.6)

where Pcow is the capillary pressure between the oil and water phases, and Pcgo is the
capillary pressure between the gas and oil phases.

2.2. Discretization and algorithm flowchart. The FIM scheme is currently commonly used
in mainstream commercial reservoir simulators. This is because the scheme has the charac-
teristics of strong stability and weak constraint on the timestep sizes. These characteristics
highlight the advantages of the FIM, especially when the nonlinearity of the models is relatively
strong.

In this paper, we use FIM to discretize the governing Eqs. (2.1)–(2.3). That is, the time
direction is discretized by the backward Euler method, and the spatial direction is discretized by
the upstream weighted central finite difference method [2,7]. After discretization, the coupled
nonlinear algebraic equations are obtained. Such equations are linearized by adopting the
Newton method to form the Jacobian system Ax = b of the reservoir equation with implicit
wells, namely:

(2.7)

(
ARR ARW
AWR AWW

)(
xR
xW

)
=

(
bR
bW

)
,
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where ARR and ARW are the derivatives of the reservoir equations for reservoir variables
and well variables, respectively; AWR and AWW are the derivatives of the well equations for
reservoir variables and well variables, respectively; xR and xW are reservoir and bottom-hole
flowing pressure variables, respectively; and bR and bW are the right-hand side vectors that
correspond to the reservoir fields and the implicit wells, respectively.

The subsystem corresponding to the reservoir equations in the discrete system (2.7) is
ARRxR = bR; that is,

(2.8)

 APP APSw APSo

ASwP ASwSw ASwSo

ASoP ASoSw ASoSo

 xP
xSw

xSo

 =

 bP
bSw

bSo

 ,

where P, Sw, and So are primary variables corresponding to oil pressure, water saturation, and
oil saturation, respectively.

Remark 1. For convenience, we do not describe how to deal with well equations.

In the following, we present a general algorithm flowchart of the petroleum reservoir simu-
lation; see Fig. 1.

Begin

Input data;

Initialization and t = 0;

k = 1;

Build Jacobian system:
A(k),b(k);

Solve A(k)x(k) = b(k); k = k + 1;

Converge

Calculate ∆t;

t = t + ∆t and Update;

t ≥ T

Postprocessing;

End

Yes

Yes

No No

Fig. 1. Algorithm flowchart of the petroleum reservoir simulation.

According to Fig. 1, the algorithm flowchart includes two loops: the outer loop (time march-
ing) and the inner loop (Newton iterations). In each Newton iteration, a Jacobian system
A(k)x(k) = b(k) (superscript k is the number of Newton iterations) needs to be solved, which is
the main computational work to be carried out.

3. The CPR-type preconditioners. The primary variables usually consists of oil pressure P
and saturations S (including Sw and So) in FIM, which have different mathematical properties,
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respectively. For example, the pressure equation is parabolic, and the saturation equation is
hyperbolic [35]. These properties provide a theoretical basis for the design of multiplicative
subspace correction methods [13].

3.1. CPR preconditioner. First, the transfer operator ΠP : VP → V is defined, where
VP and V are the pressure variables space and the variables space of the whole reservoir,
respectively. Next, a well-known two-stage preconditioner, the Constrained Pressure Residual
(CPR) [17–20] preconditioner B, is defined as

(3.1) I −BA = (I −RA)(I −ΠPBPΠ
T
PA),

where BP is solved by the AMG method, and the relaxation (or smoothing) operator R uses
the Block ILU (BILU) method [14].

Finally, the CPR preconditioning algorithm is shown in Algorithm 3.1.

Algorithm 3.1 CPR method

Input: A, b, x;
Output: x;

1 r ← b−Ax;
2 x← x+ΠPBPΠ

T
P r;

3 r ← b−Ax;
4 x← x+Rr.
5 return x.

3.2. Red-Black GS method. As know, compared with the Jacobi algorithm, the GS al-
gorithm uses the updated values in the iterative process. Hence, the GS algorithm obtains a
better convergence rate and is widely used as a smoother of AMG. Now, the parallel red-black
GS (also referred to multi-color GS) algorithm on the structured grid is fairly mature [11, 36].
We take a 2D structured grid as an example to present two-color and four-color vertex-grouping
diagrams; see Fig. 2.

1 2 1 2 1

2 1 2 1 2

1 2 1 2 1

2 1 2 1 2

1 2 1 2 1

(a) two-color

1 2 1 2 1

3 4 3 4 3

1 2 1 2 1

3 4 3 4 3

1 2 1 2 1

(b) four-color

Fig. 2. Two-color and four-color vertex-grouping diagrams.

In Fig. 2(a), the vertices are divided into two groups and marked as red and black points;
that is, vertex set V is divided into V1 and V2. In Fig. 2(b), the vertices are divided into four
groups, marked as red, black, blue, and green; that is, the vertex set V is divided into V1, V2,
V3, and V4. The multi-color GS algorithm aims to perform parallel smoothing on the vertices
of the same color; that is, (1) for the case of two colors, first, all-red vertices (V1) are smoothed
in parallel, and then all-black (V2) vertices are smoothed in parallel; (2) for the case of four
colors, first, all-red vertices (V1) are smoothed in parallel; second, all-black vertices (V2) are



6 Parallel Multi-Stage Preconditioners with Adaptive Setup for the Black Oil Model

smoothed in parallel; third, all-blue vertices (V3) are smoothed in parallel; and finally, all-green
vertices (V4) are smoothed in parallel.

Note that different vertices sets are sequential, and the interior of the vertices set is entirely
parallel. From the perspective of parallel effects, the above two smooth orderings can yield the
same number of iterations as the sequential algorithm. From the scope of application, the two-
color grouping is only applicable to the five-point stencil and the four-color grouping can be
applied to the nine-point stencil. Similarly, the multi-color GS algorithm of the 2D structured
grid can be extended to the 3D structured grid.

The popular parallel variant of GS is the red-black GS algorithm based on structured
grids, and it is not suitable for unstructured grids. As a consequence, the application range
of the algorithm is limited. Moreover, there is also a hybrid method (combining Jacobi and
GS), but its convergence rate deteriorates. From the perspective of parallel implementation,
the GS algorithm, an essentially sequential algorithm, is not conducive to yielding the same
convergence behavior as the corresponding single-thread algorithm and obtaining high parallel
efficiency at the same time.

Finally, we discuss some shortcomings of the standard CPR method.
(i) Petroleum reservoir simulation is a time-dependent and nonlinear problem. The Jaco-

bian systems need to be solved in each Newton iteration step. The matrix structure of
these systems is similar. The CPR method does not take full advantage of the similarity.

(ii) The CPR method contains many essentially sequential steps in the SETUP, which result
in low parallel efficiency.

(iii) The GS method is commonly used as the smoother in AMG methods. When we try
to improve the parallel performance of the smoother, the convergence rate of AMG
methods usually deteriorates.

In view of the shortcomings (i) and (ii) mentioned above, we discuss how to reuse similar
matrix structures to improve the performance of CPR in Section 4. Furthermore, for the
shortcoming (iii), we propose a multi-color GS method from the algebraic point of view in
Section 5.

4. An adaptive SETUP CPR preconditioner. In this section, we propose an efficient CPR
preconditioner using an adaptive SETUP strategy. For the sake of simplicity, we employ CPR
as the preconditioner and restart GMRES as the iterative method (denoted as CPR-GMRES)
to illustrate the fundamental idea of the ASCPR preconditioner; the corresponding algorithm
is denoted as ASCPR-GMRES. We develop ASCPR-GMRES to efficiently solve the Jacobian
systems and take the right preconditioner as an example to describe its implementation; see
Algorithm 4.1 and Algorithm 4.2.

Note that the CPR preconditioner B(k) is generated by exploiting an adaptive strategy in
Algorithm 4.1. The concrete implementation of the strategy is as follows; see Algorithm 4.2.

• If k = 1, the preconditioner B(1) is generated by calling Algorithm 3.1 (Remark 2);
• If k > 1, the establishment of the preconditioner B(k) can be viewed as the following

two steps. First, we obtain It(k−1), which is the number of iterations obtained by
solving the previous Jacobian system A(k−1)x(k−1) = b(k−1). Furthermore, there are
two situations when judging the size of It(k−1) and µ (given a threshold greater than or
equal to 0). If It(k−1) ≤ µ, the preconditioner B(k) adopts the previous preconditioner
B(k−1); otherwise, the preconditioner B(k) is generated by calling Algorithm 3.1.

Remark 2. Algorithm 3.1 is a preconditioning method (w = CPR(A, g, w0) i.e., w = Bg).
For the convenience of describing Algorithms 4.1 and 4.2, we assume Algorithm 3.1 creates a
CPR preconditioner B.

Remark 3. If the sizes of matrices A(k−1) and A(k) are not the same, we must regenerate
the preconditioner B(k).
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Algorithm 4.1 ASCPR-GMRES method

Input: B(k−1), It(k−1), A(k), b(k), x0, µ, k,m, tol,MaxIt;
Output: x(k), It(k), B(k);

1 B(k) = ASCPR(B(k−1), It(k−1), µ, k);

2 Compute r0 ← b−A(k)x0, p1 ← r0/‖r0‖;
3 for It = 1, · · · ,MaxIt do
4 for j = 1, · · · ,m do

5 Compute p̄← A(k)(B(k)pj);
6 Compute hi,j ← (p̄, pi), i = 1, · · · , j;

7 Compute p̃j+1 ← p̄−
j∑
i=1

hi,jpi;

8 Compute hj+1,j ← ‖p̃j+1‖;
9 if hj+1,j = 0 then

10 m← j; break;
11 end
12 Compute pj+1 ← p̃j+1/hj+1,j ;

13 end
14 Solve the following minimization problem:

ym = arg min
y∈Rm

‖βe1 − H̄my‖,

where β = ‖p1‖, e1 = (1, 0, · · · , 0)T ∈ Rm+1, H̄m := (hi,j) ∈ R(m+1)×m;
15 xm ← x0 +B(k)(Pmym), here Pm := (p1, p2, · · · , pm);

16 Compute rm ← b−A(k)xm;
17 if ‖rm‖/‖r0‖ < tol then
18 break;
19 else
20 x0 ← xm;
21 p1 ← rm/‖rm‖;
22 end

23 end

24 x(k) ← xm, It
(k) ← It;

25 return x(k), It(k), B(k).

Algorithm 4.2 ASCPR method

Input: B(k−1), It(k−1), µ, k;
Output: B(k);

1 if k > 1 and It(k−1) ≤ µ then

2 B(k) ← B(k−1);
3 else

4 The preconditioner B(k) is generated by calling Algorithm 3.1.
5 end

6 return B(k).

We introduce a practical threshold µ as a criterion for the adaptive SETUP preconditioner,
which aims to improve the performance of the ASCPR-GMRES. To begin with, we explain the
main idea of this approach. The It(k−1) ≤ µ means B(k−1) is an effective preconditioner for
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Jacobian system A(k−1)x(k−1) = b(k−1) because the smaller number of iterations It(k−1), the
more B(k−1) approximates the inverse of matrix A(k−1). Because the structure of these matrices
is similar and the CPR preconditioner does not require high accuracy, the preconditioner B(k−1)

can also be used as a preconditioner for Jacobian system A(k)x(k) = b(k). Moreover, the
approach can improve the performance of the solver from the following two aspects.

• First, the efficiency of the solver is improved because the number of SETUP calls can
be reduced.

• Second, the parallel performance of the solver is improved because the proportion of
low parallel speedup is reduced in the solver.

Choosing a suitable µ is important to the performance of the solver. Finally, we discuss the
choice of µ. If µ is too small, the number of SETUP calls is not considerably reduced. As a
result, the performance of the solver is not significantly improved. Specifically, when µ = 0,
ASCPR-GMRES degenerates into CPR-GMRES. On the contrary, if µ is too large, the number
of iterations of the solver is dramatically increased, thereby affecting the performance of the
solver. Generally, the optimal µ is determined through numerical experiments according to
concrete problems.

5. A multi-color GS method. In this section, we propose a parallel GS algorithm from the
algebraic point of view, aiming to overcoming the limitations of the conventional red-black GS
algorithm; it yields the same convergence behavior as the corresponding single-thread algorithm
and obtains a good parallel speedup.

To this end, the concept of an adjacency graph is introduced. Note that an adjacency graph
corresponds to a sparse matrix, and the nonzero entries of the matrix reflect the connectivity
relationship between vertices in the graph. Assume that a sparse matrix A ∈ Rn×n is sym-
metric. Let GA(V,E) be the (undirected) adjacency graph corresponding to the sparse matrix
A = (aij)n×n, where V = {v1, v2, · · · , vn} is the vertices set, and E = {(vi, vj) : ∀ i 6= j, aij 6= 0}
is the edges set (each nonzero entry aij on the non diagonal of A corresponds to an edge (vi, vj)).

We are now in the position to give the design goals of this algorithm for grouping vertices
and the parallel GS implementation based on the strong connections of A.

5.1. Algorithm design goals. The goal of our algorithm design is to divide the vertices set
V into c subsets V1, V2, · · · , Vc (1 ≤ c ≤ n), and these subsets shall satisfy the following four
conditions:

(a) V = V1 ∪ V2 · · · ∪ Vc;
(b) Vi ∩ Vj = ∅, i 6= j, 1 ≤ i, j ≤ c;
(c) Vertices in any subset are not connected, i.e., aij = aji = 0,∀ vi, vj ∈ V` (` = 1, · · · , c);

and
(d) The number of subsets c should be as small as possible.
It is easy to see that the smaller the number of groupings c, the more difficult the grouping,

and the larger the parallel granularity. The classic GS is, in fact, equivalent to the situation
when c is equal to n.

Remark 4. The red-black GS algorithm also satisfies the above four conditions with c = 2.

5.2. Parallel GS algorithm. In 2003, [11] gave an upper bound estimate of the total number
of colors based on the graph theory. To proceed, we briefly review this upper bound estimate.

Proposition 5.1 (Upper bound estimation). The number of multi-color groupings c of undi-
rected graph GA(V,E) does not exceed degree

(
GA(V,E)

)
+ 1; that is, c does not exceed the

maximum number of nonzero entries in each row of matrix A.

According to Proposition 5.1, the number of groups c depends on the maximum number of
nonzero entries in each row of matrix A. When the matrix A is relatively dense (such as the
coarse grid matrix in AMG), the number of groups c is large, which contradicts the condition
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(d) of Section 5.1. In extreme cases, the row nonzero entries of a matrix can be equal to the
order of the matrix (this implies that c = n). Too many groups bring up two difficulties: low
efficiency of the grouping algorithm and poor parallel performance. For the latter, because
there are only small number of degrees of freedom within each group, it results in fine parallel
granularity.

For this reason, GA(V,E) needs to be preprocessed to strengthen its sparseness before
grouping the degrees of freedom. There are many ways to enhance the sparseness of GA(V,E).
When the sparseness of GA(V,E) is enhanced, the number of groups c becomes smaller. At the
same time, the independence of vertex set V` (` = 1, · · · , c) becomes worse, which affects the
parallel results. Therefore, choosing an appropriate strategy is of great importance to enhance
the sparseness of GA(V,E). The situation is considered where the solution vector is relatively
smooth. It is found that the smaller nonzero entries (in the sense of absolute value) in each
row of the matrix play a negligible role when a certain degree of freedom is smoothed by GS.
In this paper, we propose a strategy to filter small nonzero entries. The matrix whose small
nonzero entries are filtered is called the so-called “matrix of strong connections.” This concept
is defined as follows.

The matrix A = (aij)n×n corresponds to the matrix of strong connections S(A, θ) (denoted
as S), and its entries are defined as

(5.1) Sij =


1, |aij | > θ

n∑
k=1

|aik|

0, |aij | ≤ θ
n∑
k=1

|aik|
∀ i, j = 1, 2, · · · , n, i 6= j,

where θ (0 ≤ θ ≤ 1) is a given threshold, Sij = 1 when there is a strong adjacent edge between
vi and vj , and Sij = 0 means that there is no strong adjacent edge between vi and vj .

To describe our algorithm conveniently, we introduce the following notations.
• The set Si represents the vertex set that is strongly connected to the vertex vi, i.e.,
Si = {j : Sij 6= 0, j = 1, 2, · · · , n}.
• The set Si represents the vertex set that is strongly connected to the vertex vi (including
vi) and whose colors are undetermined. That is, Si =

{
j : j ∈ Si ∪ {i} and color of j is

undetermined
}

.

• The set Ŝi represents the vertex set that is the next most strongly connected to the
vertex vi (the vertices on “the second circle”) and whose colors are undetermined. That
is, Ŝi =

{
j : j ∈ Wi and color of j is undetermined

}
, where Wi =

{
j : ∀ k ∈ Si, j ∈

Sk/(Si ∪ {i})
}

.
• The cardinality | • | represents the number of entries in the set •. In particular, |Si|

represents the influence value of the vertex vi.

i23

i22 i12 i24

i21 i11 i i13 i25

i28 i14 i26

i27

Fig. 3. Schematic diagram of notations explanation.

Let us explain these notations with a simple schematic diagram (see Fig. 3). Assume
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that the all edges are strongly adjacent edges in Fig. 3; moreover, the vertices i13 and i22 are
given the splitting attribute (i.e., they have their own color). Hence, Si =

{
i11, i

1
2, i

1
3, i

1
4

}
,

Si =
{
i, i11, i

1
2, i

1
3

}
, Ŝi =

{
i21, i

2
3, i

2
4, i

2
5, i

2
6, i

2
7, i

2
8

}
, and |Si| = 4.

In the following, our algorithms are presented. To begin, we propose a greedy splitting al-
gorithm for the vertices set V based on the matrix of strong connections (denoted as VerticesS-
plitting); see Algorithm 5.1. The proposed Algorithm 5.2 gives a vertices grouping algorithm
corresponding to the matrix A (denoted as VerticesGrouping).

Algorithm 5.1 VerticesSplitting method

Input: V, S;
Output: W, W ;

1 Set W ← ∅, W ← ∅, Ŵ ← ∅;
2 while V 6= ∅ do

3 if Ŵ 6= ∅ then

4 Any take vi ∈ Ŵ and |Si| ≥ |Sj |, ∀ vi, vj ∈ Ŵ ;
5 else
6 Any take vi ∈ V and |Si| ≥ |Sj |, ∀ vi, vj ∈ V ;
7 end
8 if vi is not strongly connected to any vertices in the set W (i.e., Sij = 0, ∀ j ∈W ) then
9 W ←W ∪ vi, V ← V/vi;

10 if vi ∈ Ŵ then

11 Ŵ ← Ŵ/vi;
12 end

13 W ←W ∪ Si;
14 V ← V/Si;

15 Ŵ ← Ŵ ∪ Ŝi;
16 else

17 W ←W ∪ vi;
18 V ← V/vi;

19 if vi ∈ Ŵ then

20 Ŵ ← Ŵ/vi;
21 end

22 end

23 end

24 return W, W .

Algorithm 5.2 VerticesGrouping method

Input: V, S;
Output: V` (` = 1, · · · , c);

1 Set c← 0;
2 while V 6= ∅ do
3 c← c+ 1;

4 Call Algorithm 5.1 to generate Vc and V c;

5 Let V ← V c;

6 end
7 return V` (` = 1, · · · , c).

As can be easily noticed from Algorithms 5.1 and 5.2, the grouping numbers c and the
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degree of independence of the vertices set V` (` = 1, · · · , c) depend on the choice of strength
threshold θ. The smaller the value of θ, the better the degree of independence of the vertices
set, but the greater the c. Especially, when θ = 0, the degree of independence of the vertices
set is the best (complete independence), but c is the largest. Moreover, when θ = 1, the degree
of independence of the vertices set is the worst, and c = 1 (at this time, the proposed algorithm
degenerates to the classic GS algorithm). In this sense, it is necessary to balance the grouping
numbers and the degree of independence within the vertices set. In order to better satisfy
condition (d), we use an approach to weaken the condition (c) slightly in our algorithms. We
expect that this approach can slightly improve the parallel performance.

Next, two properties of our proposed algorithms are given.

Proposition 5.2 (Matrix diagonalization). The block matrix AV`V` (with V` as the row and
column indices, ` = 1, · · · , c) is the diagonal matrix if the row and column indices of matrix A
are rearranged by the indices set

{
V`
}c
`=1

.

Proposition 5.3 (Finite termination). Algorithm 5.2 terminates within a finite number of
steps; that is, c ≤ |V |.

Proof. To prove that Algorithm 5.2 terminates within a finite step, just prove Vc 6= ∅ in
line 5 of Algorithm 5.2. According to Algorithm 5.1, if V 6= ∅, Vc (i.e., the output variable W
of Algorithm 5.1) contains at least one vertex. From lines 3–7 of Algorithm 5.2, c ≤ |V | can be
obtained.

Note that the Algorithm 5.2 can split GA(V,E) into subgraphs GA`
(V`, E`), ` = 1, · · · , c.

The S(A`, θ) is denoted as the adjacency matrix corresponding to each subgraph. Moreover,
each subgraph corresponds to a submatrix A`(V`) of matrix A. According to Proposition
5.2, the diagonal blocks of the submatrix A`(V`) are diagonal, and the GS smoothing of the
submatrix A`(V`) is completely parallel at this time. Furthermore, a parallel (or multi-color)
GS algorithm based on the strong connections of the matrix is given by Algorithm 5.3, denoted
as PGS-SCM.

Algorithm 5.3 PGS-SCM method

Input: A, x, b, θ;
Output: x;

1 Using the matrix A and the formula (5.1) to generate vertices set V and matrix of strong
connections S, respectively;

2 Call Algorithm 5.2 to generate independent vertices subset V` (` = 1, · · · , c);
3 Using V` to split the matrix A into submatrix A` (` = 1, · · · , c);
4 for ` = 1, · · · , c do
5 Parallel call the classic GS algorithm of submatrix A`;
6 end
7 return x.

Finally, the proposed algorithms can be parallelized for multi-core and many-core archi-
tectures. We develop the OpenMP version and the CUDA version of the parallel program,
respectively. Furthermore, these algorithms are integrated into the FASP framework. The
results of the numerical experiments will be given in the next section.

6. Numerical experiments. In this section, to demonstrate the performance of the pro-
posed methods, we consider the two-phase and three-phase test problems based on the SPE10
benchmark. The numerical experiments are performed on a machine with Intel Xeon Platinum
8260 CPU (32 cores, 2.40GHz), 128GB DRAM, and NVIDIA Tesla T4 GPU (2560 cores, 16GB
Memory).
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Here we provide some details of the ASCPR-GMRES method. For the CPR precondi-
tioner, in the first stage, we use the Unsmoothed Aggregation AMG (UA-AMG) method [37]
to approximate the inverse of the pressure coefficient matrix, where the aggregation strategy
is the so-called non-symmetric pairwise matching aggregation (NPAIR) [38], the cycle type is
the Nonlinear AMLI-cycle [39], the smoothing operator is PGS-SCM, the degree of freedom of
the coarsest space is set to be 10000, and the coarsest space solver is a direct solver. In the
second stage, we use the BILU method based on Level Scheduling (LS) [11] to approximate
the inverse of the coefficient matrix. For the restarted GMRES method, the restarting number
m is 28, the maximum number of iterations MaxIt is 100, and the tolerance error of relative
residual norm tol is 10−5.

6.1. Two-phase SPE10. The standard two-phase SPE10 [40] benchmark is tested to
demonstrate the performance of the proposed methods. The model dimensions are 1200 ×
2200 × 170 (ft), and the number of grid cells is 60 × 220 × 80 (the total number of grid cells
is 1,122,000 and the number of active cells is 1,094,422). First, we verify convergence be-
havior and parallel performance of the PGS-SCM method. Furthermore, we test the parallel
performance for the ASCPR-GMRES-OMP and ASCPR-GMRES-CUDA methods, where the
ASCPR-GMRES-OMP and ASCPR-GMRES-CUDA correspond to solver versions in OpenMP
and CUDA, respectively. Finally, our results based on the in-house simulator of PetroChina,
HiSim 2.0 [31], are compared with the results obtained using a commercial simulator, tNavi-
gator (2020 version) [41].

6.1.1. PGS-SCM method. To evaluate the convergence behavior and parallel performance
of the proposed PGS-SCM method, we employ the CPR-GMRES method as the solver for the
petroleum reservoir simulation. Furthermore, we employ the parallel GS method based on
natural ordering (denoted as PGS-NO) as a reference for comparison.

Example 6.1. The two-phase example is considered, and the numerical simulation conducted
for 2000 days. We use the different number of threads (NT = 1, 2, 4, 8, and 16) to test the
parallel performance of CPR-GMRES-PGS-NO and CPR-GMRES-PGS-SCM. The impacts of
the different strength thresholds θ (θ = 0, 0.05, 0.1, and 0.3) on CPR-GMRES-PGS-SCM are
also tested.

Tab. 1 lists the total number of linear iterations (Iter), the total wall time in seconds (Time),
and the parallel speedup (Speedup defined in Remark 5).

Remark 5. The calculation formula of speedup is

Speedup =
T1
Tn
,

where T1 represents the wall time obtained by a single thread (core), and Tn represents the
wall time obtained by n threads.

It can be seen from Tab. 1 that, for CPR-GMRES-PGS-NO, the total number of linear
iterations gradually increases as NT increases. In particular, if NT = 16, the total number of
linear iterations increases by 97 compared with the single-thread case (the speedup is about
5.28). On the other hand, the number of iterations of the parallel GS algorithm based on natural
ordering is not as stable. That is, as the number of threads increases, the number of iterations
increases, which affects the parallel speedup as well. However, for CPR-GMRES-PGS-SCM
(when θ = 0), the total number of linear iterations is not changed with a larger NT. Such
results indicate that the proposed PGS-SCM method yields same convergence behavior as the
corresponding single-thread algorithm. Moreover, from the perspective of parallel performance,
CPR-GMRES-PGS-SCM gets a higher speedup compared with CPR-GMRES-PGS-NO. For
example, when NT = 16, the speedup of CPR-GMRES-PGS-SCM is also higher (the speedup
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Tab. 1
Iter, Time(s), and Speedup of the two solvers with different NT for the two-phase SPE10 problem.

Solvers θ NT 1 2 4 8 16

CPR-GMRES-PGS-NO —

Iter 5823 5826 5842 5882 5920

Time 4701.26 2577.35 1497.12 988.09 890.78

Speedup 1.00 1.82 3.14 4.76 5.28

CPR-GMRES-PGS-SCM

0

Iter 5837 5837 5837 5837 5837

Time 4780.42 2610.02 1501.12 976.80 847.26

Speedup 1.00 1.83 3.18 4.89 5.64

0.05

Iter 5823 5822 5818 5822 5827

Time 4753.00 2593.07 1491.97 970.26 829.24

Speedup 1.00 1.83 3.19 4.90 5.73

0.1

Iter 5832 5833 5826 5825 5846

Time 4782.52 2599.12 1497.25 977.93 850.82

Speedup 1.00 1.84 3.19 4.89 5.62

0.3

Iter 5821 5839 5841 5876 5912

Time 4732.72 2615.05 1510.71 981.28 872.32

Speedup 1.00 1.81 3.13 4.82 5.43

is about 5.73).
Next, we discuss the influence of the strength threshold θ on the parallel performance for

the CPR-GMRES-PGS-SCM solver. When θ is small (for example, θ = 0.0 or 0.05), the total
number of linear iterations changes little when NT increases. However, if θ gets larger (for
example, θ = 0.1 or 0.3), the varied range of the total number of linear iterations is enlarged
with the increase of NT. If NT = 16 is considered, as θ increases, the total number of linear
iterations first decreases and then increases, and the speedup first increases and then decreases.
In particular, when θ = 0.05, the minimum total number of linear iterations is 5827, and the
speedup is the highest. This shows that the strength threshold θ affects the convergence as
well as the parallel performance.

6.1.2. ASCPR-GMRES-OMP method.

Example 6.2. For the two-phase SPE10 example, the numerical simulation is conducted for
2000 days, and θ = 0.05. We explore the parallel performance of ASCPR-GMRES-OMP for
four different values of µ (i.e., µ = 0, 20, 30, and 40), when NT = 1, 2, 4, 8, and 16, respectively.

To assess the effects of different thresholds µ on the performance of ASCPR-GMRES-OMP
for the two-phase SPE10 problem, Tab. 2 lists the number of SETUP calls (SetupCalls), the
ratio of SETUP in the total solution time (SetupRatio), the total number of linear iterations
(Iter), total solution time in seconds (Time), new parallel speedup (Speedup∗, see Remark 6),
and parallel speedup (Speedup).

Remark 6. In order to compare the parallel speedup of ASCPR-GMRES-OMP fairly, we
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Tab. 2
SetupCalls, SetupRatio, Iter, Time(s), Speedup∗, and Speedup for the two-phase SPE10 problem.

µ 1 2 4 8 16

SetupCalls

0 239 239 239 239 239

20 188 188 188 188 188

30 58 58 58 58 58

40 33 33 33 33 33

SetupRatio

0 11.08% 14.59% 20.63% 29.34% 41.38%

20 9.45% 12.46% 17.55% 25.45% 38.14%

30 5.19% 6.52% 9.20% 14.05% 26.09%

40 4.05% 4.99% 6.62% 11.03% 21.83%

Iter

0 5823 5822 5818 5822 5827

20 5855 5854 5853 5855 5857

30 6309 6308 6315 6317 6319

40 7033 7034 7037 7041 7044

Time

0 4753.00 2593.07 1491.97 970.26 829.24

20 4821.98 2606.18 1488.95 949.98 804.56

30 4919.81 2617.66 1444.92 877.85 718.13

40 5475.72 2880.97 1570.72 946.35 769.34

Speedup∗

0 1.00 1.83 3.19 4.90 5.73

20 0.99 1.82 3.19 5.00 5.91

30 0.97 1.82 3.29 5.41 6.62

40 0.87 1.65 3.03 5.02 6.18

Speedup

0 1.00 1.83 3.19 4.90 5.73

20 1.00 1.85 3.24 5.08 5.99

30 1.00 1.88 3.40 5.60 6.85

40 1.00 1.90 3.49 5.79 7.12

propose a new parallel speedup (denoted as Speedup∗), and it is defined as follows:

Speedup∗ =
T 0
1

Tµn
,

where T 0
1 represents the wall time obtained by a single thread when the general preconditioner

(µ = 0) is used, and Tµn represents the wall time obtained by n threads when the adaptive
SETUP threshold µ is used.
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From Tab. 2, we first look at the number of SETUP calls, the ratio of SETUP in the total
solution time, and the total number of linear iterations. When NT is fixed, both the number
of SETUP calls and the ratio of SETUP in the total solution time decrease as µ increases.
In particular, when µ = 40, there are only 33 SETUP calls. When µ is fixed, the number
of SETUP calls does not changed with respect to NT, but the ratio of SETUP in the total
solution time is increasing. If NT is fixed, the total number of linear iterations is increasing
as µ increases. These observations indicate that the number of SETUP calls is significantly
decreased with the increase of µ, while the total number of linear iterations is also increased.
Furthermore, we focus on the total solution time and the new parallel speedup. When NT = 16
and µ = 30, the total solution time is 718.13 (s), and the corresponding the new parallel
speedup is 6.62. Compared with the regular CPR preconditioner, the total solution time of
ASCPR-GMRES-OMP is reduced from 829.24 (s) to 718.13 (s), and the new parallel speedup
is increased from 5.73 to 6.62. These results show that the proposed method can improve the
parallel performance of the solver.

6.1.3. ASCPR-GMRES-CUDA method.

Example 6.3. For the two-phase SPE10 example, the numerical simulation is conducted for
2000 days, and θ = 0.05. We explore the impacts of µ (µ = 0, 20, 30, and 40) on the parallel
performance of ASCPR-GMRES-CUDA.

Tab. 3 lists SetupCalls, SetupRatio, Iter, Time, and Speedup of ASCPR-GMRES-CUDA
for the two-phase SPE10 problem. The single-thread calculation results of the OpenMP ver-
sion program ASCPR-GMRES-OMP(1) are also added for comparison. For ASCPR-GMRES-
CUDA solver, as µ increases, both the number of SETUP calls and the ratio of SETUP in
the total solution time decreases, the total number of linear iterations gradually increases, and
the parallel speedup increases. The CUDA version can be 6.22 times faster than the ASCPR-
GMRES-OMP(1). In case µ = 40, the total solution time of ASCPR-GMRES-CUDA is reduced
from 763.66 (s) to 424.60 (s), which can be 1.80 times faster compared with µ = 0. At the
same time, compared with ASCPR-GMRES-OMP(1), the speedup of ASCPR-GMRES-CUDA
reaches 11.19.

Tab. 3
SetupCalls, SetupRatio, Iter, Time(s), and Speedup (compared to ASCPR-GMRES-OMP(1)) of the different

µ for the two-phase SPE10 problem.

Solvers µ SetupCalls SetupRatio Iter Time Speedup

ASCPR-GMRES-OMP(1) 0 239 12.22% 5823 4753.00 —

ASCPR-GMRES-CUDA

0 239 71.39% 5525 763.66 6.22

20 185 66.11% 5659 677.13 7.02

30 52 41.99% 6182 432.45 10.99

40 34 34.58% 6740 424.60 11.19

Finally, we present the effects of different µ on the timestep size ∆t for ASCPR-GMRES-
OMP and ASCPR-GMRES-CUDA solvers, see Fig. 4. It can be seen from Fig. 4(a) that when
µ = 0, the timestep size is consistent for ASCPR-GMRES-OMP with different thread numbers.
From Figs. 4(b) and 4(c), when µ changes, the timestep sizes of the ASCPR-GMRES-OMP and
ASCPR-GMRES-CUDA solvers rarely change, and the effect on the overall numerical results
can be ignored.
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(a) OpenMP, µ = 0 (b) OpenMP, NT = 16 (c) GPU

Fig. 4. The timestep size ∆t of ASCPR-GMRES-OMP and ASCPR-GMRES-CUDA for the two-phase
SPE10 problem.

6.1.4. Performance comparisons with commercial simulator. To better evaluate the per-
formance of the proposed methods, we also test the same problem with a commercial simulator
for comparison. The default solving method and parameters are used, where the maximum
number of iterations MaxIt is 1000 and the tolerance of relative residual norm tol is set to
10−5. We compare the experimental results of the OpenMP and GPU versions for commercial
and our simulators, respectively.

To begin with, Figs. 5 and 6 display the field oil production rate and average pressure
graphs. Through quantitative comparison, it can be found that our simulation results are
consistent with the results of commercial simulator.

(a) OpenMP, NT = 16 (b) GPU

Fig. 5. Field oil production rate of OpenMP and GPU for the two-phase SPE10 problem.

(a) OpenMP, NT = 16 (b) GPU

Fig. 6. Average pressure of OpenMP and GPU for the two-phase SPE10 problem.
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Tab. 4
NumTSteps, NumNSteps, Iter, AvgIter, Time(h), and Speedup comparisons of the OpenMP version of

commercial and our simulators for the two-phase SPE10 problem.

Simulators µ NT 1 2 4 8 16

Commercial —

NumTSteps 671 785 891 1031 1100

NumNSteps 1115 1244 1328 1458 1515

Iter 150152 160254 161432 167757 175452

AvgIter 134.7 128.8 121.6 115.1 115.8

Time 14.62 8.45 4.71 2.72 1.54

Speedup 1.00 1.73 3.10 5.37 9.49

Ours

0

NumTSteps 164 164 164 164 164

NumNSteps 239 239 239 239 239

Iter 5823 5822 5818 5822 5827

AvgIter 24.4 24.4 24.3 24.4 24.4

Time 1.48 0.88 0.57 0.43 0.39

Speedup 1.00 1.68 2.60 3.44 3.79

20

NumTSteps 164 164 164 164 164

NumNSteps 239 239 239 239 239

Iter 5855 5854 5853 5855 5857

AvgIter 24.5 24.5 24.5 24.5 24.5

Time 1.50 0.88 0.57 0.42 0.38

Speedup 1.00 1.70 2.63 3.57 3.95

30

NumTSteps 164 164 164 164 164

NumNSteps 239 239 239 239 239

Iter 6309 6308 6315 6317 6319

AvgIter 26.4 26.4 26.4 26.4 26.4

Time 1.52 0.88 0.56 0.40 0.36

Speedup 1.00 1.73 2.71 3.80 4.22

40

NumTSteps 164 164 164 164 165

NumNSteps 246 246 246 246 247

Iter 7033 7034 7037 7041 7064

AvgIter 28.6 28.6 28.6 28.6 28.6

Time 1.68 0.96 0.60 0.42 0.37

Speedup 1.00 1.75 2.80 4.00 4.54

Tabs. 4 and 5 present the number of time steps (NumTSteps), the number of Newton
iterations (NumNSteps), the number of linear iterations (Iter), the average number of linear
iterations per Newton iteration (AvgIter), the total simulation time (Time), and the parallel
speedup (Speedup) for the OpenMP and GPU versions of commercial and our simulators,
respectively. For the OpenMP version of the commercial simulator, when the number of threads
is changed from 1 to 16, the simulation time is reduced from 14.62 (h) to 1.54 (h). At this point,
the maximum speedup reaches 9.49 and the average number of linear iterations per Newton
iteration exceeds 115. In our simulator, when µ = 30 and the number of threads varied from 1
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to 16, the simulation time was reduced from 1.52 (h) to 0.36 (h). At this point, the maximum
speedup reaches 4.22 and the average number of linear iterations per Newton iteration is 26.4.
This indicates that the proposed method can speed up the simulation time by 4.27 times
compared with the commercial simulator. On the one hand, the commercial software chooses
some algorithms with high parallel speedup. Usually, such algorithms are easier to parallelize,
while they take more iterations to converge. It can be seen from the average number of linear
iterations per Newton iteration—Its AvgIter is about 4 times more than ours. On the other
hand, increasing the number of iterations also improves the parallel speedup. This is because
the proportion of solver in the SOLVE increases, and the parallel speedup of the SOLVE phase
is usually higher than that of SETUP. Finally, it is worth mentioning that we only parallelize
the linear solver in our simulator, while the rest of our simulator is still sequential.

Tab. 5
NumTSteps, NumNSteps, Iter, AvgIter, Time(h), and Speedup (compared with the commercial simulator)

comparisons of the GPU version of commercial and our simulators for the two-phase SPE10 problem.

Simulators µ NumTSteps NumNSteps Iter AvgIter Time Speedup

Commercial — 1004 1431 170276 119.0 3.070 —

Ours

0 164 239 5525 23.1 0.387 7.93

20 164 240 5659 23.6 0.358 8.57

30 165 240 6182 25.8 0.280 10.97

40 167 244 6740 27.6 0.278 11.05

According to Tab. 5, we can summarize similar conclusions for GPUs. Compared with
the commercial simulator, our obtained numbers of time steps, Newton iterations, and linear
iterations are much smaller, and the simulation time is shorter. Especially when µ = 40, the
speedup of our simulator can achieve 11.05 compared to commercial simulator.

6.2. Three-phase SPE10. A three-phase benchmark problem is obtained by changing the
fluid properties of the original two-phase SPE10 [40]. We provide modification information
from two-phase to three-phase for the SPE10 benchmark problem. Some keywords and values
are added to the input file of the original two-phase SPE10 problem. We change the phase
states, fluid properties, and relative permeabilities as follows.

• Phase states:

Tab. 6
Phase states for two-phase and three-phase.

Two-phase Three-phase

OIL OIL
WATER WATER

GAS
DISGAS

Remark 7. Note that the keyword “DISGAS” indicates that dissolved gas in oil is con-
sidered in three-phase example.

• Fluid properties:
where Po, Bo, and µo denote the pressure, volume coefficient, and viscosity coefficient
of oil phase, respectively. Pbub and Rso denote the bubble point pressure for oil and
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Tab. 7
PVDO: PVT properties of dead oil (no dissolved gas) for two-phase. PVCO: PVT properties of live oil in

compressibility form (with dissolved gas) for three-phase. Left: PVDO, right: PVCO.

Po Bo µo

300 1.05 2.85
800 1.02 2.99
8000 1.01 3.00

Pbub Rso Bo µo κo vco

400 0.0165 1.01200 3.5057 1.1388e-6 0
4000 0.1130 1.01278 2.9972 1.1388e-6 0
10000 0.1810 1.15500 2.6675 1.1388e-6 0

dissolved gas-oil ratio; Bo and µo denote the volume coefficient and viscosity coefficient
of saturated oil; κo and vco denote the compressibility and viscosity compressibility of
undersaturated oil.

Tab. 8
PMAX: Maximum pressure during the simulation.

Pmax P̂max P̂min Nnodes

16000 0.0 1.0E+20 30

where Pmax denotes the maximum pressure that could be reached during the simulation.
P̂max, P̂min, and Nnodes denote maximum pressure to extend the range of pressures,
minimum pressure to extend the lower range of pressures, and the number of nodes for
checking total compressibility of the system.

Tab. 9
PVDG: PVT properties of dry gas (no vaporized oil). left: two-phase, right: three-phase.

Pg Bg µg

300 1.98 0.0162
800 1.11 0.0197
8000 0.60 0.0330

Pg Bg µg

400 1.96 0.0140
4000 0.84 0.0160
8000 0.59 0.0175
10000 0.42 0.0195

where Pg, Bg, and µg denote the pressure, volume coefficient, and viscosity coefficient
of gas phase, respectively.
• Gas-oil relative permeabilities and capillary pressure:

where Sg, κrg, κrog, and pcog denote the gas saturation, gas relative permeability, oil rel-
ative permeability (when oil, gas and connate water are present), and capillary pressure
between the gas and oil phases, respectively.

Next we are going to verify convergence behavior and parallel performance of the PGS-SCM
method for the three-phase SPE10 problem. Also, the correctness and parallel performance
for the ASCPR-GMRES-OMP and ASCPR-GMRES-CUDA methods are tested and the per-
formance of our and commercial simulators are compared.

6.2.1. PGS-SCM method.

Example 6.4. The three-phase example is considered, and the numerical simulation con-
ducted for 100 days. We use the different number of threads (NT = 1, 2, 4, 8, and 16) to test
the parallel performance of CPR-GMRES-PGS-NO and CPR-GMRES-PGS-SCM. The impacts
of the different strength thresholds θ (θ = 0, 0.05, 0.1, and 0.3) on CPR-GMRES-PGS-SCM
are also tested.
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Tab. 10
SGOF: gas/oil relative permeabilities and capillary pressure versus gas saturation for three-phase.

Sg κrg κrog pcog

0.00 0.0000 1.00 0.0
0.04 0.0000 0.60 0.2
0.10 0.0220 0.33 0.5
0.20 0.1000 0.10 1.0
0.30 0.2400 0.02 1.5
0.40 0.3400 0.00 2.0
0.50 0.4200 0.00 2.5
0.60 0.5000 0.00 3.0
0.70 0.8125 0.00 3.5
0.80 1.0000 0.00 3.9

Tab. 11 lists the experimental results of Example 6.4, including the total number of linear
iterations (Iter), the total solution time (Time), and the parallel speedup (Speedup).

Tab. 11
Iter, Time(s), and Speedup of the two solvers with different NT for the three-phase SPE10 problem.

Solvers θ NT 1 2 4 8 16

CPR-GMRES-PGS-NO —

Iter 3336 3338 3372 3439 3527

Time 3406.71 2050.70 1258.79 804.38 687.76

Speedup 1.00 1.66 2.71 4.24 4.95

CPR-GMRES-PGS-SCM

0

Iter 3334 3334 3334 3334 3334

Time 3489.93 1937.48 1125.65 723.21 608.78

Speedup 1.00 1.80 3.10 4.83 5.73

0.05

Iter 3236 3236 3237 3237 3237

Time 3446.89 1920.54 1102.48 711.16 598.86

Speedup 1.00 1.79 3.13 4.85 5.76

0.1

Iter 3379 3381 3381 3385 3385

Time 3551.89 1976.98 1141.65 745.85 624.98

Speedup 1.00 1.80 3.11 4.76 5.68

0.3

Iter 3314 3315 3470 3496 3477

Time 3421.46 1909.81 1154.44 756.08 631.75

Speedup 1.00 1.79 2.96 4.53 5.42

It can be seen from Tab. 11 that, for CPR-GMRES-PGS-NO solver, the total number of
linear iterations gradually increases as NT increases. When NT = 16, the total number of
linear iterations increases by 191 compared with the single-thread result, and the speedup is
4.95. This implies that the number of iterations of the parallel GS algorithm based on natural
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ordering is not stable. That is, as the number of threads increases, the number of iterations
increases, which affects the parallel speedup of the solver. However, for CPR-GMRES-PGS-
SCM solver (when θ = 0), the total number of linear iterations is not changed with a larger
NT. Such results indicate that the proposed PGS-SCM yields the same convergence behavior
as the corresponding single-thread algorithm, which verifies the effectiveness of the algorithm.
Moreover, from the perspective of parallel performance, CPR-GMRES-PGS-SCM gets a higher
speedup compared with CPR-GMRES-PGS-NO. For example, when NT = 16, the speedup of
CPR-GMRES-PGS-SCM increases to 5.73 (from 4.95 to 5.73). Hence, the proposed PGS-SCM
method can obtain a better parallel speedup.

Next, we discuss the influence of different strength thresholds θ on the parallel performance
for CPR-GMRES-PGS-SCM solver. When θ is small (for example, θ = 0 or 0.05), the total
number of linear iterations changes little with the increase of NT and can even be considered
unchanged. However, when θ is larger (for example, θ = 0.1 or 0.3), the varied range of the
total number of linear iterations is enlarged with the increase of NT. These results show that as
θ increases, the independence of the degrees of freedom is decreased, which affects the number
of iterations. If NT = 16 is considered, the proposed method obtains some meaningful results.
As θ increases, the total number of linear iterations first decreases and then increases, and
the speedup first increases and then decreases. Especially when θ = 0.05, the minimum total
number of linear iterations is 3237, and the speedup is the highest, reaching 5.76. All in all, the
strength threshold θ affects the stability of the number of iterations and parallel performance.
In this experiment, when θ = 0.05, the obtained number of iterations is the least, and the
parallel speedup is the highest.

6.2.2. ASCPR-GMRES-OMP method. In order to verify the correctness and parallel
performance of ASCPR-GMRES-OMP, we discuss the influences of different thresholds µ on
the experimental results.

Example 6.5. For the three-phase example, the numerical simulation is conducted for 100
days, and θ = 0.05. We explore the parallel performance of ASCPR-GMRES-OMP for five
groups of µ (i.e., µ = 0, 10, 20, 30, and 40), when NT = 1, 2, 4, 8, and 16, respectively.

First, to verify the correctness of ASCPR-GMRES-OMP, we present the field oil production
rate, field gas production rate, and average pressure graphs of five groups µ (when NT = 16);
see Fig. 7.

(a) Field oil production rate (b) Field gas production rate (c) Average pressure

Fig. 7. Comparison charts of field oil production rate, field gas production rate, and average pressure of five
groups µ for the three-phase SPE10 problem (OpenMP, NT=16).

From Fig. 7, we can see that the field oil production rate, field gas production rate, and
average pressure obtained by the adaptive SETUP CPR preconditioner (µ = 10, 20, 30, and
40) and the general CPR preconditioner (µ = 0) completely coincide, indicating that the
ASCPR-GMRES-OMP method is correct.
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Then, we also discuss the impacts of different thresholds µ on the parallel speedup of
ASCPR-GMRES-OMP. Tab. 12 lists the number of SETUP calls (SetupCalls), the ratio of
SETUP in the total solution time (SetupRatio), the total number of linear iterations (Iter),
total solution time (Time), new parallel speedup (Speedup∗), and parallel speedup (Speedup).

Tab. 12
SetupCalls, SetupRatio, Iter, Time(s), Speedup∗, and Speedup of different µ and NT for the three-phase

SPE10 problem.

µ 1 2 4 8 16

SetupCalls

0 178 178 178 178 178

10 141 141 141 141 141

20 98 98 98 98 98

30 25 25 25 25 25

40 13 13 13 13 13

SetupRatio

0 13.13% 16.51% 22.06% 30.68% 40.44%

10 12.04% 15.01% 19.88% 28.25% 38.75%

20 8.76% 10.73% 14.05% 20.74% 33.23%

30 5.33% 6.23% 8.11% 11.39% 25.06%

40 4.67% 5.47% 6.91% 10.53% 19.83%

Iter

0 3236 3236 3237 3237 3237

10 3253 3253 3253 3253 3253

20 3464 3463 3460 3461 3460

30 3891 3891 3890 3889 3996

40 4111 4111 4118 4125 4106

Time

0 3446.89 1920.54 1102.48 711.16 598.86

10 3348.65 1853.37 1080.48 685.87 573.68

20 3446.32 1885.40 1063.75 654.28 522.75

30 3973.86 2145.97 1165.28 676.72 558.70

40 4229.11 2239.03 1210.80 717.30 582.31

Speedup∗

0 1.00 1.79 3.13 4.85 5.76

10 1.03 1.86 3.19 5.03 6.01

20 1.00 1.83 3.24 5.27 6.59

30 0.87 1.61 2.96 5.09 6.17

40 0.82 1.54 2.85 4.81 5.92

Speedup

0 1.00 1.79 3.13 4.85 5.76

10 1.00 1.81 3.10 4.88 5.84

20 1.00 1.83 3.24 5.27 6.59

30 1.00 1.85 3.41 5.87 7.11

40 1.00 1.89 3.49 5.90 7.26

According to the results of Tab. 12, we first discuss the number of SETUP calls, the ratio
of SETUP in the total solution time, and the total number of linear iterations. For the number
of SETUP calls and the ratio of SETUP in the total solution time, when NT is fixed, both



Li Zhao, Chunsheng Feng, Chensong Zhang and Shi Shu 23

the number of SETUP calls and the ratio of SETUP in the total solution time decrease as
µ increases. Especially when µ = 40, there are only 13 SETUP calls. When µ is fixed, the
number of SETUP calls is not changed with the increase of NT, but the ratio of SETUP in the
total solution time is gradually increased (this also reflects fact that the parallel speedup of
SOLVE is higher than that of SETUP). For the total number of linear iterations, when NT is
fixed, the total number of linear iterations is gradually increasing as µ increases. In short, these
results indicate that the number of SETUP calls is significantly decreased with the increase of
µ, but the total number of linear iterations is also increased.

What is more, we discuss the total solution time and the new parallel speedup (only discuss
the impacts of the change of µ on the results). Let’s take NT=16 as an example. When µ
increases by 0, 10, 20, 30, and 40 in turn, the total solution time is first decreased and then
increased, and the new parallel speedup is first increased and then decreased. Especially when
µ = 20, the total solution time is 522.75 (s), and the corresponding the new parallel speedup
is 6.59. Compared with the case of the general CPR preconditioner, the total solution time of
ASCPR-GMRES-OMP is reduced from 598.86 (s) to 522.75 (s), and the new parallel speedup is
increased from 5.76 to 6.59. These results show that the proposed method can further improve
the parallel performance of the solver.

Finally, we discuss the changes in the parallel speedup. As µ increases, the parallel speedup
is increased. Specifically, when µ = 40 and NT = 16, the parallel speedup reaches 7.26. These
results are consistent with what we expected. However, our goal is not to pursue the highest
parallel speedup but the highest new parallel speedup (or the shortest total solution time).

6.2.3. ASCPR-GMRES-CUDA method. In order to verify the correctness and parallel
performance of ASCPR-GMRES-CUDA, we explore the influences of different thresholds µ on
the experimental results.

Example 6.6. For the three-phase example, the numerical simulation is conducted for 100
days, and θ = 0.05. We explore the impacts of µ (µ = 0, 10, 20, 30, and 40) on the parallel
performance of ASCPR-GMRES-CUDA.

To verify the correctness of ASCPR-GMRES-CUDA, we plot the field oil production rate,
field gas production rate, and average pressure graphs of five sets µ, as shown in Fig. 8.

(a) Field oil production rate (b) Field gas production rate (c) Average pressure

Fig. 8. The field oil production rate, field gas production rate, and average pressure comparison chart of five
sets µ for the three-phase SPE10 problem (CUDA).

From Fig. 8, we can see that the field oil production rate, field gas production rate, and
average pressure obtained by the adaptive SETUP CPR preconditioner (i.e., µ = 10, 20, 30,
and 40) and the general CPR preconditioner (i.e., µ = 0) completely coincide, indicating that
the ASCPR-GMRES-CUDA is correct.

In addition, we study the parallel performance of the ASCPR-GMRES-CUDA. Tab. 13 lists
SetupCalls, SetupRatio, Iter, Time, and Speedup of ASCPR-GMRES-CUDA. The single-thread
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calculation results of the OpenMP version program (denoted as ASCPR-GMRES-OMP(1)) are
also added for comparison.

Tab. 13
SetupCalls, SetupRatio, Iter, Time(s), and Speedup (compared to ASCPR-GMRES-OMP(1)) of the different

µ for the three-phase SPE10 problem.

Solvers µ SetupCalls SetupRatio Iter Time Speedup

ASCPR-GMRES-OMP(1) 0 178 13.13% 3236 3446.89 —

ASCPR-GMRES-CUDA

0 178 74.01% 3270 594.96 5.79

10 146 70.97% 3302 534.33 6.45

20 69 61.20% 3424 413.12 8.34

30 24 46.24% 4065 355.80 9.69

40 17 44.21% 4239 362.97 9.50

It can be seen from Tab. 13 that for ASCPR-GMRES-CUDA solver, as µ increases, both
the number of SETUP calls and the ratio of SETUP in the total solution time decreases, the
total number of linear iterations gradually increases, and the parallel speedup first increases and
then decreases. The CUDA version can be 5.79 times faster than the ASCPR-GMRES-OMP(1)
(when µ = 0). In particular, when µ = 30, compared with µ = 0, the total solution time of
ASCPR-GMRES-CUDA is reduced from 594.96 (s) to 355.80 (s), which can be 1.67 times
faster. At the same time, compared with ASCPR-GMRES-OMP(1), the speedup of ASCPR-
GMRES-CUDA reaches 9.69. Therefore, the proposed method obtains distinct acceleration
effects and is more suitable for GPU architecture.

Finally, we present the effects of different µ on the timestep size ∆t for ASCPR-GMRES-
OMP and ASCPR-GMRES-CUDA solvers, see Fig. 9. It can be seen from Fig. 9(a) that when
µ = 0, the timestep size is consistent for ASCPR-GMRES-OMP with different thread numbers.
From Figs. 9(b) and 9(c), the change in the timestep sizes of the ASCPR-GMRES-OMP and
ASCPR-GMRES-CUDA solvers can be ignored when µ changes.

(a) OpenMP, µ = 0 (b) OpenMP, NT = 16 (c) GPU

Fig. 9. The timestep size ∆t of ASCPR-GMRES-OMP and ASCPR-GMRES-CUDA for the three-phase
SPE10 problem.

6.2.4. Performance comparisons with commercial simulator. Also, we compare the ex-
perimental results of the OpenMP and GPU versions for commercial and our simulators, re-
spectively. To begin with, Figs. 10(a) and 10(c) display the field oil production rate, field gas
production rate, and average pressure graphs. Through quantitative comparison, it can be
found that our simulation results are very consistent with the results of commercial simulator.
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(a) Field oil production rate (b) Field gas production rate (c) Average pressure

Fig. 10. The field oil production rate, field gas production rate, and average pressure comparison charts of
commercial and our simulators for the three-phase SPE10 problem. OpenMP version: NT = 16, Ours: µ = 0.

Next, Tabs. 14 and 15 present the number of time steps (NumTSteps), the number of
Newton iterations (NumNSteps), the number of linear iterations (Iter), the average number
of linear iterations per Newton iteration (AvgIter), the total simulation time (Time), and
the parallel speedup (Speedup) for the OpenMP and GPU versions of commercial and our
simulators, respectively.

It can be seen from Tab. 14 that there is more the number of time steps, Newton iterations,
and linear iterations in commercial simulator. When the number of threads increases from 1
to 16, linear iterations increase dramatically (or the average number of linear iterations per
Newton iteration increases), and the simulation time is reduced from 7.626 (h) to 0.590 (h). At
this point, the maximum speedup reaches 12.92 and the average number of linear iterations per
Newton iteration exceeds 260. In our simulator, the number of time steps, Newton iterations,
and linear iterations are less. Note that the number of linear iterations is basically stable as
the number of threads increases from 1 to 16. When µ = 30 and the number of threads varied
from 1 to 16, the simulation time was reduced from 1.288 (h) to 0.317 (h). At this point,
the maximum speedup reaches 4.06 and the average number of linear iterations per Newton
iteration is about 22. This indicates that the proposed method can speed up the simulation
time by 1.86 times compared to commercial simulator.

According to Tab. 15, we can summarize similar conclusions. Compared with the com-
mercial simulator, our obtained number of time steps, Newton iterations, and linear iterations
is smaller, and the simulation time is shorter. Especially when µ = 30, the speedup of our
simulator can achieve 3.86 compared to commercial simulator.
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Tab. 14
NumTSteps, NumNSteps, Iter, AvgIter, Time(h), and Speedup comparisons of the OpenMP version of

commercial and our simulators for the three-phase SPE10 problem.

Simulators µ NT 1 2 4 8 16

Commercial —

NumTSteps 114 113 115 115 114

NumNSteps 233 229 232 231 230

Iter 60876 64693 67787 70595 73864

AvgIter 261.3 282.5 292.2 305.6 321.1

Time 7.626 4.031 2.125 1.108 0.590

Speedup 1.00 1.89 3.59 6.88 12.92

Ours

0

NumTSteps 73 73 73 73 73

NumNSteps 178 178 178 178 178

Iter 3236 3236 3237 3237 3237

AvgIter 18.2 18.2 18.2 18.2 18.2

Time 1.144 0.715 0.482 0.371 0.345

Speedup 1.00 1.60 2.37 3.08 3.32

10

NumTSteps 73 73 73 73 73

NumNSteps 178 178 178 178 178

Iter 3253 3253 3253 3253 3253

AvgIter 18.3 18.3 18.3 18.3 18.3

Time 1.115 0.692 0.475 0.363 0.337

Speedup 1.00 1.61 2.35 3.07 3.31

20

NumTSteps 73 73 73 73 73

NumNSteps 178 178 178 178 178

Iter 3464 3463 3460 3461 3460

AvgIter 19.5 19.5 19.4 19.4 19.4

Time 1.140 0.699 0.467 0.354 0.319

Speedup 1.00 1.63 2.44 3.22 3.57

30

NumTSteps 74 74 74 73 73

NumNSteps 178 178 178 178 178

Iter 3891 3891 3890 3889 3996

AvgIter 21.9 21.9 21.9 21.8 22.5

Time 1.288 0.774 0.503 0.358 0.317

Speedup 1.00 1.66 2.56 3.60 4.06

40

NumTSteps 74 74 74 74 74

NumNSteps 178 178 178 178 178

Iter 4111 4111 4118 4125 4105

AvgIter 23.1 23.1 23.1 23.2 23.1

Time 1.245 0.749 0.488 0.360 0.324

Speedup 1.00 1.66 2.55 3.46 3.84



Li Zhao, Chunsheng Feng, Chensong Zhang and Shi Shu 27

Tab. 15
NumTSteps, NumNSteps, Iter, AvgIter, Time(h), and Speedup (compared with the commercial simulator)

comparisons of the GPU version of commercial and our simulators for the three-phase SPE10 problem.

Simulators µ NumTSteps NumNSteps Iter AvgIter Time Speedup

Commercial — 117 233 71415 306.5 1.004 —

Ours

0 74 178 3270 18.4 0.339 2.96

10 74 178 3302 18.6 0.317 3.17

20 76 178 3424 19.2 0.282 3.56

30 76 178 4065 22.8 0.260 3.86

40 74 178 4239 23.8 0.263 3.81

7. Conclusions. In this paper, we investigated an efficient parallel CPR preconditioner for
the linear algebraic systems arising from the fully implicit discretization of the black oil model.
First, for two difficulties of the preconditioner, the computation cost is large, and the parallel
speedup is low in SETUP. We proposed an adaptive SETUP CPR preconditioner to improve
the efficiency and parallel performance of the preconditioner. Furthermore, we proposed an
efficient parallel GS algorithm based on the coefficient matrix of strong connections. The
algorithm can be adapted to unstructured grids, yielded the same convergence behavior as
the corresponding single-thread algorithm, and obtained a good parallel speedup. This paper
took the CPR preconditioner as an example to illustrate our proposed methods, which can
easily be extended to multi-stage preconditioners. In the future, the parallel performance of
the adaptive SETUP multi-stage preconditioners needs to be further improved. This paper
only considered OpenMP and CUDA implementations for the proposed parallel GS algorithm,
so further research will be conducted for MPI parallelism.
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