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In this paper we design and implement rigorous algorithms for computing symbolic
dynamics for piecewise-monotone-continuous maps of the interval. The algorithms
are based on computing forwards and backwards approximations of the boundary,
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1. Introduction

One-dimensional discrete time dynamical systems are widely used to describe physical and engineering systems in a
simplified way, and often arise as return maps of continuous or hybrid systems of two dimensions. The dynamics of such
systems can be complicated because even in one dimension the system can exhibit chaotic behaviour.

In this paper, we present some algorithms for computing the symbolic dynamics of one dimensional piecewise-
continuous maps. Each of the algorithms constructs sofic shifts on the symbol space which over- and under-approximate the
exact shift space of the maps. Further, the algorithms are designed to use interval methods, so can be rigorously implemented
on a digital computer. Under certain nondegeneracy conditions the shift maps obtained converge to the exact symbolic

dynamics as the precision is increased. The approximation of the symbolic dynamics allows us to also compute an arbitrary
accurate approximation of the topological entropy of a map.

There has been considerable work on the symbolic dynamics of interval maps. A large class of results rely on the
elementary fact that if there is a sequence of intervals (Ip)nen such that f(I,) D I,.; for alln € N, then there is a point
x such that f"(x) € I, for all n € N. The celebrated theorem of Sharkovskii [1] on the coexistence of periodic orbits with
different periods can be proved in this way, and stronger results can be obtained by considering the relative orderings of
points forming finite invariant sets.

One of the most important contributions to one-dimensional dynamics is the kneading theory of Milnor and Thurston [2]
for continuous multimodal maps. The theory gives necessary and sufficient conditions for an itinerary to be realised by an
orbit in terms of the itineraries of the orbits of the critical points. The theory is most suited to and has received most attention
for unimodal maps, since the itinerary of the critical point is sufficient to determine the symbolic dynamics. A more complete
understanding of kneading theory for bimodal and trimodal maps was developed in {3,4]. Maps with discontinuities or holes
were considered in [5]. The theory has been extended from interval maps to tree maps; see [6] for details.

Another motivation is related to a problem posed by Milnor on the computability of topological entropy [7].
The topological entropy of a continuous interval map is always lower-semicontinuous [8], and can be shown to be
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upper-semicontinuous in C¢ if the critical points are non-degenerate [9,10]. The constructions used in the proofs
demonstrate that convergent approximations of the entropy can be eftectively computed. In this paper we consider
computability of symbolic dynamics, and convergence of the entropy of the generated shift space.

The main contributions of this paper are related to the practical implementation of the rigorous computation of
symbolic dynamics based on the existing theory. Rather than start from a given periodic or invariant skeleton described
combinatorially, we consider the computation of partition refinements, and compare the performance of different methods.
We use rigorous interval arithmetics for the numeric computations, and show how to handle the difficulties which arise
when extracting combinatorial data, including the use of references to store image and preimages, and how to resolve
overlapping intervals. We also extend the kneading theory to be able to extract information about the dynamics from finite
orbits, where the standard theory only considers infinite itineraries. We also consider the computation of symbolic dynamics
relative to an arbitrary partition as opposed to the natural partition given by the critical points. A formal definition of the
“effectively computable” symbolic dynamics is introduced, and an analysis of the convergence of the algorithms with respect
to the theoretical restrictions on whatis possible using numerical (as opposed to algebraic or symbolic) methods is also given.

A further motivation for this work was to obtain insight into the computation of symbolic dynamics which could be
applied to higher-dimensional systems. For this reason, we do not only focus on methods based on kneading theory, which
appear to be most powerful in one dimension, but also on methods based on backward iteration and covering relations,
which are also applicable in higher dimensions.

The main mathematical techniques used in this article include interval analysis, symbolic dynamics, one-dimensional
dynamical systems theory and kneading theory. Good references to these topics include the books [11-16]. Important
standard references on kneading theory include [2,17-21,6]; other references include [4,5,22-25].

The paper is organised as follows. In Section 2, we give technical preliminaries on shift spaces symbolic dynamics,
kneading theory and interval methods which we need later. In Section 3 we present algorithms for computing combinatorial
mapping data, and extracting the symbolic dynamics using covering relations. In Section 4 we present methods for
improving the symbolic dynamics obtained from the mapping data by considering kneading theory. In Section 5 we
demonstrate the effectiveness of the method by applying it on several examples of continuous and discontinuous maps.
In Section 6 we analyze two case studies of return maps of hybrid systems: an affine switching hybrid automaton and the
singular limit of the Van Der Pol oscillator. Finally, in Section 7 we give some conclusions and suggestions for further research.

2. Theoretical preliminaries

We now introduce the basic definitions, terminology and results on symbolic dynamics and interval analysis which we
will need.

2.1. Shift spaces and finite automata

We use s to denote the sequence (Sg. S1.S3....). IfAis a finite alphabet of symbols, recall that the sequence space AN is
compact under the product topology defined by the metric d(s. t) = 2™ where m = min{n € N | s,, # tn} In other words,

two sequences are “close” if they agree on a long prefix. The shift map o on sequences A* is defined by ( (0S); = si1.1 fori € N.
A shift space on A is a compact subset X of AN which is invariant under o. A shift X is a subshift of T if ¥ c X.If ¥ is a
subshift of X, then the shift map on 3 simulates the shift map on X,

Since shift spaces are compact subsets of a metric space, we can measure the difference between two shift spaces using
the Hausdorff distance. If X is a subshift of X, an alternative measure of the difference between ¥ and X is the difference
In topological entropy hyo,. The Hausdorff distance can be seen as a measure of the difference in the transient behaviour of
two systems, whilst the entropy is a measure of the difference in the complexity of the recurrent behaviour.

A natural way of generating shift spaces is by finite automata. A discrete automaton is a tuple .+ = (Q, S. §, w) where Q
IS a finite sets, S is a (possibly Infinite) set,d : S — 2 (S) is the transition relation, and w : S — Q is the output map. An
automaton is finite if S is finite. The dynamics generated by an automaton <« is the set of all sequences ¢ = (qq, ¢4, .. .) such
that there exist sequences s = (Sg, S1, . ..) such that s;;; € §(s;) and w(s;) = q; for all i.

A shift is sofic if it is generated by a finite automaton. Since the set of sofic shifts is dense in the space of all shifts on an
alphabet A, sofic shifts represented by finite automata are a convenient way of approximating arbitrary shifts.

2.2. Symbolic dynamics of piecewise-continuous maps
Symbolic dynamics is a powerful tool to analyse discrete-time dynamical systems. The basic idea is to compute the

itineraries of orbits in terms of the regions of state space. The main complicating factor is that there is no nontrivial partition
of a connected space M into compact pieces, so we instead use open sets whose closures cover the space.

A topological partition of a topological space X is a finite collection & = {Pq, P, ....P;} of mutually disjoint open sets
such that X = U . It is convenient to assume that the elements of # are regular sets, thatis, P = P for all P € 2. The
boundary points of 1 are elements of P :=  J,.,» OP. The closure of & is the collection # = {P+, ..., P¢}. Given topological

partitions & and @, we say that @ is a reﬁnement of P if for all Q € @, there exists P € & such that Q C P.The join of #
and @ isdefinedby 2 va@ ={PNQ |Pe P, Qe@andP NQ # ?}.
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We shall consider piecewise-continuous functions defined as follows:

Definition 1 (Piecewise-Continuous Map). A function f : X — X is piecewise-continuous if there is a topological partition

of X such that for all P € &, f|p is continuous, and that fp = f|p extends to a continuous function fp on P. We say that f is
F-continuous. We let f° = f| ;», and define f by f(x) = U{fp(X) | x € P}.

Given a topological partition, we can define the symbolic dynamics of a piecewise-continuous function f.

Definition 2 (Symbolic Dynamics). Let f : X — X be a piecewise-continuous map and @ be a topological partition of X.

- The inner symbolic dynamics of f, denoted X' (f, @), is the closure of the set of all @-itineraries of orbits of f°.
- The outer symbolic dynamics of f, denoted X' (f, @), is the set of all @-itineraries of orbits of f.

The motivation for these definitions are that the inner and outer symbolic dynamics give under and over approximations
of the symbolic dynamics which can be effectively computed. We shall return to these definitions in Section 2.3. We shall

then see that the outer symbolic dynamics may give a “bad” approximation in the differentiable case, and consider ways of
Improving the situation.

The following results are trivial, but provide the main tools for determining whether an itinerary is present in the system.

Proposition 1. If there is an orbit X of f such that x; € R; with R; C P; for all i, then fpi (Ri) N Risq £ @ foralli.

Proposition 2. Suppose n € NU {oo} and (Rg, Ry. .. .) is a sequence such that f(R;) D Ry, foralli < n, and f(R;) C Rj1 for
all i > n. Then there is an orbit (xg, X1, ...) of f such that x; € R; for all i

The following result relates the inner and outer symbolic dynamics.

Theorem 1. If the sets Q for Q € @ are compact, then the inner symbolic dynamics of f is a subshift of the outer symbolic
dynamics of f.

2.3. One-dimensional dynamical systems

Symbolic dynamics for one-dimensional maps is substantially easier than in higher dimensions. The partition elements
Q C @ are intervals, so can easily be represented by their boundary points g;. Of particular importance are the monotone
branches, sometimes known as laps. It is trivial that any point has at most one preimage in any lap, and this point is readily
computed by bisection.

Let I be an interval, an interval map f : I — [ is piecewise-monotone-continuous if there is a topological partition £ of I
into intervals such that f|; is monotone and continuous on each L € .£. We say that f is .£-monotone-continuous. Note that
if f is L-monotone-continuous, then f is also £’-monotone-continuous for any reﬁnement L of L.

If f is P-continuous, with 3% = {po, p1, - - -, Pk}, then we let D* = {p;, p7.p5 . .- .. Pr_1, Dy }, the set of discontinuities
of f We let C be the set of critical points of f.

Assumption 1. In this paper, we shall henceforth assume that our system is described by a piecewise-monotone-continuous

tunction. We also assume that the number of discontinuity and critical points is known, and that these can all be computed
to an arbitrary accuracy.

Within the class of piecewise-monotone-continuous functions, we can consider locally-uniform perturbations by

functions with the same critical and discontinuity points. This gives a refined notion of approximations of the symbolic
dynamics within a class.

Definition 3 (Symbolic Dynamics). Let @ be a topological partition, and .£ arefinement of @. Supposef : X — X is monotone
continuous on each element of L.

— The lower symbolic dynamics X (f, @) of f is the closure of the set of all sequences s such that there exists ¢ > 0such that

for all e-perturbations f. of f which are £-monotone-continuous, f, has an orbit with @-itinerary .
— The upper symbolic dynamics X (f. @) of f is the set of all sequences s such that foralle > 0, there exists an e-perturbation
f. of f which is .£-monotone-continuous and has an orbit with @-itinerarys.

If @ is a topological partition with boundary points {qg, g1, ..., gm} and elements Q, = (g, qx+1), then we introduce

new symbols > etc. as the code for the points g, g;. . . . . In other words, we use the symbol , for a point in Q, N Q,. This
greatly fac111tates the writing of itineraries. We also write itin(x*) = lim,_ g itin(x =% €).

The following example shows that the upper symbolic dynamics for maps with the same monotone branches can be
different from the outer symbolic dynamics.

Example 1. Let X =[—1, 1]and f(x) = x/2.Let @ = {Qp, Q1} withQp = (—1,0) and Q; = (0, 1).

Since any sequence of zeroes and ones is a valid itinerary of the point 0, the outer symbolic dynamics are the full shift on
{0, 1}. Further, among all perturbations of f, we can generate orbits with all itineraries by fitting a small verston of the tent
map near 0.

For perturbations f. of f among monotone maps (which include all C'-perturbations), the possible itineraries depend on
whether f. (0) = 0. For f.(0) > 0, there exists N such that the @-itineraries are of the form 0"1 forn < N, and for f.(0) < O
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we have itineraries 1"0 forn < N.Forf, (0) = 0, the @-itineraries are 0 and 1. Taking the size of the perturbation to be zero,
we obtain upper symbolic dynamics {0"1, 1"0 | n = 0, 1, .. .}. The inner and lower symbolic dynamics are both {0, 1}.

In general, it 1s possible to show that the upper symbolic dynamics are a subset of the outer symbolic dynamics, and that
the outer symbolic dynamics can be obtained by removing the restriction that the perturbations f, must have the same laps

as f.
2.4. Kneading theory

The original kneading theory was developed for multimodal mapsin [2]. The theory was extended to maps of the interval
with “holes” in [5,23], which have a similar flavour to discontinuous maps. In this section we give a review of the kneading
theory for multimodal maps without discontinuities. Rather than use Milnor and Thurston’s approach using formal power
series and a kneading matrix, we will work with itineraries and covering relations, since this is simpler and ties in better
with the computation of sofic shifts.

Let f be a multimodal map defined on the interval I = [a, b] with critical points ¢y, ..., ¢-1. Let Lj = [¢j-1, ¢;] for
J=1,..., 1, where we take ¢cp = aand ¢ = b.Forj € {1....,1}, let & be equal to +1 if f is increasing over the interval I;,
and —1 if f is decreasing over L;. For asequence s € {1, ..., [}", denote by &5 or &g, 5,.....5,_, the product &5,. &, .. ., &;_,.

We define an ordering on the itineraries of f. Suppose Sand t are sequences, and j = mm{zlsl # t;}, and suppose s; < ;.

Thens < ¢ if, and only if, e 5; < e tj, where ¢ = ¢3; = = &7
We now consider whethel there exists an orbit w1th a glven itinerary. Suppose the itineraries of the images of the critical

points ¢y, ..., Cj—1 are kj, that is k = 1tin(f (¢;)). Suppose t is the itinerary of a point x. Then if ¢; < x < ¢j..1, then either
f(c) < f (x) < f(Ciy1) or fciyi) < f(x) < f(c;) depending on whether f IS increasing or decreasing over (c;, Cit1)- Since

itin(f (x)) is o (itin(x)), where itin(x) is the itinerary of x. We deduce that ¢ is an itinerary if and only if 6"+ 1(¢) € [ktn, ktn+1j

where the endpoints of the interval may be reversed. We may also consider the endpoints of the intervals.
We have the following result.

Theorem 2. Let s be a sequence in {1, ..., [}". Then s is the itinerary of an orbit X of f if o"T1(5) lies between “125.”.,.._1 and Es,, for
all n, where k; is the itinerary of f(¢;).

In the unimodal case, we have f(a) = f(b) = a, and ((a) = (0 0, ...). Hence we obtain the classical result that s is an
itinerary of a point x if, and only if "1 (5) < k for all n, where k is the 1t1ne1ary of f(c¢), the image of the critical point.

2.5. Computability theory and numerical computation

Since we typically cannot compute an arbitrary piecewise-continuous map, such as the return map of a hybrid system,
exactly, we resort to numerical approximation. In order to ensure that we can obtain rigorous conclusions from approximate
numerics, we compute error bounds for all quantities. Hence a numerical approximation of a real number x is represented
by an interval [X, X] such that x < x < x. We henceforth use the notation |x] for an interval approximation of x, and x, X for
the lower and upper bounds on x. We let I denote the set of all rational intervalsi.e. I = {(a,b) | a, b € Q}.

[n the theory of effective (Turing) computability over the reals, we represent a real number as a sequence of
approximations, either as floating points x, with n binary digits of accuracy, or as a convergent sequence of intervals. In this
representation, all arithmetical operations are computable, but comparison tests are only semidecidable rather than being
decidable. For if real numbers x and y differ, then we can determine x < yorx > y infinite time. If, however,x = y, then even
if we know both x and y up to n bits, we can still never know that indeed x == y. This means that any algorithm which tests for
an (in)equality will not terminate on some inputs. In practice, we can replace the standard comparison operator on reals with
an extended comparison operator, so that cmp, (x, y) may (nondeterministically) return indeterminate value 1 if |x—y| < e.

When using interval arithmetic, we can test for an equality, but the result can only be true if both intervals are singletons.
If [x], |ly] and |z] overlap, then we cannot say anything about the relative ordering of x, y and z, it is even possible that all
three values are equal. If, however, |y] overlaps both |x] and |z], but |x] < |z], then the only possible orderings are
y<X<z,X=y<z,X<y<2zXx<y=zandx < z <y Further, by increasing the precision, we can eventually compute
Ly sufficiently accurately so that either | y] > |x] or |y] < |z], reducing the possible relative orderings.

More generally, we say that intervals | yol, ..., [y« | form achainif [y;_1] overlaps |y;] fori =1, ..., k,but |yo] < |y«].
In this case, increasing the precision of computation, and hence the accuracy of the interval approximations, will eventually
partition the intervals so that (possibly after a reordering) there exists m such that |i] < [j] wheneveri < m < j. We say
intervals |y1], ..., [yx] form a cluster if |y;] intersects |y;] foralli,j = 1, ..., k. Given a finite set of points with interval
bounds, we can always partition the points into clusters by increasing the precision.

[n order to work with continuous functions, we assume that given an interval approximation | x] of x, we can effectively
compute an approximation |y} of f (x). This is formulated by the notion of interval extension.

Definition 4 (Interval Extension). Let f be a continuous interval map. Then an interval extension of f is a function |f] : I — 1
such that

L f(x]) < f1(x]) forall [x] €T,
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2. 1f LXLC v, then U](LXW) C f1(LyD,and
3. lfm i Xn ] = {x}, then m;.__ (X ] = {f ()}

If f 1S n-times contlnuously-dlfferentlab]e, we also assume that an interval extension is available for derivatives [V (x) for
= 1,...,n

Definition 5 (Representation of Piecewise-Continuous Functions). Let f be a #-continuous interval map. An interval extension
[ consists of

1. an enumeration of each partition element P; € 5, and
2. an interval extension of each piece f; over the closure of P;.

Note that from the data given, we can compute approximations of the discontinuity points, since a point d lies on the
boundary of two partition elements if and only if, for all intervals ] > d, there exist I;, C P;, and I;, C P, such that
JN I, #dand] NI, # 0.

In practice, we combine numerical and symbolic approaches. For example, in the unimodal map x — ux(1 — x), we
know that f(0) = f(1) = 0 and that f"(1/2) = 0. Lettinga = 0, b = 1 and ¢ = 1/2, we know exactly that b — a — a and
that c is a critical point.

We may sometimes want to define boundary points of the partition @ as fixed, periodic or critical points. For example,
If we want to use the period-two orbit (g, q;) of the unimodal map at 1« = 3.92 with negative derivative as partition

boundary elements, we can define the position of ¢ numerically by [g;] = 0 356, 0.357] and |g;] = [0.898, 0.899] and
symbolic images ¢, +— g — (.

3. Computing symbolic dynamics using covering relations

We will consider the computation of symbolic dynamics for a #-continuous map f with respect to the partition @. We
let B be the boundary points of @, C the critical points of f and D the discontinuity points of f.
Our basic strategy for computing symbolic dynamics is as follows

Algorithm 1. 1. Compute the topological partition £ such that f is monotone and continuous on each piece of .£
2. Refine the partition .£ Vv @ to obtain a partition R.

3. On the refined partition R, compute the symbolic dynamics by considering covering relations f(R) D R’,f(R) C R and
f(R)NR # @.

There are a number of difficulties which arise when actually trying to implement this strategy. The first is that the
discontinuity and critical points may be difficult to locate exactly, and we need to use approximations. This can be the
case even if we are given the map in explicit form. A second difficulty is that there are many ways of refining the partition,
and we need to find ways which give good approximations of the dynamics with as little computational effort possible. A
third difficulty is that the boundary points of the refined partition may be difficult to compute exactly, and even the relative
ordering of the boundary points on the interval may be difficult to compute. Finally, the basic method of extracting symbolic
dynamics using covering relations can be quite crude, and it is often useful to improve the results by using kneading theory.

3.1. Mapping data

In order to refine the partition, we need to add extra points to the partition and determine their images and/or preimages.
In general, given a point p, we will not be able to compute its image g = f(p) arbitrarily accurately, so we generally need
to represent points by intervals g € [q]. However, since |g] is an interval containing f (p), we do know that f(p) € |q].

Similarly, computing the image r = f(q) = f%(p), we obtain the interval |r] D f(lq]), though we know that [r] is an
interval containing the exact image r of the point g € |q].

The data we can compute about our function will therefore consist of a finite set of points, for which we know the image

map exactly, but know the value of the points only approximately. We formalise this notion as a mapping dataset for the
function.

Definition 6. A mapping dataset .7 consists of a finite set Y of point labels, together with

1. animage function ~: Y' — Y, and
2. avalue function |-] : Y — L

We alternatively write f(x) = y if x ~ y. From the interval values we can deduce
3. a partial ordering <onY, definedbyx <y <= |x] < |y] (by which we meanX < y).

Further, there is a finite totally ordered subsetZ of Y such thatifz; < x <y < z;.1,theneitherf(z;)) <f(x) <f() < f(zi+1)

Wi

or f(zit1) < f(y) < f(x) < f(z).The points of Z correspond to the critical points ¢; and discontinuity points d;".

The data type representing a point y therefore has two fields, a value field which is (an approximation of) the numerical
value of y, and a image field which is a reference or pointer to the object representing f (y). If f (y) has not been computed,

then the image field isnull. If d is a discontinuity point, then we store two image points, namely the image of d under both
branches of f at d, which we denote f(d™) and f(d™).
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In the case that we can compute images and/or preimages exactly, then the value field of each point is an exact real
number, the resulting mapping dataset is totally ordered, and the complement of the set Y forms a topological partition.
Otherwise, we cannot extract a topological partition from the mapping data set, but instead obtain a topological partition
for each linear order compatible with the mapping dataset. We can assume that the ordering is clustered, which means that
if w < y, then for all x, either w < x orx < y. If these interval values are disjoint, so | x] 2z |y] ifx 5 y, then we can recover
a topological partition.

To compute the critical points numerically, we need information on the derivative f. A point ¢ Is a critical point if
f'(c) = 0, and the zeros of f’ can easily be computed to arbitrary accuracy by a bisection strategy. In certain degenerate
cases, we may not be able to distinguish two discontinuity points of f, or a discontinuity point and a critical point. Although
it is possible to handle these cases in a consistent way, in this paper we assume for simplicity that these cases do not arise.

3.2. Partition refinement strategies

In this section, we give the basic refinement strategies used.

Definition 7. Let @ be the initial partition and £ the partition into monotone branches. The forward-refinement partition
at step n is the partition whose end points are Y = 0Q U | ,,,{//(@) | j =0, ..., n}.

Definition 8. Let @ be the initial partition and let & be the partition into continuous branches. The backward-refinement
partition at step n is the partition whose end pointsare Y = | J,cypusatf (@) 1j=0....,n}

The forward refinement of a partition R can be easily computed, since we need simply to compute the images of all
boundary points of K. To compute the backward refinement of R we need to compute preimages of r € dR. Since f 1s
strictly monotone on each element of .£, so we can use a bisection strategy to locate the preimage of y in each L € .£, which
must be unique (if it exists).

The advantage of the forward refinement strategy is that better results can usually be obtained with fewer partition
points, since the growth of the number of endpoints is linear in the number of steps. The advantage of backward refinement
is that each partition element of an n-step backward refinement of @ determines the first n elements of a Q-itinerary. Define

sets Qi i,.....i,., Tecursively by Q;; € @ and Qjy iy, ....ip., = Qi N f~'(Qji,....i._,)- Then it is easy to see that Qiy.i,....ip., = V¥ |

f*@) e Q; fork =0....,n — 1}.Further, the endpoints of Q;, j,....i._,.i, are pointsin f~"(B U D).
The following partition refinement strategy attempts to combine the efficiency of forward refinement with the better
theoretical properties of backward refinement.

Definition 9. Let @ be the initial partition, let .£ be the partition into monotone branches, and Ry = @ Vv L. The forward-
looking backward-refinement partition at step n is the partition R, whose end points are

(p € f 1 (ORn-1) | 3¢ € IRn—1 : f71(dRn_1) N conv(p, f(q)} = {p}}.

In other words, among all preimages up to order m of endpoints of the initial partition, this refinement considers only the
ones which are the closest to at least one endpoint of the initial partition, in this way we minimize the size of elements of
the partition which do not cover exactly other elements of the partition, and consequently the gap between lower and upper
symbolic dynamics.

The above strategy gives a growth of end points which is linear with the number of steps and both lower and upper
approximation converge monotonically.

Despite this great improvement an algorithm using the latest strategy also has an exponential running time in the number
of steps because it still requires us to compute the preimages which grow exponentially in the number of steps. The only

algorithm which has a linear running time and converges to the symbolic dynamics is the one using the kneading theory as
will be explained in Section 4.

3.3. Eventually periodic discontinuity and critical points

Suppose that the backward images of the partition boundary points are all disjoint from each other, and disjoint from
the critical and discontinuity points. Then the partitions computed using backward refinement are all disjoint, and so can be
ordered, given enough information about the function. However, it may be the case that certain preimages intersect, or are
equal to critical or discontinuity points, and in this case they cannot be ordered. Similarly, if the forward images of critical
or discontinuity points are not all disjoint, or touch partition boundary points, then we lose the ability to order them.

In some cases, we may be able to use algebraic information about the function to prove equality. For example, if we know
that a partition boundary is also a fixed point, then we can set the image explicitly, rather than use approximations. The
symbolic dynamics are discontinuous at a point for which f"(c¢) = g, since we introduce the possibility of a new transition
after n steps.

During our interval computations, we will find cases for which (say) f" (¢) ~, q for a partition boundary point g. If this 1s
the case, we do not know whether f"(¢) < ¢q,f"(c) > gor f"(c) = g, though we do know that in either of the former two
 possibilities, increasing the precision will eventually give the correct answer. In order to study this situation, we continue
iterating the interval. Note that if |x] and |y] overlap, then so do |f(x)] and [f(3)1, and therefore |f]([x]) and [f](ly]).
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Upon further computation, we may find a case in which an interval |y] intersects two disjoint intervals |x] and | z]. In
this case, we increase the precision until |y] is disjoint from either |x7 or | z].

To resolve the overlap, we consider the dynamics for the three cases x < y, x = y and x > y. In the case of equality, we
can combine the exact orbits. In the case of inequality, suppose that y is not a critical or discontinuity point, then we know
the monotone branch that y lies in, and hence the relative ordering of f'(x) and f'(y) for as long as these have been computed.

If there are multiple overlaps, then we need to consider all possible orderings. In principle, this can be very expensive,

but in practice the condition that the algorithm increases the precision if we find a chain of overlaps means that the number
of combinations remains small (at most [ overlaps, where [ is the number of laps).

3.4. Covering relations

The simplest way to extract symbolic dynamics is directly via covering relations. Given a partition R and covering

relations between its elements we want to construct sofic shifts under- and over-approximating the symbolic dynamics.
Let .£ be the partition into monotone branches, and Ry = @ Vv L.

Definition 10. Let f : X — X be a $-continuous map and @ a partition of X. Let .£ be the partition of X into monotone
branchesof f and let R = @ Vv L.

Define covering relations relations R — R ' andR— —- RonR x RbyR — R iff(R) D RandR— — R if
f(RyNR #£ 4.

We define the attracting subset A C R to be the maximal subset of R such that for all A € A, there exists A’ € 4 such
that f(A) C A’. Define relation < by A «— A" if f(A) C A'.

We define a lower symbolic dynamics X (f, @. R) to be determined by the transitions — and <, and upper symbolic
dynamics X (f, @, R) by the transitions — — .

We can represent the symbolic dynamics visually by a graph with vertices R, each vertex R being labelled with the element
Q € @withR C Q, and edges — — , —> or <> determined by the transition relations.
[t is clear that the lower symbolic dynamics are an under-approximation of the inner symbolic dynamics, X (f. @, R) C

2 (f. @), and the upper symbolic dynamics are an over-approximation of the inner symbolic dynamics, X (f. @, R) D
2(f. Q).

However, we may not have X(f, @, R) D X(f, @) due to problems with the endpoints of partition elements. For
example, if ¢ is a critical pointand f (¢) € {r} = R;NR;;1, then we should allow broken arrows from each interval containing
¢ to R; and R; 1 to obtain an over-approximation of the upper symbolic dynamics. If exact mapping data is available, we can
augment the graph with verticesz € BU C U D* with the appropriate labelling and arrows.

[n order to determine the transitions R — R’ and R— — R’, we need to know the relative ordering of the boundary
points i.e. whetherr; < rj,r; = rjorr; > rj, and the image point r, of r; under f. As long as the interval approximations of the
boundary points of R do not overlap, we can determine the relative ordering by taking a sufficiently high precision. However,
if the boundary points do overlap, then there is more than one topological partition consistent with the mapping data.

In order to obtain under- and over-approximations of the symbolic dynamics, we consider all possible topological
partitions consistent with the mapping data. Note that knowledge of the monotone branches of f may help reduce the
number of possibilities. For example, if the numerical values of r; and r; overlap, then we need to consider partitions with
i < r;, 1; = ryand r; > r;. However, if r;, rj lie in an increasing branch, then f(r;) 2 f(r;) according to r; = r;. We can also
dispense with the case r; = rj, since this will always provide better approximations than the cases r; # r;. We therefore only
need to consider two cases if | r;] and |r;] overlap.

We therefore have the following algorithm for computing over- and under-approximations of the symbolic dynamics
from a mapping dataset .7

Algorithm 2. 1. Compute the set of all partitions R consistent with the mapping dataset .# and for which there is no
equality in uncertain comparisons.

2. On each refined partition R, compute lower and upper symbolic dynamics Z(f, @, R) and X (f, @, R).
3. Let the lower symbolic dynamics A = X (f, @, .7) be the intersection of all X' (f, @, R) with R consistent with .#, and

the upper symbolic dynamics T~ = X (f, @, .7) be the union of all Y (f, @, R) with R consistent with .Z.

It 1s clear that A is a subshift of X'(f, @), and T is a supershift of X' (f, @). In Section 3.6 we shall see that the symbolic

dynamics converges to the upper and lower symbolic dynamics of f, and that this convergence is monotone using backward
refinement.

3.5. Combining intervals

The dynamics obtained using covering relations can be improved by combining intervals. The motivation for this trick is as
follows. Suppose I; and I; are adjacent intervals, and I; NI, is a point x with no computed image under f. Then we can make
a new formal symbol 15 which covers any interval covered by I; U I,. Whenever an interval J covers I; and I;, we replace
the arrows ] — Iy and] — [, with] —> I;5. Whenever an interval K is covered by I; U I, we add an arrow I1; — K.
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The resulting symbolic dynamics are a supershift of the previous dynamics, since any sequence passing ] — I, — K for
| = 1, 2 either remains as is, or is changed to | — [, —> K.
We formalise the conditions on the combined intervals as follows.

Definition 11. Let 4 D R be a collection of intervals such that every ! € { is contained in some L € £ and has endpoints in
d R. Define relations —, and — — satisfying:

1. It f(I) D], then there exists K O J such that | — K.

2. it f(I)NJ] # @, then there exists K C J such that I— — K.

3. ItI — J,thenf() D J.

4. fI— — Jand K C J,thenf()NK # @.

5. f[— — JandI— — Korl — Jandl — K,thenJ NK = 0.

Condition 5 ensures that every orbit is assigned a unique itinerary.

The next result shows that the symbolic dynamics computed using combined intervals improves on those computed
directly.

Theorem 3. Let A and T be the lower and upper shifts defined by the partition R, and A’ and Y’ defined by the relations —
and — — ond.ThenA C A CX({f.Q)CTY CT.

Proof. Any @-itinerary s in A is also in A’: Take a sequence R with Ri C Qiand f(Rj)) D Riyq. Define Iy = Rg, and ;4

recursively such that Rjy, C i and I; —> I;4. The resulting sequence I shows thatsisin A’.

Any @-itinerary in A’ also is an itinerary of f: If I — ;1 in the shift A’, then f(I;) D ;1.

Any @-itinerary of f is also in Y"': If x is an orbit with itinerary s with x; € R, for R; € R, we can choose I O Ry and then
recursively find ;4 such that I;;; D Ry and ;— — I since f(I;)) N Ry # @.

Any @-itinerary in T’ is also in 7": Suppose I;— — I;; for alli € N. Suppose R; € R with R; C I;. Then f(I;_1) N R; # ¢,
so there exists Ry C [y with f(Rj—1) N R; % @,

3.6. Convergence to the symbolic dynamics

We now describe how the sofic shifts computed by Algorithm 1 approximate the symbolic dynamics of f, and give
sufficient conditions under which the approximations converge.

We first consider monotonicity of the computed shift dynamics.

Theorem 4. Suppose f is a #-monotone-continuous map, @ is a topological partition, that R, is a refinement of Vv @ and R,

a refinement of Rq. Then the over-approximation of the @-itineraries of f induced by R, is a subset of the set of @-itineraries
induced by R;.

Proof. Supposel,]J € R, K,L € Ry, I C Kand] C L Thenif f(K) NL 5% & we have also f(I) N ] # @. Hence if there is a
broken arrow from K to L, there is also a broken arrow from I to J. The result follows.

When using forward refinement it is not necessarily true that the topological entropy of the finite-type shift generated by
R, is lower than that of the finite-type shift generated by R .

Theorem 5. Suppose f is a -monotone-continuous map, @ is a topological partition, that R is a refinement of & Vv @, and

Ry a partial backward refinement of R1. Then the under-approximation of the @-itineraries of f induced by R, is a superset of
the set of @-itineraries induced by R;.

Proof. Suppose Iy, Ji € Rq1and f(Iy) D Ji. If Jy = [c,d], thena, b € I, such that f(a, ¢) C (c, d) and either f(a) = ¢ and
f(b) =d,orf(a) = dand f(b) = c.Take a’, b" such that f(a’) = cand f(b') = d and assume a’ < b’ (the cased’ > b’ is
similar). Let a = sup{x € [a’, b’] | f(a) = ¢} and b = inf{x € {a, b'] | f(b) = d}. Then clearly f(x) & {c, d} for all x € (a, b).
Since R; is a backward refinement of R, there exists an interval I,.; € f~**V(® v @) such that [a, b] C I+ and so
fet1) D Jk Henge Alky1 € Iy, Vir1 C ]krfak+l) D Jkr1e

Now suppose sis a Rq-itinerary, so f (Ix.n;) O k., foralliforintervalsly ,, C I;. By the above, there exist intervals Iy, 1 m,
of R such that [y 1 m; C lin; and f(Ik1,m;) D li.ny, and immediately f (Iyy1.m,) D lv+1.m;,,- Hence s is a Ry-itinerary.

We now consider the convergence of the approximation using backwards refinement. Unfortunately, it is not the case
that the lower-approximation of the symbolic dynamics always converges in the Hausdorff metric.

Example 2. Let f be a function which is monotone-continuous on the partition & with boundary elements py, . . ., p4 such
that f (po) = po, 1 < f(P1) < f(P2) = p2, and f(p3) = 2, f(pg) = q1 with f(p1) < f(q1) < ¢1 < q2 < f(q2) < p3, as
shown in Fig. 1. Then f"([ps. pa]) = [f"1(q1), f"1(g2)] € (F™(p1), f™(pz)) for all m, n, so there are no preimages of £ in
(P3, Pa)- Let J be the interval (F =" (p1). p2), In = (F'"7"(p1), f~"(p1)) and L = (p4, ps) Then f(L) C Jn but f(L) 2 J, for all
n,and f(J,) O In U J,. Hence there is no solid outgoing arrow from L, and L is not part of an attractor bounded by points of
f7"(3%), so the itineraries starting in L are not captured by any lower approximation X (f, ., Rp).

‘Theorem 6. Supposef : X —> X isa P-monotone-continuous map. Then the over-approximations of the @-symbolic dynamics
computed by Algorithm 1 using backwards refinement converge to the upper symbolic dynamics of f as the precision and
maximum number of steps increase.
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Fig. 1. A map for which the approximations of the lower symbolic dynamics computed using backwards refinement do not converge. For any stage of
backward refinement, the interval I5 = (ps. p4) has no outgoing solid edges.

Proof. Let R be the partition into monotone-continuous branches refining v @. Let R, be the refinement of R, computed

with n steps of the backward refinement strategy. Notice that if R is a subinterval of .R, whose boundary points are not in
d Ro, then the image of R exactly covers subintervals of R,,.

To prove that the upper approximations converge to X (f, @), suppose that (so, S1, - .., Sm) is a word which does not
occurin X' (f, @).Then {x | f*(x) e Q. fork = 0. ..., m}is empty. However, this set consists of unions of subintervals with

endpoints in f 7" (3dRp). Hence by checking the itineraries of these subintervals, we can tell which points are absent.
[f we do not have the ability to compute exact preimages, but f"(p;") # p; for all j, then for a fixed number of backward

steps, by taking a high enough precision, the mapping dataset will yield a total order on the points, and we will be in the
same situation as if we have exact information. There may be difficulties if f*(p;") = p; for some p;, p; € 9. For then
the interval approximation |x] for some x € f~"(p;) will overlap |p;]. Since f is potentially discontinuous at p;, we can

not determine whether f ~"(p;) really has an element x near d; = p;". However, assuming the point x exists, we know that
a neighbourhood of x intersects both intervals adjoining p;, whereas if there were no preimage, the interval containing d;

would only intersect one interval adjoining p;. Hence to obtain an over-approximation of the symbolic dynamics, we should
assume that such a point x exists and is not equal to p;.

Convergence of the over-approximations follows since if x = p;, then all backward preimages of p; intersect p;. In this
case, in the limit, the extra orbit is one of the pair with itinerary k|,—(d) - itin(pf‘" ), where k|,_,(d) 1s the word consisting of
the first n — 1 elements of the kneading sequence of d, and we itin(pji) are the two possible itineraries of p;. |

The proof of convergence is similar in nature to proofs of continuity of the topological entropy [8,26]. See [ 16, Theorem
16.3.1] for details. However, in our case, the lower and upper limits may be slightly different.

4. Computing symbolic dynamics using kneading theory

We now consider how to use the kneading theory to improve the symbolic dynamics. The basic kneading theory
framework is first extended in a straightforward way to consider arbitrary regions for the symbols and maps with
discontinuity points. We give some intuition on modifying kneading sequences to reduce the symbolic dynamics forced, and
then present an algorithm to extend the partial kneading information obtained from the mapping dataset to full kneading

information which is either forced by, or forces, the dynamics of the original map. Finally, we prove that this algorithm really
does yield over- and under-approximations of the symbolic dynamics.

4.1. Kneading theory for discontinuous maps

Suppose f is #-continuous, JL-monotone-continuous, and we wish to compute the symbolic dynamics relative to a
partition @. For simplicity, we assume that every point ¢ € 8@ is either known to be disjoint from 9., or is known to
coincide exactly with a point [ € .L. We let B be the partition .£ vV @. We therefore consider the case that f is 8-monotone-
continuous, and we are looking for symbolic dynamics relative to 8. When considering perturbations of f, we will allow
perturbations which are B-continuous, and not restricted to those which are merely #-continuous; this means that we
allow perturbations which destroy continuity at the critical points and points of 2Q.

Let b; be the ith point of 38 ordered along X, so that B; = (b;", b, ;). We let D be the set of boundaries of monotone-
continuous branches,soD = {b{, b7, b7, ..., b} ., b;"}.

We define kneading invariants E(d) = itin(f (d)) ford € D.If f"(d) € 38 forsome n, then f (d) has two (or more) possible
itineraries, and we take E(d) = limy_, 4 1tin(f (x)) where the limit is taken through points in the same monotone-continuous
branch as d = b¥. By the standard kneading theory, S is an itinerary of some point x under f if ™1 (3) lies between mlé(b};I )
and k(b; ;) foralln e N ={0,1,2,...}.
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Fig. 2. Stretchingand relaxing at a critical point. (a) A critical point b of f.(b) Relaxing b™* to reduce the symbolic dynamics. (¢) Stretching at b™ to increase
the symbolic dynamics.

Since we can only compute partial kneading information about points, we will be especially interested in modifications

to the function f or its kneading invariants kf(d) which either decrease or increase the symbolic dynamics. The critical
observation is that if d is a maximum (the left-hand end of a decreasing branch or right-hand end of an increasing branch),
then decreasing k(d) decreases the symbolic dynamics.

We let 8;(d) ford € D be equal to +1 if f¥ has a local minimum at d, and —1 if f* has a local maximum at d.

4.2. Relaxing and stretching

We now give an informal analysis of homotopies and their effect on the kneading invariants.

[fd € Dis a dlscontlnmty and s is an itinerary, we write " 1(k(d)) > $if f* has a maximum at d and o™ 1(k(d)) > &,
oro~ 1(k(d)) > s if f" has a minimum at d and o'~ 1(k(d )) < s.This means that relaxing f moves f"(d) towards the point
x with 1t1r1erary s.[fdi Isa discontinuity, and kl and kz are two possible kneading sequences for d, we write k1 < kg 1f d is a

maximum and kl < kz, or d is a minimum and k1 < kz Clearly, if f and g are two maps with the same discontinuity and

critical points, and if kf(q,) <k, 2(¢), then every itinerary of f is an itinerary of g.
Suppose f has a local maximum atd = p=. Let f; be a homotopy with fo = f such that f;(d) decreases as s increases. Then
images f, *(d) move to the left if §,(d) = —1, and to the rlght iIf 5¢(d) = +1 for as long as f;(d) remains away from 908 for

i < k. Intuitively, this will reduce the kneading invariant qu (d), as long as f (d) crosses 0B \ bforsomei < j before f, k(d)
crosses b. For in this case, f*(d) = f*1(f;(d)) = f*(d) depending on 8 (d).

We call a homotopy which decreases the kneading invariant kfs (d) of a maximum, or increases the kneading invariant of

a minimum, a relaxation, and say that kf (d) relaxes to kfb (d) and that d is relaxed. Similarly, a homotopy which increases the
kneading invariant of a maximum, or decreases the kneading invariant of a minimum, is stretchmg

Now suppose f¥ has a maximum at d € D and that x € 88. Then we can homotope f in a neighbourhood of d to set
f:(d) = f;(x) = f(x).This will have essentially the same effect as a relaxationin a nelghbourhood of d to set f*(fo(d)) = f(x).

We define the relations < and > on forward images of dlscontmmty points by saying f*(d) < x if §x(d) has the same sign
as f¥(d) — x, and f*(d) > x if §;(d) has the opposite sign as f*(d) — x.

There 1s a critical difference between the locality of relaxations and stretching. For if f has a maximum at d € 9B, then
to set fs(d) = y < f(d) but preserve monotonicity on B, we need to change f; on the entire neighbourhood [d, x] of d with
f(x) = y. However, to stretch to f(d) = y > f(d), we only need to change f; on an arbitrarily small neighbourhood of d by

introducing a very narrow “spike”. Note that as shown in Fig. 2, it is not necessary to preserve continuity at b, though this
could be done by relaxing or stretching at b~ as well as at b™.

We will need the following result on forcing relations between maps due to their kneading invariants.

Theorem 7. Let f and g be B-monotone-continuous maps with discontinuities D = 9 8%. Suppose that for all discontinuities
d € D, either

. kg (d) < ?Ef (d), where < is < whgn f has a maximum at d, and > when f has a minimum at d.
2. g"(d) = d’ for some d’ with o" (ks (d)) > itin(d’).
Then every B-itinerary of g is an itinerary of f.

Proof. Consider an itinerary s of g, and let x be a point with itinerary s. Suppose s, = 1, so g"(x) € (b, b;2 1]. Then by the
kneadmg condition, we have ¢ "1 (3) between k (b"*“) and kg(bl 1)-

If kg (d) is determined by Condition 1 above, then o+ (s) has the same relation to kj‘ (d) as k (d).

[f kg(d) is determined by Condition 2, then g™ (d) = b; for some b; € 88, and g'(d) and f* (@) lie in the same regions for

| < m. Then if the itineraries of d and f"(x) differ in the first m symbols, then o™*1(5) and kf (d) differ in the first m — 1
symbols, so the bound is satisfied. Otherwise we have s, € {j,j + 1}, and since ¢ is a valid itinerary for g, so we have

gMtTl(E) > k (b"*:) Then o *(3) satisfies the kneading conditions for k < n-+m since the conditions are the same for fandg.
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Fig. 3. Relaxations to the map g under-approximating the symbolic dynamics made in Algorithm 3.

If Eg(b;:) Is determined by Condition 1, then o ™" satisfies the kneading conditions as above. If Eg (bji) 1S also determined

by Condition 2, then we need to continue until either we find a critical point determined by Condition 1, or by some iterate
differing from a kneading invariant, or we have an infinite loop. C

4.3. Kneading invariants from mapping data sets

Ideally, given a mapping dataset .7 = (Y, f. | -], <) as in Definition 6, we would like to extend the data by extending the
ordering to a total ordering, and extending the mapping information to a total function, such that the resulting kneading
information forces only orbits which are present in all maps consistent with the mapping data. Unfortunately, this is not
always possible. We shall see examples of mapping datasets (which can be taken to be totally ordered) for which there is
no extension to a total function with minimal symbolic dynamics. Instead, we need to relax the ordering on the mapping
dataset 1n certain instances.

Given a mapping dataset, if we know the ordering of the partition boundary points Q, the discontinuity points D and the
critical points C, and all their kneading sequences, then we can determine the ordering of all images of points of P. If all
points of P are eventually periodic, then so are the kneading sequences, and can be determined purely from the image data.

Definition 12. Kneading invariants E(d), d € D are consistent with a mapping dataset (Y, f, |-]. <) if
1. ol (k(d)) € [E(p;l;(d))* E(p;;mm)],andq
2. if fi(d) > f7(d"), then o/ (k(d)) > o7 (k(d")).

If every kneading invariant is eventually periodic, then consistency can be checked by a finite algorithm.

In order to compute lower- and upper-approximations of the symbolic dynamics we therefore need to set the image of
each f"(d) for which the image is not already given by the mapping data. By the kneading theory, we should aim to relax the
kneading invariants to reduce the symbolic dynamics, and stretch kneading invariants to increase the symbolic dynamics.

[f x < y, we say that x and y are adjacent if there is no point z such that x < zandz < y.

Algorithm 3. Given a mapping dataset .7, we aim to find a map g such that any map f compatible with .# has all the
1tineraries of g.

1. Choose d € D with exactly n forward images in the mapping data. Let x = f™(c) be the point adjacent to d which f*(d)
relaxes to. Consider the following cases:

(a) d = c¢. Then f"(d) and x lie in the same orbit. Extend the mapping data by setting g(g"(d)) = g™ (e).
(b) d # c and relaxing g at ¢ moves g"(c) away from g"(d). Then we set g(g"(d)) = g™*'(c); note that g"*'(c) need
not be defined yet. |
(c) d # c and g™~ (d) is adjacent to f'(c) fori = 0, ..., m. Then set g(g"(d)) = g™t 1(c). | |
(d) d # ¢, m > 0 and relaxing g at ¢ moves g™ (c) towards g"(d). Let | be maximal such that g"~'(d) and g™"'(c) lie in
the same lap for 0 < i < I. Then remove the ordering requirement between g"~'(d) and g™~'(¢).
2. Whenever o'(itin(d)) # o’ (itin(c)) (i.e. the known part of the itineraries definitely differ), then add the ordering
gi(d) s g(c)g <= o'(itin(d)) s o’ (itin(c)).
In order to find h which forces all itineraries of f, we use the same construction, but set h(h"(d)) in the direction of stretching
at d, rather than relaxing (Fig. 3).

Note that if we set g(g"(d)) equal to g™ '(¢), and g"(d) and g™(c) lie in the same monotone branch, then g 1s constant on
£7(d). g™(O)]. .

We can apply Algorithm 3 without any ordering data except for comparisons of f'(d) with ¢ for d, ¢ € D. In this case, we
obtain the dynamics forced by the symbolic itineraries. Notice that c is a critical point of f which is not a discontinuity point,
then relaxing and stretching at ¢ can be performed keeping the maps continuous.
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[heorem 8. The symbolic dynamics of the map g constructed by Algorithm 3 is a subshift of that of f, and the symbolic dynamics
of his a supershift of f.

Proof. Suppose g(f"(d)) is determined by (a). Then setting g"*'(d) to f™*!(d) makes d eventually periodic. Further, if f*~"
is orientation-reversing, then %"~ (d) lies on the same Slde of f"(d) as does f™(d). This means that k, (d) is an itinerary of f.
Suppose g(f"(d)) is determined by (b). Then k (d) < k_[(d)lw n—1]0 = ]kg(c) so it satisfies Condition 2 of Theorem 7.

SUppose g(f”(d)) Is determined by (c¢). Then kg(d) = ke (d)}j0.1- 1|kg (c). Although this may not relax k, (d), the kneading
Invariant kg(d) satisfies Condition 2 of Theorem 7.

Suppose we are in the situation of (d). Then the kneading invariant Eg-(d) Is not determined, but since we remove some
ordering relations, the symbolic dynamics must decrease forg. [

We now give an example of a map f with a mapping dataset computed using forward refinement which does not admit a
representative with minimal symbolic dynamics.

Example 3. Let X = [0, 3], and @ be the partition with endpoints {0, 1, 2, 1.
fO =1, =21=70 <f(5) <f(3) <f) =2andf(2) = f (23)
qi = [, %] and giyq = [24, 2% | fori = 0,1.2,and g3 = [1, 2].

Thensince f(Ip)Uf ;) = 13 and f(I3) = f(y) = f(I5) = f(lg) = [4UIs Ulg, we know that for any sequences € {4, 5, 6},
there exists a point with itinerary 035 or 235. However, by taking f (1) very close to f(0), we can rule out the itinerary 035,
whereas taking f ( ) very close to f (1), we can rule out the itinerary 23s (as long as s is not either 4 or 6).

2.2 3}. Let f be a system such that

3) = f(3) = 2. Define symbols

|

30 25,
3,f(2

4.4. The kneading algorithm for unimodal maps

Let f be a unimodal map on [a. b] with f(b) = f(a) = a and single critical point at c. Let Py = (a, ¢) and P; = (c. b).
The computation of the topological entropy using kneading data for unimodal maps has been considered in [27,28]. When
applying Algorithm 3 we are always in case (a) of choosing the image of f"(c¢). This means that if f'(¢) < f*(¢) < f/(¢) and
f™ have a maximum at ¢, then we set g(f"(¢)) = f"*!(c), and h(f"(c)) = f/*1(c). In the former case, we collapse the interval
[f'(c). f"(c)) and map [f"(c). f/(c)] to [f*(c), fit1(c)]. The resulting kneading sequence is eventually periodic, and may

be periodic if f"(c) relaxes onto c itself. If the mapping data does not give a total order on the images of ¢, then we may be
able to deduce some of the ordering from the kneading invariant.

The following example shows that just relying on the kneading sequences can lose information.

Example 4. Consider a unimodal map f with¢; < 3 < ¢5 < ¢ < ¢4 < ¢, where¢; = fi(c). Thenc; < ¢cg < ¢y,
2 < (€7 < (Csand 3 < Cg < €1, So the kneading sequence is 1001010?? - . - )

Continuing the kneading sequence in a consistent way with as little dynamics as possible gives k = 1001010, which
induces topological entropy 0.522. However, for this kneading invariant, the itinerary of ¢3 is 010101 - - . and the itinerary
of ¢5 1s 010100 - - - which is lower. Hence the kneading information is not consistent with the interval information.

If we are to respect the condition ¢; < ¢s, then we can only change the kneading sequence to 1001, in which cs and cs
have the same periodic itinerary, and which induces topological entropy 0.528.

5. Examples

We now give some simple examples illustrating the main features of the paper and the results of our algorithms. We
consider the quadratic unimodal map

fx) = ux(1 — Xx),
the cubic bimodal map
f(x) =ax+ (1 —a — b)x* + bx’

and the normal form of a discontinuous border-collision bifurcation of a stable fixed-point with a square-root
singularity [29].

ax -+ € ifx <0
f(")“{m ifx > 0. (1)

5.1. The unimodal map

Consider the unimodal map:
f(x) = ux(1 —x) with u = 3.92.
Let @ = 0 and b = 1 be the endpoints of the interval I and ¢ = 0.5 be the critical point. Let I = [a, c] and I; = [c, b].
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Fig. 4. Unimodal map.

The orbit of the critical point is given by f'(c) = ¢; with
cog = 0.5, ¢y = 0.98, cy ~ 0.077. c3 =~ 0.278, cq4 = 0.787,
Cs ~ 0.657, Cg ~ 0.883, Cc; = 0.405, cg ~ (0.945, Cqg ~ 0.204.
The itinerary of f (¢) is therefore
itin(f (¢)) = 100111010 - - - .
Consider the partition into six intervals with boundary points

Po = 4, P1 = €2, p3 = (3. P4 = Cyp, Ps = (4, Ps = Cy, D7 = b.
Note that f(ps) € (ps, ps). Taking J; = [pi, pi+1] we have

fUq) D JaUJs; fU2) D Ja: fUsz) D Ja: fds) DJ1UJL

and also

fUs)NJz =@ and f(J4) NJz F# .

Now consider the computation of entropy. Using the lower and upper symbolic dynamics on the partition, we obtain
entropies of 0.41962 and 0.73286. The upper shift on the refined partition has multiple orbits with the same itinerary on I
and I,. If we consider the entropy of the shift itself (by using additional states J;3 and J34) we obtain 0.583.

Improvement of entropy using kneading theory

If we use the kneading theory, we see that by setting f(c4) = ¢4 we have itin(f(c)) = 1001111 . .- which is higher
in the unimodel order, and setting f(c4) = co we have itin(f(c)) = 10015100 - - - which is lower than 10011101 - -. The
corresponding lower and upper entropies are 0.54354 and 0.571.

Consider a unimodal map with kneading invariant 10019, so ¢ is periodic and f°(c) = c. The images of ¢ are ordered

a < f%(c) < f3(c) < ¢ < f%c) < f(c) < b. We can compute the topological entropy of the shift and obtain a value of
0.54354.

Consider a unimodal map with kneading invariant 1001, so c is eventually periodic and f°(¢) = f%(c). The images of ¢
are ordered a < f2(¢c) < f?(¢c) < ¢ < f4(c) < f(c) < b. We can compute the topological entropy of the shift, and obtain a
value of 0.57058. .

Now consider a unimodal map with kneading invariant k = 10011 - - -. From the kneading theory, we know 10011 >
10019 so we have hyp(f) > 0.64. Define Ry = [f%(c), f3(c)], Ry = [f3(c), cl, Rs = [c, f*(c)] and Ry = [f*(c). f(c)]. When
using the forward refinement strategy, since f>(c) € Rs, the interval R; maps to [f>(c¢), f(c¢)] and the interval [f4(c). f(c)]
maps to [f4(c), f°(c)] which together cover Rz, but neither does individually. Hence neither of the transitions R3 — Rj
nor R4 —> Rz in the automaton for the lower symbolic dynamics. The entropy bound obtained drops to 0.41962.

The overall effect of the kneading theory is to “choose” a transition, either Ry —> R3 or R4 — R3, to put in the lower
symbolic dynamics, while still ensuring that the dynamics are a lower bound. The chosen transition is the one giving the
least entropy (Fig. 4).
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Table 1
Entropy of the ummodal I map 11511‘1g backwatd and hybrld refmemem
Steps Enuopy Running time backward Running time hybrid
1 [0:0. 693‘14] 0.05 0.11
2 [0.48121:0.69315] 0.11 0.12
3 [0.48121:0.60938] 0.24 0.26
4 10.54353:0.60938] 0.55 0.58
5 10.54353:0.58356] 1.26 1.21
6 10.54353:0.56240] 2.68 2.63
7 10.54761:0.56240] - 6.73 - ' 5,74
8 10.55642:0.56240] - 17.74 , 11.04
9 [0.55642:0.56099] 48,32 o _ ' 18.86
10 . , [0.55842:0.56099] ' ' 14826 ' . 30.44
11 , [0.55990:0.56099] 450.37 47.78
12 - [0.55990:0.56073] ' 1246.19 ' 76.07
13 . - [0.55990:0.56026] - ' 116.80
14 [0.55998:0.56026] ' . - 136.57
15 - [0.56014:0.56026] . . 309.09
Table 2
Entropy of the ummodal map w1th kneadmg algorlthm
' Steps _ , Entropy - , Runmngtlme o .
1 -[0 0. 693147180559] N - - 0.01 o
2 - 10:0.693147180559] ' ' - 0.04
3 [0.481211825059:0. 6931471805599]. . o - 0,03
4 . - [0.481211825059:0.6093778634360] o ' 003
=N R -~ [0.,543535072497:0.5705796667792] o - 006
6 A - [0.543535072497:0.5705796667792] o S - 010
7 ~ {0. 555194599694:0.5623991486459] ' 010
8 10.557934930430:0.5623991486459] ' - - 0.10
g , [0.558939519816:0.5623991486459] . . , -~ 0.13
10 [0.560046256097:0.560988810813] .' , I 0.10
15 [0.560216078753:0.560259207813] o - 0.09
20 - [0.560235149472:0.560235821005] - - - 0.16
25 [0.560235528970:0.560235669923] 020
30 [0.560235632260:0.560235638765] o o 027
35 - - [0.560235635949:0.560235636493] ' 036
40 N [0.560235636370:0.560235636375] . 055

5.2. A bimodal map

f(x) = 0.35x> — 2.75x* + 4.5x + 3.3.

The initial partition has the following end-points: fixgo & —0.619, ¢cg =~ 1.015, ¢; = 4.223, fix, ~ 5.886.

5.3. A discontinuous border-collision

A discontinuous border-collision bifurcation of a stable fixed-point with a square-root singularity gives the following
normal form [29].

. ax + € ifx <0
T =\ /bx—c ifx>o0. (2

a=—3.5,e=15b=2,¢c =2.
5.4. Comparison of different strategies

[n this section we compare the effectiveness of different refinement strategies and methods for extracting the symbolic
dynamics.

In Table 1 after the seventh steps the running time increases by a factor which ranges over the interval [2.5, 3] for
backward refinement while with a factor which ranges over the interval [ 1.5, 1.7] for hybrid refinement (Table 2). In Table 3
after the fifth steps the running time increases by a factor which ranges over the interval [4.5, 4.6] for backward refinement
while with a factor which ranges over the interval [1.7, 2] for hybrid refinement.

These observations suggest that the running time follows an exponential law in terms of the steps of refinement, in the
hybrid refinement the exponential rate is lower than with the backward refinement. This outcome matches the structure



432 L. Sella, P. Collins / Journal of Computational and Applied Mathematics 234 (2010) 418-436

;
i
|

Table 3
Entropy of the bimodal map with backward and hybrid refinement.
Steps Entropy Running time backward Running time hybrid
1 10:0.88137] 0.20 0.26
2 10.69314:0.83412] 0.77 0.82
3 10.75832:0.81443] 1.15 1.23
4 10.77727:0.80327] 3.66 3.52
5 10.77727:0.78803] 12.65 ' 8.80
6 10.78109:0.78636] 51.15 - 1997
7 [0.78303:0.78533] 233.61 4291
8 [0.78351:0.78463] 1057.99 - 83.19
9 [0.78383:0.78441] 141.64
10 [0.78408:0.78425] ' - 27964

Fig. 5. Bimodal map.

of the algorithms where in both cases we need to deal with exponentially growing number of preimages of endpoints as

we sald 1n Section 3.2. The hybrid approach is faster because filter out most of the endpoints obtaining a partition whose
cardinality grows linearly.

Instead, in the forward refinement kneading approach the data approximatively match a liner function for the running
time in terms of the steps. This algorithm is much faster because on the one hand the computation of forward images is
easter then backward images, and on the other hand the number of endpoints increases linearly.

In all these three approaches the accuracy of the entropy approximation increases monotonically, despite not always
being strictly monotonically. Finding an exact law which expresses the rate of convergence of the computation of topological
entropy in terms of the steps of refinement and the running time is not straightforward. This problem requires further
investigation and the authors’ guess is that it deeply depends on the structure of the map.

6. Case studies

[n this section, we present three case studies: a discontinuous border-collision singularity, a simple hysteresis system
and the singular limit of the Van der Pol equation (Fig. 5).

6.1. A hysteresis switching system
We now consider a piecewise-affine model of a system governed by hysteresis switching [30]. Let H(x) be the hysteresis

map, informally given by H(x) = 0 forx < 1and H(x) = 1forx > 0. Consider the system:

X =y -+ aiH(x/b) (3)
y = —x—20y -+ ayH(x/b).

The return map is defined onthe set P = {(x,y) € R* | x = 0, y > 0} as: f(p) = ¢(p, ) wheret = min{t | ¢ =
¢(p,t) € Pand H(xy) = 0} and ¢(p, t) is the integral map of the system (3). We have computed symbolic dynamics for the
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Fig. 6. The return map for the hysteresis system (3).

Fig. 7. Lower and upper approximation of symbolic dynamics for the hysteresis system (3) for (a) the initial partition and (b) the forward refinement of
the initial partition.

return map with parametervaluesa; = —1,a; = —1,b = 0.3 ando = —0.2. The graph of the return map is shown in Fig. 6.
We take an initial partition @, which are the domains of the monotone branches. The partition elements are Qg = [pg, pP1],

Qi1 = [p1, p3l. Q2 = [p3, ps]. Q3 = [ps, p7] and Q4 = [p7, ps] where the boundary points are
Po = 0.0, D1 =~ 0.20894, Pz ~ 0.39278, P =~ 0.73329, Pr =~ 0.92580, Pg = 1.0.

The associated symbolic dynamics are in Fig. 7(a). The two points of discontinuity are p; and ps and they can be proved

to have the same left and right images. The partition after one iteration of forward refinements has the following additional
endpoints:

ps = f(p7) =~ 0.33792, ps =f(p7) =f(pF) =~ 0.59890, pg =f(p7) =f(p:) = 0.75340.

The symbolic dynamics generated by this partition are approximated by the graph in Fig. 7(b).

We notice that the lower approximation of the dynamics of the refined partition misses some sequences of the lower
approximation of dynamics of the initial partition. This is due to the fact that although region Q; = [p;, p3] covers
Qo = [po, p1] under one iterate of the return map, neither of the subdivided regions Py.o = [p1, p2]and P1.; = [p,, p3] cover
Qo. Hence the convergence of the lower approximations of the symbolic dynamics computed using forward refinement is
not monotone. With backward refinement the convergence can be shown to be monotone, but backward refinements have
the disadvantage of being slower to compute than forward refinements (Tables 4 and 5).

The lower shift for the initial partition can be written as the regular expression

(9092)"(gy +97) + (4p9290)™ (qT + q3) + (q592)° .

We can see for instance that the periodic sequence (qog3q2g1)® belongs to the upper shift but not to the lower shift. From
the two shifts we can show that the topological entropy lies in the interval [0.80958, 1.27020].

The topological entropies obtained for further refinement are shown in Table 6. In Table 7 we show instead the much
more accurate results obtained using the kneading approach.

6.2. The Van der Pol equation

The forced Van der Pol equation is a non-linear ordinary differential equation modeling oscillation in a vacuum tube

triode circuit. Bifurcations in the singular limit of the forced Van der Pol oscillator have been studied in [31]. In this paper
we analyse the following version of the equation:

%4+ w(® — Dx+x=ax* — 1) sin(2rv) (4)
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Table 4
Entropy ofthe blmodal map wrth kneadmg algor ithm.

v - h H m n

TR TRy s L._ . i duiiiden

S Steps e hntropy | o - Runnmgtlme

T T

e

[0:1 098612288668] 0.01
[0:0.881373587019] 001
[0.6931471806139:0.7949452427288] _ 005
[0.7641997080283:0.7949452427288] 006
[0.7772705789959:0.7949452427288] - 006
[0.7772705789959:0.7880304603014] - - 007
[0.7825090975765:0.7847829456947 ] R ¢ 0 10
- [0.7839408308854:0.7844986535653] - R
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1w ]0.7840949704856:0.7842660362345]
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20 ~ [0.7841531278765:0.7841531492005]
25 [07841531371710:0.7841531375475]
30 [0.7841531373109:0.7841531373218]
35 R -_'-[07841531373175 07841531373177]

Table 5
Entr opy of the dlscontrnuous border collrsron map w1th kneadmg alganthm

PR e My

______ m eI " - W A L

Steps -'..-__ﬁEntropy

- o 4812'1 1 ]
- |0:0.481211]
- [0,0.240606}
- [0,0.240606]
- [0,0.240606]
- [0,0.240606] '
- 10,0.240606]
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B N B [o 217382 0 218459]] R
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L .'.'._Qz[o 217547 0217559];

Table 6
Entropy of the return map of the hystele:sus system with forwald reﬁnement

Stees  Entropy

3 . [0.97494, ’126249]-_ . - I
LB __— 1-[1 02407 1 18582] RN Y KT R

i e Wy s o PSSP T WPy eyt ool Al LA A M it Mgl pmprpn et sl e b Svvaiviah e i e ™ PRI TP —

Table 7
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in the singular limit as & — oc. To obtain a form more convenient for analysis, we rescale time t = t/u, introduce new

parameters £ = r::" cw = v and & = ot, and define the new variabley = x/ u? + x°/3 — x. We obtain the following

autonomous system:

gXx =y +x—x°/3: _ _ )
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Fig. 8. The half return map for the singular limit of the forced Van der Pol oscillator (7).

y = —x+ax* — 1)sin(2mrH): (6)
6 = w.

The fast subsystem is defined by (5), since the dynamics of the fast variable x occur on a time scale which is fast relative to
the evolution of the slow variables y and 6.

We see that on the critical manifold y + x — x3 /3 = 0 the system evolves on a time scale of order t. However, the critical
manifold is unstable for the fast system if |x| < 1, and that when this occurs, the value of x jumps instantaneously to one of
the stable fixed points of (5).

We can therefore view the singular limit as a hybrid system in which the continuous dynamics are given by the slow

flow on the stable sheet of the critical manifold, and the reset map is given by the fast flow. By eliminating y, we obtain the
following dynamics for the slow subsystem:

X = —x+ a(x* — 1)sin(27x6) (7)
f = w(x* —1).

The fast dynamics are described by the guard set and reset map
G={kx,0)||x| =1} rx,0) = (—2sgn(x), 6). (8)

In other words, when the guard condition |x| = 1 becomes satisfied the state jumps to x = F2.

Since the dynamics are symmetric under the transformation T (x, 8) = (—x, 6 + 1/2), we can post-compose the return
map from the guard set x = 1tothe guard setx = —1 with T to obtain the halfreturnmap f taking {(r,6) | r = 1} Into itself.
The graph of the half return map for parameter values a = 5 and w = 3 is shown in Fig. 8. We have computed the lower

and upper symbolic dynamics with respect to the partition given by the continuous branches using forward refinement.
In the return map there are 5 discontinuity points:

Py =~ 0.05816, p3 ~ 0.25226, Ps ~ 0.69356, D ~ 0.81553, Py =~ 0. 98495,

and 2 critical points, a local maximum p; & 0.02183 and a local minimum p4 ~ 0.47872. These points with the extremes
of the interval pg = 0 and pg = 1 generate an initial partition of 9 pieces. After one forward iteration we obtain 11 pieces.

go = f(po) = 0.15520,  q; = f(p1) = 0.17825, g, = f(ps) =~ 0.29017.

The lower and upper discrete automata are not included for reasons of space. After one step of refinement, the discrete
automaton representing the symbolic dynamics separate into two strongly connected components. Both the lower and
upper shifts include the component with the highest entropy, while the lower shift does not include the smallest.

Therefore the topological entropies of the lower and upper shifts are equal and can be computed exactly yielding a
numerical value of approximately 1.55705. From Fig. 8 we could already infer the entropy is at least log(3) ~ 1.09861,
because there are 3 continuous pieces of the partition which map the whole interval. From numerical computation we can
deduce the existence of an attracting periodic orbit close to the local minimum. This lets us infer the existence of a chaotic
invariant Cantor set, every point non belonging to this set converges to the attracting periodic orbit.
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7. Conclusions and further research

In this paper we have considered the computation of symbolic dynamics relative to an arbitrary partition for piecewise-
monotone-continuous maps of the interval. We have considered the case in which images and preimages cannot be
computed exactly, but only approximations using interval arithmetic. We have considered both forwards and backwards
refinements of the initial partition into monotone branches, and the computation of symbolic dynamics using both covering

relations and kneading theory. We have given a number of illustrative examples from the unimodal and trimodal families,
and two case studies.

As mentioned in the introduction, an important motivation for this work was to gain intuition in methods for computing
symbolic dynamics in a simple case, in the hope that some of this can be carried over to higher dimensions. The backward
refinement strategy for computing the upper symbolic dynamics can be carried directly over to higher dimensions. As we

have seen, the entropy bounds for the sofic shift are typically very good, but care must be taken to reduce the dynamics of
the generating directed graph.

Computing the lower symbolic dynamics with a convergence in entropy is complicated in higher dimensions since we can
prove the existence of orbits without the covering relation. Further, the work of Misiurewicz [32] shows that the topological
entropy is not lower-semicontinuous for non-invertible maps in two dimensions, and invertible maps in three dimensions.

This suggests that the computable lower symbolic dynamics even in the non-invertible two-dimensional case may not match
the actual dynamics present.
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